
Secure and Efficient Asynchronous Broadcast

Protocols?

(Extended Abstract)

Christian Cachin, Klaus Kursawe, Frank Petzold??, and Victor Shoup

IBM Research, Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland
{cca,kku,sho}@zurich.ibm.com

Abstract. Broadcast protocols are a fundamental building block for im-
plementing replication in fault-tolerant distributed systems. This paper
addresses secure service replication in an asynchronous environment with
a static set of servers, where a malicious adversary may corrupt up to a
threshold of servers and controls the network. We develop a formal model
using concepts from modern cryptography, give modular definitions for
several broadcast problems, including reliable, atomic, and secure causal
broadcast, and present protocols implementing them. Reliable broad-
cast is a basic primitive, also known as the Byzantine generals problem,
providing agreement on a delivered message. Atomic broadcast imposes
additionally a total order on all delivered messages. We present a ran-
domized atomic broadcast protocol based on a new, efficient multi-valued
asynchronous Byzantine agreement primitive with an external validity
condition. Apparently, no such efficient asynchronous atomic broadcast
protocol maintaining liveness and safety in the Byzantine model has
appeared previously in the literature. Secure causal broadcast extends
atomic broadcast by encryption to guarantee a causal order among the
delivered messages. Our protocols use threshold cryptography for signa-
tures, encryption, and coin-tossing.

1 Introduction

Broadcast protocols are a fundamental building block for fault-tolerant dis-
tributed systems. A group of servers can offer some service in a fault-tolerant
way by using the state machine replication technique, which will mask the fail-
ure of any individual server or a fraction of them. In the model with Byzantine
faults considered here, faulty servers may exhibit arbitrary behavior or even be
controlled by an adversary.

? This work was supported by the European IST Project MAFTIA (IST-1999-11583).
However, it represents the view of the authors. The MAFTIA project is partially
funded by the European Commission and the Swiss Department for Education and
Science.

?? Frank Petzold has since left IBM and can be reached at petzold@hepe.com.



In this paper, we present a modular approach for building robust broadcast
protocols that provide reliability (all servers deliver the same messages), atom-
icity (a total order on the delivered messages), and secure causality (a notion
that ensures no dishonest server sees a message before it is scheduled by the sys-
tem). An important building block is a new protocol for multi-valued Byzantine
agreement with “external validation.” Our focus is on methods for distributing
secure, trusted services on the Internet with the goal of increasing their avail-
ability and security. Cryptographic operations are exploited to a greater extent
than previously for such protocols because we consider them to be relatively
cheap, in particular compared to the message latency on the Internet.

We do not make any timing assumptions and work in a purely asynchronous
model with a static set of servers and no probabilistic assumptions about mes-
sage delays. Our protocols rely on a trusted dealer that is used once to set up
the system, but they do not use any additional external constructs later (such
as failure detectors or stability mechanisms). We view this as the standard cryp-
tographic model for a distributed system with Byzantine faults. These choices
maintain the safety of the service even if the network is temporarily disrupted.
This model also avoids the problem of having to assume synchrony properties
and to fix timeout values for a network that is controlled by an adversary; such
choices are difficult to justify if safety and also security depend on them.

Despite the practical appeal of the asynchronous model, not much research
has concentrated on developing efficient asynchronous protocols or implementing
practical systems that need consensus or Byzantine agreement. Often, developers
of distributed systems avoid the approach because of the result of Fischer, Lynch,
and Paterson [9], which shows that consensus is not reachable by protocols that
use an a priori bounded number of steps, even with crash failures only. But the
implications of this result should not be overemphasized. In particular, there are
randomized solutions that use only a constant expected number of asynchronous
“rounds” to reach agreement [15, 7, 3]. Moreover, by employing modern, efficient
cryptographic techniques and by resorting to the random oracle model, this
approach has recently been extended to a practical yet provably secure protocol
for cryptographic Byzantine agreement that withstands the maximal possible
corruption [6].

Two basic broadcast protocols are reliable broadcast (following Bracha and
Toueg [4]), which ensures that all servers deliver the same messages, and a varia-
tion of it that we call consistent broadcast, which only provides agreement among
the actually delivered messages. The consistent broadcast primitive used here is
particularly useful in connection with a verifiability property for the delivered
messages, which ensures that a party can transfer a “proof of delivery” to another
party in a single flow.

The efficient randomized agreement protocols mentioned before work only
for binary decisions (or for decisions on values from small sets). In order to build
distributed secure applications, this is not sufficient. One also needs agreement
on values from large sets, in particular for ordering multiple messages. We pro-
pose a new multi-valued Byzantine agreement protocol with an external validity



condition and show how it can be used for implementing atomic broadcast. Ex-
ternal validity ensures that the decision value is acceptable to the particular
application that requests agreement; this corrects a drawback of earlier agree-
ment protocols for multi-valued agreement, which could decide on illegal values.
Both protocols use digital signatures and additional cryptographic techniques.
The multi-valued Byzantine agreement protocol invokes only a constant ex-

pected number of binary Byzantine agreement sub-protocols on average and
achieves this by using a cryptographic common coin protocol in a novel way. It
withstands the maximal possible corruption of up to one third of the parties and
has expected quadratic message complexity (in the number of parties), which is
essentially optimal.
Our atomic broadcast protocol guarantees that a message from an honest

