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Abstract. Consider a scenario where an l-bit secret has been distributed
among n players by an honest dealer using some secret sharing scheme.
Then, if all players behave honestly, the secret can be reconstructed in
one round with zero error probability, and by broadcasting nl bits.
We ask the following question: how close to this ideal can we get if up
to t players (but not the dealer) are corrupted by an adaptive, active
adversary with unbounded computing power? - and where in addition
we of course require that the adversary does not learn the secret ahead
of reconstruction time. It is easy to see that t = b(n − 1)/2c is the
maximal value of t that can be tolerated, and furthermore, we show that
the best we can hope for is a one-round reconstruction protocol where
every honest player outputs the correct secret or “failure”. For any such
protocol with failure probability at most 2−Ω(k), we show a lower bound
of Ω(nl+ kn2) bits on the information communicated. We further show
that this is tight up to a constant factor.
The lower bound trivially applies as well to VSS schemes, where also the
dealer may be corrupt. Using generic methods, the scheme establishing
the upper bound can be turned into a VSS with efficient reconstruction.
However, the distribution phase becomes very inefficient. Closing this
gap, we present a new VSS protocol where the distribution complexity
matches that of the previously best known VSS, but where the recon-
struction phase meets our lower bound up to a constant factor. The re-
construction is a factor of n better than previous VSS protocols. We show
an application of this to multi-party computation with pre-processing,
improving the complexity of earlier similar protocols by a factor of n.

1 Introduction

The concept of secret-sharing (introduced by Shamir [13]) is of fundamental
importance: in practical data security, as a way to protect a secret simultaneously
from exposure and from being lost; and theoretically, as the basis for building
general multi-party secure protocols.

In the original setting of Shamir, a dealer distributes a secret, say an l-bit
string, to n players, by privately sending a share to each player. The computation
? Supported by the Swiss SNF, project no. SPP 2000-055466.98.



of the shares is done w.r.t. a threshold value t, where 1 ≤ t ≤ n. Later, some
subset of the players can attempt to reconstruct the secret by pooling their
shares. A secret sharing scheme must ensure privacy, i.e., an adversary who sees
up to t of the shares learns no information about the secret, and correctness, i.e.,
the secret can always be reconstructed from a set of at least t+ 1 shares.

Here, we will first consider a more adversarial setting where up to t of the
players (but not the dealer) may be corrupted by an active, adaptive and un-
bounded adversary, in particular, corrupted players may contribute incorrect
shares (or nothing) in the reconstruction phase. We still require privacy, and
also correctness in the sense that the honest players can reconstruct the cor-
rect secret. Consider the following question. How much information must be
sent in order for such a scheme to work? This question is interesting only if
n/3 ≤ t < n/2, since otherwise the problem is either ”too hard” or ”too easy”: if
t ≥ n/2 the problem clearly cannot be solved, and if t < n/3, standard methods
(see [2]) immediately give an optimal solution with zero error probability.

Somewhat surprisingly, little work seems to have been done on the case of
n/3 ≤ t < n/2 (although upper bounds follow from known protocols [12, 4]). It
is easy to see that for t in this range, one cannot construct a scheme where the
correct secret is always reconstructed. At best one can make a scheme where
every honest player outputs the correct secret or “failure”, where the latter
happens with probability only 2−Ω(k), where k is a security parameter. For
schemes that achieve this for the maximal value of t, i.e. t = b(n − 1)/2c, and
where the reconstruction is completed in a single round, we show a lower bound
of Ω(nl + kn2) bits on the amount of information sent in the reconstruction.
This may be seen as an answer to the question “what does it cost to get the best
possible security in a minimal number of rounds?”. No such bound was known
previously, and it holds even for schemes that are not efficient.

We refer to the type of scheme we just described as Honest-Dealer VSS. This
is because the well-known concept of Verifiable Secret Sharing (VSS), introduced
in [6], is essentially what we just described, except that also the dealer can be
corrupt. In VSS, distributing the secret may then take the form of an interactive,
several rounds protocol. One usually assumes that a private channel connects
every pair of players and that a broadcast channel is available1. A secure VSS
must, in addition to what we required above, also ensure that immediately after
the distribution phase, some value of the secret is uniquely defined (even if the
dealer is corrupt) and that this value will be reconstructed (with overwhelming
probability). Note that the standard definition of VSS is slightly weaker than
ours in that it allows honest players to reconstruct (with small probability) an
incorrect value of the secret, even if the adversary was passive in the distribution
phase. However, all known VSS protocols for our communication model (see e.g.
[12, 4]) satisfy or can trivially be modified to satisfy our stronger definition.