party cannot be delayed arbitrarily by an adversary as soon as a minimum
number of honest parties are aware of that message. The protocol invokes one
multi-valued Byzantine agreement per batch of payload messages that is deliv-
ered. An analogous reduction of atomic broadcast to consensus in the crash-fault
model has been described by Chandra and Toueg [8], but it cannot be directly
transferred to the Byzantine setting.
We also define and implement a variation of atomic broadcast called secure

causal atomic broadcast. This is a robust atomic broadcast protocol that tolerates
a Byzantine adversary and also provides secrecy for messages up to the moment
at which they are guaranteed to be delivered. Thus, client requests to a trusted
service using this broadcast remain confidential until they are answered by the
service and the service processes the requests in a causal order. This is crucial in
our asynchronous environment for applying the state machine replication method
to services that involve confidential data.
Secure causal atomic broadcast works by combining an atomic broadcast pro-

tocol with robust threshold decryption. The notion and a heuristic protocol were
proposed by Reiter and Birman [17], who called it “secure atomic broadcast”
and also introduced the term “input causality” for its main property. Recent
progress in threshold cryptography allows us to present an efficient robust pro-
tocol together with a security proof in the random oracle model.
In accordance with the comprehensive survey of fault-tolerant broadcasts by

Hadzilacos and Toueg [10], we define and implement our protocols in a mod-
ular way, with reliable and consistent broadcasts and Byzantine agreement as
primitives. This leads to the following layered architecture:

Secure Causal Atomic Broadcast

Atomic Broadcast

Multi-valued Byzantine Agreement

Broadcast Primitives Byzantine Agreement

Important for the presentation of our broadcast protocols is our formal model
of a modular protocol architecture, where a number of potentially corrupted par-
ties communicate over an insecure, asynchronous network; it uses complexity-
theoretic concepts from modern cryptography. This makes it possible to easily



integrate the formal notions for encryption, signatures, and other cryptographic
tools with distributed protocols. The model allows for quantitative statements
about the running time and the complexity of protocols; the essence of our def-
inition is to bound the number of steps taken by participants on behalf of a
protocol independently from network behavior. In view of the growing impor-
tance of cryptography for secure distributed protocols, a unified formal model
for both is a contribution that may be of independent interest.

Organization of the Paper. For lack of space, only the most important results are
described in this extended abstract. It begins with a brief account of the formal
model and definitions for binary Byzantine agreement and consistent broad-
cast. Then it presents validated Byzantine agreement and an implementation
for the multi-valued case, which is extended to atomic broadcast. More details,
in particular the formal model, detailed definitions and proofs, the discussion of
related work, and the descriptions of reliable broadcast and secure causal atomic
broadcast, can be found in the full version [5].

2 Model

2.1 Overview of the Formal Model

Our system consists of a collection of n interactive Turing machines, of which
t are (statically) corrupted by an adversary, modeled by an arbitrary Turing
machine. There is a trusted dealer that has distributed some cryptographic keys
initially, but it is not used later. Our model differs in two respects from other
models traditionally used in distributed systems with Byzantine faults: (1) In
order to use the proof techniques of complexity-based cryptography, our model
is computational : all parties and the adversary are constrained to perform only
feasible, i.e., polynomial-time, computations. This is necessary for using formal
notions from cryptography in a meaningful way. (2) We make no assumptions
about the network at all and leave it under complete control of the adversary. Our
protocols work only to the extent that the adversary delivers messages faithfully.
In short, the network is the adversary. The differences become most apparent in
the treatment of termination, for which we use more concrete conditions that
together imply the traditional notion of “eventual” termination.
We define termination by bounding a statistic measuring the amount of work

that honest, uncorrupted parties do on behalf of a protocol. In particular, we use
the communication complexity of a protocol for this purpose, which is defined as
the length of all protocol messages that are “associated” to the protocol instance.
We use the term protocol message for messages that the parties send to each
other to implement a protocol, in contrast to the payload messages that are the
subject of the (reliable, consistent, atomic . . . ) broadcasts among all parties. The
specification of a protocol requires certain things to happen under the condition
that all protocol messages have been delivered; thus, bounding the length (and
also the number) of protocol messages generated by uncorrupted parties ensures
that the protocol has actually terminated under this condition. As usual in



cryptography, we prove security with respect to all polynomial-time adversaries.
Our notion of an efficient (deterministic) protocol requires that the statistic is
uniformly bounded by a fixed polynomial independent of the adversary. We also
define the corresponding notion of a probabilistically uniformly bounded statistic
for randomized protocols; the expected running time of such a protocol can
be derived from this. Both notions are closed under modular composition of
protocols, which is not trivial for randomized protocols.
Our model uses the adversary in two roles: to invoke new instances of a pro-

tocol through input actions (as an application might do) and to deliver protocol
messages (modeling the network).
For simplicity, all protocol messages delivered by the adversary are assumed

to be authenticated (implementing this is straightforward in our model).

2.2 Byzantine Agreement

We give the definition of (binary) Byzantine agreement (or consensus in the
crash-fault model) here as it is needed for building atomic broadcast protocols.
It can be used to provide agreement on independent transactions.
The Byzantine agreement protocol is activated when the adversary deliv-

ers an input action to Pi of the form (ID , in, propose, v), where v ∈ {0, 1}.
When this occurs, we say Pi proposes v for transaction ID . A party terminates
the Byzantine agreement protocol (for transaction ID) by generating an output
action of the form (ID , out, decide, v). In this case, we say Pi decides v for trans-
action ID . Let any protocol message with tag ID or ID | . . . that is generated by
an honest party be associated to the agreement protocol for ID .

Definition 1 (Byzantine agreement). A protocol solves Byzantine agree-
ment if it satisfies the following conditions except with negligible probability:

Validity: If all honest parties that are activated on a given ID propose v, then
any honest party that terminates for ID decides v.1

Agreement: If an honest party decides v for ID, then any honest party that
terminates decides v for ID.

Liveness: If all honest parties have been activated on ID and all associated
messages have been delivered, then all honest parties have decided for ID.

Efficiency: For every ID, the communication complexity for ID is probabilisti-
cally uniformly bounded.

2.3 Cryptographic Primitives

Apart from ordinary digital signature schemes, we use collision-free hashing,
pseudo-random generators, robust non-interactive dual-threshold signatures [18],
threshold public-key encryption schemes [19], and a threshold pseudo-random
function [13, 6]. Definitions can be found in the full version [5].

1 We use the term “validity” for this condition in accordance with most of the literature
on Byzantine agreement. Alternatively, one might also adopt the terminology of
fault-tolerant broadcasts [10] and instead call it “integrity,” to emphasize that it is
a general safety condition (in contrast to a liveness condition).



3 Broadcast Primitives: Verifiable Consistent Broadcast

Our multi-valued agreement protocol builds on top of a consistent broadcast
protocol, which is a relaxation of Byzantine reliable broadcast [12]. Consistent
broadcast provides a way for a distinguished party to send a message to all other
parties such that two parties never deliver two conflicting messages for the same
sender and sequence number. In other words, it maintains consistency among the
actually delivered payloads with the same senders and sequence numbers, but
makes no provisions that two parties do deliver the payloads. Such a primitive
has also been used by Reiter [16].
Broadcasts are parameterized by a tag ID , which can also be thought of as

identifying a broadcast “channel,” augmented by the identity of the sender, j,
and by a sequence number s. We restrict the adversary to submit a request for
consistent broadcast tagged with ID .j.s to Pi only if i = j and at most once for
every sequence number.
A consistent broadcast protocol is activated when the adversary delivers an

input action to Pj of the form (ID .j.s, in, c-broadcast,m), with m ∈ {0, 1}∗

and s ∈ N. When this occurs, we say Pj consistently broadcasts m tagged
with ID .j.s. Only the sender Pj is activated like this. The other parties are
activated when they perform an explicit open action for instance ID .j.s in their
role as receivers (this occurs implicitly in our system model when they wait for
an output tagged with ID .j.s).
A party terminates a consistent broadcast of m tagged with ID .j.s by gener-

ating an output action of the form (ID .j.s, out, c-deliver,m). In this case, we
say Pi consistently delivers m tagged with ID .j.s. For brevity, we also the terms
c-broadcast and c-deliver.

Definition 2 (Authenticated Consistent Broadcast). A protocol for au-
thenticated consistent broadcast satisfies the following conditions except with
negligible probability:

Validity: If an honest party has c-broadcast m tagged with ID .j.s, then all
honest parties c-deliver m tagged with ID .j.s, provided all honest parties have
been activated on ID .j.s and the adversary delivers all associated messages.

Consistency: If some honest party c-delivers m tagged with ID .j.s and another
honest party c-delivers m′ tagged with ID .j.s, then m = m′.

Authenticity: For all ID, senders j, and sequence numbers s, every honest
party c-delivers at most one message m tagged with ID .j.s. Moreover, if Pj

is honest, then m was previously c-broadcast by Pj with sequence number s.
Efficiency: For any ID, sender j, and sequence number s, the communication
complexity of instance ID .j.s is uniformly bounded.

The provision that the “adversary delivers all associated messages” is our quan-
titative counterpart to the traditional “eventual” delivery assumption.
A party Pi that has delivered a payload message using consistent broadcast

may want to inform another party Pj about this. Such information might be



useful to Pj if it has not yet delivered the message, but can exploit this knowl-
edge to deliver the payload message itself, maintaining consistency. We call this
property the verifiability of a consistent broadcast.
Informally, we use verifiability like this: when Pj claims that it is not yet

in a state to c-deliver a particular payload message m, then Pi can send a
single protocol message to Pi and when Pj processes this, it will c-deliver m
immediately.

Definition 3 (Verifiability). A consistent broadcast protocol is called verifi-
able if the following holds, except with negligible probability: When an honest
party has c-delivered m tagged with ID .j.s, then it can produce a single protocol
message M that it may send to other parties such that any other honest party
will c-deliver m tagged with ID .j.s upon receiving M (provided the other party
has not already done so before).

We call M the message that completes the verifiable broadcast. This notion
implies that there is a polynomial-time computable predicate VID.j.s that the
receiving party can apply to an arbitrary bit string for checking if it constitutes
a message that completes a verifiable broadcast tagged with ID .j.s.
A protocol for verifiable authenticated consistent broadcast (denoted VCBC)

is given in the full version [5]. It is inspired by the “echo broadcast” of Reiter [16]
and based on a threshold signature scheme. Its message complexity is O(n) and
its bit complexity is O(n(|m|+K)), assuming the length of a threshold signature
and a signature share is at most K bits.