Our lower bound for Honest-Dealer VSS trivially applies also to VSS (we
cannot expect to do better in a more adversarial situation).

1 The latter can be simulated by the private ones if t < n/3, but must be assumed as
a separate primitive otherwise.



For an honest dealer, we use known results on authentication codes to show
that the lower bound is tight up to a constant factor (even if we count the total
information sent). This scheme establishing the upper bound is computationally
efficient and can - at least in principle - be turned into a VSS, since the hon-
est dealer could always be replaced by a secure multi-party computation using
generic methods (e.g. [12, 4]). This, however, is not a satisfactory solution: while
reconstruction would be the same complexity as before, the distribution would
become extremely inefficient in comparison. To close this gap, we present a new
VSS protocol where the complexity of the distribution matches that of the pre-
viously best known VSS for our scenario [4], but where the reconstruction meets
our lower bound. This beats previous VSS protocols by a factor of n.

We show an application of this to multi-party computation with pre-processing,
introduced in [1], where the n players ultimately want to compute a function f on
private inputs x1, . . . , xn. In order to do this more efficiently than starting from
scratch, the players are allowed to a pre-processing and store some information
obtained in this phase before the function and the inputs become known. The
computation phase of our protocol has communication complexity O(n2k|C|),
where |C| is the size of the circuit to be computed. This improves the compu-
tation phase of earlier similar protocols by a factor of n without increasing the
complexity of the pre-processing.

In the appendix, we sketch how our results for a dishonest minority gener-
alize for almost all t in the range n/3 ≤ t < n/2 and observe that already an
arbitrarily small linear gap between t and n/2 allows to reduce the communi-
cation complexity of the reconstruction by a factor of n. Using methods from
[5], we also show how to generalize our schemes to provide security against any
(non-threshold) Q2 adversary (see [9]), improving known results by a factor of
at least n. Finally, we look at the case where the reconstruction is allowed to use
more than one round of interaction and observe, using results from [7], that the
amount of information sent by the honest dealer can be brought down to n(n+k)
bits, at the expense of a significantly more inefficient reconstruction phase.

2 Communication Model

Throughout the paper, we consider the secure-channels model with broadcast
[12], i.e. there is a set P = {P1, . . . , Pn} of n players plus a so called dealer
D, every two entities being connected by a secure, untappable channel, and
there is a broadcast channel available. We assume an active adversary with
unbounded computing power that can corrupt up to a certain number t out of
the n players in P plus the dealer D. An adversary is rushing, if he can learn
the messages sent by the honest players in each round before deciding on the
messages for corrupted players in this round. Finally, the adversary can either be
static or adaptive, the former meaning that he has to corrupt the players before
the protocol execution and the latter that he can corrupt players at his will
during the protocol execution, depending on what he has seen so far. Throughout
the paper, we consider a security parameter k.



3 Single-Round Honest-Dealer VSS

We first model the general communication pattern for VSS schemes where the
dealer is guaranteed to be honest and whose reconstruction phase consists of a
single round of communication. We will call such a scheme Single-Round Honest-
Dealer VSS. Our main point of interest is the communication complexity of the
reconstruction phase of such a scheme. Consider schemes of the following general
form, and assume an active adversary who corrupts up to t of the n players Pi,
but not the dealer (this is also known as robust secret sharing).

Distribution Phase: The honest dealer generates shares si = (ki, yi), i = 1 . . . n,
according to a fixed and publicly known conditional probability distribution
PS1···Sn|S(· · · |s), where s is the secret. Privately he sends si to player Pi.

Reconstruction Phase: Each player Pi is required to broadcast ỹi, which is
supposedly equal to yi. Locally and by some fixed (possibly probabilistic)
method, each player Pi decides on the secret s based on his private ki and
on the broadcast ỹ1, . . . , ỹn, i.e., either outputs a value s̃, hopefully equal to
s, or outputs “failure”.