4 Validated Byzantine Agreement

The standard notion of validity for Byzantine agreement implements a binary
decision and requires that only if all honest parties propose the same value, this
is also the agreement value. No particular outcome is guaranteed otherwise. Ob-
viously, this still ensures that the agreement value was proposed by some honest
party for the binary case. But it does not generalize to multi-valued Byzantine
agreement, and indeed, all previous protocols for multi-valued agreement [15, 20,
14] may fall back to a default value in this case, and decide for a value that no
honest party proposed.
We solve this problem by introducing an external validity condition, which

requires that the agreement value is legal according to a global, polynomial-time
computable predicate, known to all parties and determined by the particular
higher-level application.
Validated Byzantine agreement generalizes the primitive of agreement on a

core set [2], which is used in the information-theoretic model for a similar purpose
(a related protocol was also developed by Ben-Or and El-Yaniv [1]).

4.1 Definition

Suppose there is a global polynomial-time computable predicate QID known
to all parties, which is determined by an external application. Each party may



propose a value v that should satisfy QID and perhaps contains validation in-
formation. The agreement domain is not restricted to binary values.
A validated Byzantine agreement protocol is activated by a message of the

form (ID , in, v-propose, v), where v ∈ {0, 1}∗. When this occurs, we say Pi

proposes v for transaction ID . We assume the adversary activates all honest
parties on a given ID at most once. W.l.o.g., honest parties propose values that
satisfy QID .
A party terminates a validated Byzantine agreement protocol by generating

a message of the form (ID , out, v-decide, v). In this case, we say Pi decides v
for transaction ID .
We say that any protocol message with tag ID that was generated by an

honest party is associated to the validated Byzantine agreement protocol for ID .
An agreement protocol may also invoke sub-protocols for low-level broadcasts or
for Byzantine agreement; in this case, all messages associated to those protocols
are associated to ID as well (such messages have tags with prefix ID | . . . ).

Definition 4 (Validated Byzantine Agreement). A protocol solves vali-
dated Byzantine agreement with predicate QID if it satisfies the following con-
ditions except with negligible probability:

External Validity: Any honest party that terminates for ID decides v such
that QID(v) holds.

Agreement: If some honest party decides v for ID, then any honest party that
terminates decides v for ID.

Liveness: If all honest parties have been activated on ID and all associated
messages have been delivered, then all honest parties have decided for ID.

Integrity: If all parties follow the protocol, and if some party decides v for ID,
then some party proposed v for ID.

Efficiency: For every ID, the communication complexity for ID is probabilisti-
cally uniformly bounded.

A variation of the validity condition is that an application may prefer one
class of decision values over others. Such an agreement protocol may be biased
and always choose the preferred class in cases where other values would have
been valid as well.
Validated Byzantine agreement is often used with arguments that consist of

a “value” part v and a separate “proof” π that establishes the validity of v. If v
is a single bit, we call this the problem of binary validated agreement ; a protocol
for this task is used below.
In fact, we will need a binary validated agreement protocol that is “biased”

towards 1. Its purpose is to detect whether there is some validation for 1, so
it suffices to guarantee termination with output 1 if t + 1 honest parties know
the corresponding information at the outset. Formally, a binary validated Byzan-
tine agreement protocol biased towards 1 is a protocol for validated Byzantine
agreement on values in {0, 1} such that the following condition holds:

Biased Validity: If at least t+1 honest parties propose v = 1 then any honest
party that terminates for ID decides v = 1.



We describe two related protocols for multi-valued validated Byzantine agree-
ment below: Protocol VBA, described in Section 4.3, needs O(n) rounds and in-
vokes O(n) binary agreement sub-protocols; this can be improved to a constant
expected number of rounds, resulting in Protocol VBAconst, which is described
in Section 4.4. But first we discuss the binary case.

4.2 Protocols for the Binary Case

It is easy to see that any binary asynchronous Byzantine agreement protocol can
be adapted to external validity and can also be biased.
For example, in the protocol of Cachin, Kursawe, and Shoup [6] one has to

“justify” the pre-votes of round 1 with a valid “proof” π. The logic of the protocol
guarantees that either a decision is reached immediately or the validations for 0
and for 1 are seen by all parties in the first two rounds. Furthermore, the protocol
can be biased towards 1 by modifying the coin such that it always outputs 1 in
the first round.

4.3 A Protocol for the Multi-valued Case

We now describe Protocol VBA that implements multi-valued validated Byzan-
tine agreement.
The basic idea is that every party proposes its value as a candidate value

for the final result. One party whose proposal satisfies the validation predicate
is then selected in a sequence of binary Byzantine agreement protocols and this
value becomes the final decision value. More precisely, the protocol consists of
the following steps.

Echoing the proposal (lines 1–4): Each party Pi c-broadcasts the value that
it proposes to all other parties using verifiable authenticated consistent
broadcast. This ensures that all honest parties obtain the same proposal
value for any particular party, even if the sender is corrupted. Then Pi waits
until it has received n− t proposals satisfying QID before entering the agree-
ment loop.

Agreement loop (lines 5–20): One party is chosen after another, according
to a fixed permutation Π of {1, . . . , n}. Let a denote the index of the party
selected in the current round (Pa is called the “candidate”). Each party Pi

carries out the following steps for Pa:
1. Send a v-vote message to all parties containing 1 if Pi has received

Pa’s proposal (including the proposal in the vote) and 0 otherwise (lines
6–11).

2. Wait for n − t v-vote messages, but do not count votes indicating 1
unless a valid proposal from Pa has been received—either directly or
included in the v-vote message (lines 12–13).

3. Run a binary validated Byzantine agreement biased towards 1 to de-
termine whether Pa has properly broadcast a valid proposal. Vote 1 if
Pi has received a valid proposal from Pa and add the protocol message



Protocol VBA for party Pi, tag ID, and validation predicate QID

Let VID|a

(

(v, ρ)
)

be the following predicate:

VID|a

(

(v, ρ)
)

≡ (v = 0) or
(

v = 1 and ρ completes the verifiable authenticated c-broadcast of

a message (v-echo, wa) with tag ID .a.0 such that QID(wa) holds
)

Upon receiving message (ID , in, v-propose, w):

1: verifiably authenticatedly c-broadcast message (v-echo, w) tagged
with ID |vcbc.i.0

2: wj ← ⊥ (1 ≤ j ≤ n)
3: wait for n− t messages (v-echo, wj) to be c-delivered with tag ID |vcbc.j.0

from distinct Pj such that QID(wj) holds
4: l← 0
5: repeat

6: l← l + 1; a← Π(l)
7: if wa = ⊥ then

8: send the message (ID , v-vote, a, 0,⊥) to all parties
9: else

10: let ρ be the message that completes the c-broadcast with tag ID |vcbc.a.0
11: send the message (ID , v-vote, a, 1, ρ) to all parties
12: uj ← ⊥; ρj ← ⊥ (1 ≤ j ≤ n)
13: wait for n− t messages (ID , v-vote, a, uj , ρj) from distinct Pj such

that VID|a

(

(uj , ρj)
)

holds
14: if there is some uj = 1 then

15: v ← (1, ρj)
16: else

17: v ← (0,⊥)
18: propose v for ID |a in binary validated Byzantine agreement biased

towards 1, with predicate VID|a

19: wait for the agreement protocol to decide some (b, σ) for ID |a
20: until b = 1
21: if wa = ⊥ then

22: use σ to complete the verifiable authenticated c-broadcast with tag
ID |vcbc.a.0 and c-deliver (ID , v-echo, wa)

23: output (ID , out, v-decide, wa)
24: halt

Figure 1: Protocol VBA for multi-valued validated Byzantine agreement.



that completes the verifiable broadcast of Pa’s proposal to validate this
vote. Otherwise, if Pi has received n− t v-vote messages containing 0,
vote 0; no additional information is needed. If the agreement decides 1,
exit from the loop (lines 14–20).

Delivering the chosen proposal (lines 21–24): If Pi has not yet c-delivered
the broadcast by the selected candidate, obtain the proposal from the value
returned by the Byzantine agreement.

The full protocol is shown in Figure 1.

Theorem 1. Given a protocol for biased binary validated Byzantine agreement
and a protocol for verifiable authenticated consistent broadcast, Protocol VBA

provides multi-valued validated Byzantine agreement for n > 3t.

The message complexity of Protocol VBA is O(tn2) if Protocol VCBC [5]
is used for verifiable consistent broadcast and the binary validated Byzantine
agreement is implemented according to Section 4.2.

If all parties propose v and π that are together no longer than L bits, the
communication complexity in the above case is O(n2(tK + L)), assuming the
length of a threshold signature and a signature share is at most K bits. For a
constant fraction of corrupted parties, however, both values are cubic in n.

4.4 A Constant-round Protocol for Multi-valued Agreement

In this section we present Protocol VBAconst, which is an improvement of the
protocol in the previous section that guarantees termination within a constant
expected number of rounds. The drawback of Protocol VBA above is that the
adversary knows the order Π in which the parties search for an acceptable can-
didate, i.e., one that has broadcast a valid proposal. Although at least one third
of all parties are guaranteed to be accepted, the adversary can choose the cor-
ruptions and schedule messages such that none of them is examined early in the
agreement loop.

The remedy for this problem is to choose Π randomly during the protocol
after making sure that enough parties are already committed to their votes on
the candidates. This is achieved in two steps. First, one round of commitment
exchanges is added before the agreement loop. Each party must commit to the
votes that it will cast by broadcasting the identities of the n − t parties from
which it has received valid v-echo messages (using at least authenticated consis-
tent broadcast). Honest parties will later only accept v-vote messages that are
consistent with these commitments. The second step is to determine the permu-
tation Π using a threshold coin-tossing scheme that outputs a pseudo-random
value, after enough votes are committed. Taken together, these steps ensure
that the fraction of parties which are guaranteed to be accepted are distributed
randomly in Π, causing termination in a constant expected number of rounds.

The details of Protocol VBAconst are described in Figure 2 as modifications
to Protocol VBA.



Protocol VBAconst for party Pi, tag ID, and validation predicate QID

Modify Protocol VBA for party Pi, tag ID , and validation predicate QID as follows:

1. Initialize and distribute the shares for an (n, t+1)-threshold coin-tossing scheme C1
with k′′-bit outputs during system setup. Recall that this defines a pseudorandom
function F . Let G be a pseudorandom generator according to Section 2.3.

2. Include the following instructions between lines 3 and 4 of Protocol VBA, before
entering the agreement loop:

1: cj ←

{

1 if wj 6= ⊥

0 otherwise
(1 ≤ j ≤ n)

2: C ← [c1, . . . , cn]
3: authenticatedly c-broadcast the message (v-commit, C) tagged with ID |cbc.i.0
4: Cj ← ⊥ (1 ≤ j ≤ n)
5: wait for n− t messages (v-commit, Cj) to be c-delivered with tag ID |cbc.j.0

such that at least n− t entries in Cj are 1
6: generate a coin share γ of the coin ID |vba and send the message (ID , v-coin, γ)

to all parties
7: wait for t+ 1 v-coin messages containing shares of the coin ID |vba and

combine these to get the value S = F (ID |vba) ∈ {0, 1}k′′

8: choose a random permutation Π, using the pseudorandom generator G with
seed S.