It is not difficult to see that in fact we may always and without loss of generality
assume our schemes of interest to be of this form (please refer to Appendix A).

For each of the at most t corrupted players Pj , the adversary can broad-
cast a manipulated ỹj , which may depend arbitrarily on the private information
sj = (kj , yj) of those corrupted players, or broadcast nothing at all in some cases
(“crash faults”). Note though that for at least n− t ỹi’s it holds that ỹi = yi.
If additionally the adversary is rushing, he can choose to “speak last” in the
reconstruction phase. This means that in principle any corrupted shares may
additionally depend on the information broadcast by the honest players, in par-
ticular they may depend on the secret s. By contrast, a non-rushing adversary
is one who selects the corrupted shares before the start of the reconstruction
phase. Note that security against non-rushing adversaries makes sense in a com-
munication model enhanced with a “simultaneous broadcast channel”, i.e., one
by means of which all players broadcast their information at the same time.

We define our notion of security. Assume an active adversary that corrupts
at most t of the n players but not the dealer. Additionally, the adversary can be
static or adaptive, and rushing or non-rushing. A Single-Round Honest-Dealer
VSS scheme is (t, n, 1− δ)-secure if the following holds.

Privacy: As a result of the distribution phase, the adversary gains no informa-
tion about the secret s distributed by the honest dealer.

(1− δ)-Correctness: In the reconstruction phase, each uncorrupted player out-
puts either the correct secret s or “failure”, where for every player the latter
happens with probability at most δ < 1, independent of s.
In the special case that the adversary introduces only crash-faults or remains
passive, all honest players recover the correct secret s with probability 1.

As mentioned in the Introduction, we focus on the case of a dishonest minority,
i.e., t = b(n − 1)/2c, the maximal value of t for which (t, n, 1 − δ)-security is



achievable. For the corresponding results for a (nearly) arbitrary t in the range
n/3 ≤ t < n/2, we refer to Appendix C. Note that the case t < n/3 is completely
understood: zero failure probability and optimally efficient communication can
be achieved by a combination of Shamir’s secret sharing scheme and standard
efficient error correction techniques [2].

We stress that our definition of security captures the best one can achieve in
this setting. Negligible error δm is achieved by m parallel repetitions. More im-
portantly, it only differs from perfect security in the sense that there is a (small)
probability that some player does not reconstruct the secret and outputs “fail-
ure” instead. This is unavoidable in the presence of an arbitrary (not necessarily
rushing) active adversary, as is easy to see (please refer to Appendix B). Fur-
thermore, existing Honest-Dealer VSS schemes like [12] (“secret sharing when
the dealer is a knight”) fulfill our security definition without any changes in the
required communication.

A seemingly stronger security definition would require agreement among the
honest players in all cases, i.e., they all recover the correct secret or they all
output “failure”, where the latter would happen with probability at most δ.
However, this is impossible to achieve in a single round reconstruction phase
with a rushing adversary, as we show in Appendix B. 2

Note also that the reconstruction procedure in our definition is completely
general in that it does not dictate how the correct secret is recovered by the
honest players. The definition merely states that from all broadcast and from
his private information, an honest player can reconstruct the secret. In particular,
in our definition it need not be the case that an honest player, using his private
information, “filters out” false shares and reconstructs the secret from the “good”
ones, as it is the case for known schemes [12, 4] and the one we present later.

4 Lower Bound on Reconstruction Complexity

We prove the following lower bound. Note that the standard definitions of en-
tropy, conditional entropy, mutual information and conditional mutual informa-
tion are used throughout this section. We refer to [3] for an excellent introduction
to information theory.

Theorem 1. For any family of Single-Round Honest-Dealer VSS schemes,
(t, n, 1 − δ)-secure against an active, rushing adversary, the following holds. If
t = b(n−1)/2c and δ ∈ 2−Ω(k) for a security parameter k, then the total informa-
tion broadcast in the reconstruction phase is lower bounded by Ω(nH(S)+ kn2).

Note that it is immaterial whether the adversary is adaptive or not.
In the following, we will call Ki the key and Yi the public share of player Pi.