3. Modify the condition for accepting v-vote messages (line 13) inside the agree-
ment loop such that (v-vote, a, 0,⊥) from Pj is accepted only if Cj is known and
Cj [a] = 0. (This involves also waiting for additional messages (v-commit, Cj) to be
c-delivered as above.)

Figure 2: Protocol VBAconst for multi-valued validated Byzantine agreement.

Theorem 2. Given a protocol for biased binary validated Byzantine agreement
and a protocol for verifiable consistent broadcast, Protocol VBAconst provides
multi-valued validated Byzantine agreement for n > 3t and invokes a constant
expected number of binary Byzantine agreement sub-protocols.

The expected message complexity of Protocol VBAconst is O(n2) if Proto-
col VCBC [5] is used for consistent verifiable broadcast and the binary validated
Byzantine agreement is implemented according to Section 4.2.
If all parties propose v and π that are together no longer than L bits, the

expected communication complexity in the above case is O(n3 + n2(K + L)),
assuming a digital signature is K bits. The n3-term, which results from broad-
casting the commitments, has actually a very small hidden constant because the
commitments can be represented as bit vectors.

5 Atomic Broadcast

Atomic broadcast guarantees a total order on messages such that honest parties
deliver all messages with a common tag in the same order. It is well known that



protocols for atomic broadcast are considerably more expensive than those for
reliable broadcast because even in the crash-fault model, atomic broadcast is
equivalent to consensus [8] and cannot be solved by deterministic protocols. The
atomic broadcast protocol given here builds directly on multi-valued validated
Byzantine agreement from the last section.

5.1 Definition

Atomic broadcast ensures that all messages broadcast with the same tag ID are
delivered in the same order by honest parties; in this way, ID can be interpreted
as the name of a broadcast “channel.” The total order of atomic broadcast yields
an implicit labeling of all messages.
An atomic broadcast is activated when the adversary delivers an input mes-

sage to Pi of the form (ID , in, a-broadcast,m), where m ∈ {0, 1}∗. When this
occurs, we say Pi atomically broadcasts m with tag ID . “Activation” here refers
only to the broadcast of a particular payload message; the broadcast channel ID
must be opened before the first such request.
A party terminates an atomic broadcast of a particular payload by generating

an output message of the form (ID , out, a-deliver,m). In this case, we say Pi

atomically delivers m with tag ID . To distinguish atomic broadcast from other
forms of broadcast, we will also use the terms a-broadcast and a-deliver.
The acknowledgement mechanism needed for composition of atomic broad-

cast with other protocols is omitted from this extended abstract.
Again, the adversary must not request an a-broadcast of the same payload

message from any particular party more than once for each ID (however, several
parties may a-broadcast the same message).
Atomic broadcast protocols should be fair so that a payload message m

is scheduled and delivered within a reasonable (polynomial) number of steps
after it is a-broadcast by an honest party. But since the adversary may delay
the sender arbitrarily and a-deliver an a priori unbounded number of messages
among the remaining honest parties, we can only provide such a guarantee when
at least t + 1 honest parties become “aware” of m. Our definitions of validity
and of fairness require actually that only after t + 1 honest parties have a-
broadcast some payload, it will be delivered within a reasonable number of steps.
This is also the reason for allowing multiple parties to a-broadcast the same
payload message—a client application might be able to satisfy this precondition
through external means and achieve guaranteed fair delivery in this way. Fairness
can be interpreted as a termination condition for the broadcast of a particular
payload m.
The efficiency condition (which ensures fast termination) for atomic broad-

cast differs from the protocols discussed so far because the protocol for a par-
ticular tag cannot terminate on its own. It merely stalls if no more undelivered
payload messages are in the system and must be terminated externally. Thus,
we cannot define efficiency using the absolute number of protocol messages gen-
erated. Instead we measure the progress of the protocol with respect to the
number of messages that are a-delivered by honest parties. In particular, we



require that the number of associated protocol messages does not exceed the
number of a-delivered payload messages times a polynomial factor, independent
of the adversary.
We say that a protocol message is associated to the atomic broadcast protocol

with tag ID if and only if the message is generated by an honest party and tagged
with ID or with a tag ID | . . . starting with ID . In particular, this encompasses
all messages of the atomic broadcast protocol with tag ID generated by honest
parties and all messages associated to basic broadcast and Byzantine agreement
sub-protocols invoked by atomic broadcast.
Fairness and efficiency are defined using the number of payload messages in

the “implicit queues” of honest parties. We say that a payload message m is in
the implicit queue of a party Pi (for channel ID) if Pi has a-broadcast m with
tag ID , but no honest party has a-delivered m tagged with ID . The system queue
contains any message that is in the implicit queue of some honest party. We say
that one payload message in the implicit queue of an honest party Pi is older
than another if Pi a-broadcast the first message before it a-broadcast the second
one.
When discussing implicit queues at particular points in time, we consider a

sequence of events E1, . . . , Ek′′′ during the operation of the system, where each
event but the last one is either an a-broadcast or a-delivery by an honest party.
The phrase “at time τ” for 1 ≤ τ ≤ k′′′ refers to the point in time just before
event Eτ occurs.

Definition 5 (Atomic Broadcast). A protocol for atomic broadcast satisfies
the following conditions except with negligible probability:

Validity: There are at most t honest parties with non-empty implicit queues for
some channel ID, provided the adversary opens channel ID for all honest
parties and delivers all associated messages.

Agreement: If some honest party has a-delivered m tagged with ID, then all
honest parties a-deliver m tagged with ID, provided the adversary opens
channel ID for all honest parties and delivers all associated messages.

Total Order: Suppose an honest party Pi has a-delivered m1, . . . ,ms with tag
ID, a distinct honest party Pj has a-delivered m′

1, . . . ,m
′
s′ with tag ID, and

s ≤ s′. Then ml = m′
l for 1 ≤ l ≤ s.

Integrity: For all ID, every honest party a-delivers a payload message m at
most once tagged with ID. Moreover, if all parties follow the protocol, then
m was previously a-broadcast by some party with tag ID.

Fairness: Fix a particular protocol instance with tag ID. Consider the system
at any point in time τ0 where there is a set T of t + 1 honest parties with
non-empty implicit queues, letM be the set consisting of the oldest payload
message for each party in T , and let S0 denote the total number of distinct
payload messages a-delivered by any honest party so far. Define a random
variable U as follows: let U be the total number of distinct payload messages
a-delivered by honest parties at the point in time when the first message in
M is a-delivered by any honest party, or let U = S0 if this never occurs.
Then U − S0 is uniformly bounded.



Efficiency: For a particular protocol instance with tag ID, let X denote its
communication complexity, and let Y be the total number of distinct payload
messages that have been a-delivered by any honest party with tag ID. Then,
at any point in time, the random variable X/(Y + 1) is probabilistically uni-
formly bounded.

5.2 A Protocol for Atomic Broadcast

Our Protocol ABC for atomic broadcast uses a secure digital signature scheme
S and proceeds as follows. Each party maintains a FIFO queue of not yet a-
delivered payload messages. Messages received to a-broadcast are appended to
this queue whenever they are received. The protocol proceeds in asynchronous
global rounds, where each round r consists of the following steps:

1. Send the first payload message w in the current queue to all parties, accom-
panied by a digital signature σ in an a-queue message.

2. Collect the a-queue messages of n − t distinct parties and store them in a
vector W , and propose W for validated Byzantine agreement.

3. Perform multi-valued Byzantine agreement with validation of a vector of tu-
plesW = [(w1, σ1), . . . , (wn, σn)] through the predicate QID|abc.r(W ) which
is true if and only if for at least n − t distinct tuples j, the string σj is a
valid S-signature on (ID , a-queue, r, j, wj) by Pj .

4. After deciding on a vector V of messages, deliver the union of all payload
messages in V according to a deterministic order; proceed to the next round.

In order to ensure liveness of the protocol, there are actually two ways in
which the parties move forward to the next round: when a party receives an a-
broadcast input message (as stated above) and when a party with an empty queue
receives an a-queue message of another party pertaining to the current round.
If either of these two messages arrive and contain a yet undelivered payload
message, and if the party has not yet sent its own a-queue message for the
current round, then it enters the round by appending the payload to its queue
and sending an a-queue message to all parties.
The detailed description of Protocol ABC is given in Figure 3. The FIFO

queue q is an ordered list of values (initially empty). It is accessed using the
operations append, remove, and first, where append(q,m) inserts m into q at the
end, remove(q,m) removes m from q (if present), and first(q) returns the first
element in q. The operation m ∈ q tests if an element m is contained in q.
A party waiting at the beginning of a round simultaneously waits for an

a-broadcast and an a-queue message containing some w 6∈ d in line 2. If it
receives an a-broadcast request, the payloadm is appended to q. If only a suitable
a-queue protocol message is received, the party makes w its own message for
the round, but does not append it to q.

Theorem 3. Given a protocol for multi-valued validated Byzantine agreement
and assuming S is a secure signature scheme, Protocol ABC provides atomic
broadcast for n > 3t.



Protocol ABC for party Pi and tag ID

Let Q
ID|abc.r be the following predicate:

Q
ID|abc.r

(

[(w1, σ1), . . . , (wn, σn)]
)

≡ for at least n− t distinct j, σj is a valid

S-signature by Pj on (ID , a-queue, r, j, wj)

Initialization:

q ← [] {FIFO queue of messages to a-broadcast}
d← ∅ {set of a-delivered messages}
r ← 0 {current round}

Upon receiving message (ID , in, a-broadcast,m):

if m 6∈ d and m 6∈ q then

append(q,m)

Forever:

1: wj ← ⊥;σj ← ⊥ (1 ≤ j ≤ n)
2: wait for q 6= [] or a message (ID , a-queue, r, l, wl, σl) received from Pl

such that wl 6∈ d and σl is a valid signature from Pl

3: if q 6= [] then

4: w ← first(q)
5: else

6: w ← wl

7: compute a digital signature σ on (ID , a-queue, r, i, w)
8: send the message (ID , a-queue, r, i, w, σ) to all parties
9: wait for n− t messages (ID , a-queue, r, j, wj , σj) such that σj is a valid

signature from Pj (including the message from Pl above)
10: W ← [(w1, σ1), . . . , (wn, σn)]
11: propose W for multi-valued validated Byzantine agreement for ID |abc.r

with predicate Q
ID|abc.r

12: wait for the validated Byzantine agreement protocol to decide some
V = [(v1, τ1), . . . , (vn, τn)] for ID |abc.r

13: b←
⋃n

j=1
vj

14: for m ∈ (b \ d), in some deterministic order do

15: output (ID , out, a-deliver,m)
16: d← d ∪ {m}
17: remove(q,m)
18: r ← r + 1

Figure 3: Protocol ABC for atomic broadcast using multi-valued validated
Byzantine agreement.



The message complexity of Protocol ABC to broadcast one payload message
m is dominated by the number of messages in the multi-valued validated Byzan-
tine agreement; the extra overhead for atomic broadcast is only O(n2) messages.
The same holds for the communication complexity, but the proposed values have
length O(n(|m|+K)), assuming digital signatures of length K bits.
With Protocol VBAconst from Section 4.4, the total expected message com-

plexity is O(n2) and the expected communication complexity is O(n3|m|) for an
atomic broadcast of a single payload message.

6 Secure Causal Atomic Broadcast

Secure causal atomic broadcast is a useful protocol for building secure appli-
cations that use state machine replication in a Byzantine setting. It provides
atomic broadcast, which ensures that all recipients receive the same sequence
of messages, and also guarantees that the payload messages arrive in an order
that maintains “input causality,” a notion introduced by Reiter and Birman [17].
Informally, input causality ensures that a Byzantine adversary may not ask the
system to deliver any payload message that depends in a meaningful way on a
yet undelivered payload sent by an honest client. This is very useful for delivering
client requests to a distributed service in applications that require the contents
of a request to remain secret until the system processes it. Input causality is
related to the standard causal order, which goes back to Lamport [11]; causal-
ity is a useful safety property for distributed systems with crash failures, but is
actually not well defined in the Byzantine model [10].
Input causality can be achieved if the sender encrypts a message to broadcast

with the public key of a threshold cryptosystem for which all parties share the
decryption key [17]. The ciphertext is then broadcast using an atomic broadcast
protocol; after delivering it, all parties engage in an additional round to recover
the message from the ciphertext.
The definition and an implementation of secure causal atomic broadcast on

top of atomic broadcast can be found in the full version [5].

References

1. M. Ben-Or and R. El-Yaniv, “Interactive consistency in constant time.”
Manuscript, 1991.

2. M. Ben-Or, R. Canetti, and O. Goldreich, “Asynchronous secure computation,” in
Proc. 25th Annual ACM Symposium on Theory of Computing (STOC), 1993.

3. P. Berman and J. A. Garay, “Randomized distributed agreement revisited,” in
Proc. 23th International Symposium on Fault-Tolerant Computing (FTCS-23),
pp. 412–419, 1993.

4. G. Bracha and S. Toueg, “Asynchronous consensus and broadcast protocols,” Jour-
nal of the ACM, vol. 32, pp. 824–840, Oct. 1985.

5. C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asyn-
chronous broadcast protocols.” Cryptology ePrint Archive, Report 2001/006, Mar.
2001. http://eprint.iacr.org/.



6. C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Constantinople:
Practical asynchronous Byzantine agreement using cryptography,” in Proc. 19th
ACM Symposium on Principles of Distributed Computing (PODC), pp. 123–132,
2000. Full version available from Cryptology ePrint Archive, Report 2000/034,
http://eprint.iacr.org/.

7. R. Canetti and T. Rabin, “Fast asynchronous Byzantine agreement with opti-
mal resilience,” in Proc. 25th Annual ACM Symposium on Theory of Computing
(STOC), pp. 42–51, 1993. Updated version available from http://www.research.

ibm.com/security/.
8. T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed

systems,” Journal of the ACM, vol. 43, no. 2, pp. 225–267, 1996.
9. M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed

consensus with one faulty process,” Journal of the ACM, vol. 32, pp. 374–382,
Apr. 1985.

10. V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related problems,”
in Distributed Systems (S. J. Mullender, ed.), New York: ACM Press & Addison-
Wesley, 1993. An expanded version appears as Technical Report TR94-1425, De-
partment of Computer Science, Cornell University, Ithaca NY, 1994.

11. L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
Communications of the ACM, vol. 21, pp. 558–565, July 1978.

12. L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM
Transactions on Programming Languages and Systems, vol. 4, pp. 382–401, July
1982.

13. M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-random functions and
KDCs,” in Advances in Cryptology: EUROCRYPT ’99 (J. Stern, ed.), vol. 1592 of
Lecture Notes in Computer Science, Springer, 1999.

14. K. J. Perry, “Randomized Byzantine agreement,” IEEE Transactions on Software
Engineering, vol. 11, pp. 539–546, June 1985.

15. M. O. Rabin, “Randomized Byzantine generals,” in Proc. 24th IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 403–409, 1983.

16. M. Reiter, “Secure agreement protocols: Reliable and atomic group multicast in
Rampart,” in Proc. 2nd ACM Conference on Computer and Communications Se-
curity, 1994.

17. M. K. Reiter and K. P. Birman, “How to securely replicate services,” ACM Trans-
actions on Programming Languages and Systems, vol. 16, pp. 986–1009, May 1994.

18. V. Shoup, “Practical threshold signatures,” in Advances in Cryptology: EURO-
CRYPT 2000 (B. Preneel, ed.), vol. 1087 of Lecture Notes in Computer Science,
pp. 207–220, Springer, 2000.

19. V. Shoup and R. Gennaro, “Securing threshold cryptosystems against chosen ci-
phertext attack,” in Advances in Cryptology: EUROCRYPT ’98 (K. Nyberg, ed.),
vol. 1403 of Lecture Notes in Computer Science, Springer, 1998.

20. R. Turpin and B. A. Coan, “Extending binary Byzantine agreement to multivalued
Byzantine agreement,” Information Processing Letters, vol. 18, pp. 73–76, 1984.