Theorem 1 follows immediately from

2 In Appendix E, we argue that agreement is possible in the presence of a non-rushing
adversary. Agreement can be achieved in all cases by adding one extra round of
communication.



Proposition 1. Let S1 = (K1, Y1), . . . , Sn = (Kn, Yn) be distributed according
to the Single-Round Honest-Dealer VSS scheme. Then, in case of an odd n, the
size of any public share Yi is lower bounded by

H(Yi) ∈ Ω(H(S) + kn) ,

while for an even n, it is the size H(YiYj) of every pair Yi 6= Yj that is lower
bounded by Ω(H(S) + kn).

We will only prove the case of an odd n, i.e., n = 2t + 1; the proof for an even
n, i.e. n = 2t+2, goes accordingly. But before going into the proof, consider the
following Lemma, which states a well known result from Authentication Theory,
which can be found in various literature starting with [14] (for a very general
treatment of Authentication Theory consult [11]).

Lemma 1. Let K, M , Y and Z be random variables (typically key, message,
tag and public information of an authentication scheme) with joint distribution
PKMY Z such that M is independent of K and Z but uniquely defined by Y and Z.
Then, knowing Z, one can compute Ỹ , consistent with K and Z with probability

pI ≥ 2
−I(K;Y |Z) .

Also, knowing Z and Y , one can compute ˜̃Y , consistent with K and Z and a
˜̃M 6=M with probability

pS ≥ 2
−H(K|Z) .

In the context of Authentication Theory, Ỹ describes an impersonation and ˜̃Y a
substitution attack, and pI and pS are the corresponding success probabilities.

In the proof of Proposition 1, we apply the following Corollary, which fol-
lows from the fact that a successful impersonation attack is also a successful
substitution attack with probability at least 1/2, assumed that M is uniformly
distributed among a set of cardinality at least two.

Corollary 1. Let K, M , Y and Z be as above, except that M is required to
be uniformly distributed among a non-trivial set. Then, knowing Z, one can
compute Ỹ , consistent with K and Z and a M̃ 6=M with probability

pS ≥ 2
−I(K;Y |Z)−1 .

Proof of Proposition 1: Since by the privacy of the scheme the public share Yi
is independent of S and hence H(Yi) does not depend on the distribution of S,
we can assume PS to be the uniform distribution. Furthermore, for symmetry
reasons, we can focus on the public share of the player Pt+1.
Let i ∈ {1, . . . , t} be arbitrary but fixed, and consider an adversary corrupting
the first i − 1 players P1, . . . , Pi−1 as well the player Pt+1. One of the goals
of the adversary could be to substitute Pt+1’s public share Yt+1 by a false
share Ỹt+1 that is consistent with the public shares Y1, . . . , Yt of the first t



players and player Pi’s key Ki (and maybe even the keys K1, . . . ,Ki−1), but
that leads to an incorrect secret S̃ 6= S. Indeed, if the adversary succeeds in this
attack, from player Pi’s point of view, the t + 1 public shares Y1, . . . , Yt, Ỹt+1

could come from honest and the t shares Yt+2, . . . , Yn from corrupted play-
ers. Hence, Pi clearly cannot compute the correct secret with certainty, and
so outputs “failure”. Therefore, the success probability of this attack is at most
δ ∈ 2−Ω(k). On the other hand however, according to the above Corollary, applied
to K = Ki, M = S, Y = Yt+1 and Z = (K1, . . . ,Ki−1, Y1, . . . , Yt), the success
probability is at least pS ≥ 2−I(Ki;Yt+1|K1···Ki−1 Y1···Yt)−1. Therefore, we have
I(Ki;Yt+1|K1 · · ·Ki−1 Y1 · · ·Yt) ∈ Ω(k). This holds for every i ∈ {1, . . . , t}, and
hence, using the chain rule for mutual information, we get

I(K1 · · ·Kt;Yt+1|Y1 · · ·Yt) =

t∑

i=1

I(Ki;Yt+1|Y1 · · ·YtK1 · · ·Ki−1) ∈ Ω(kt)

and therefore H(Yt+1) ≥ I(K1 · · ·Kt;Yt+1|Y1 · · ·Yt) ∈ Ω(kt) = Ω(kn).
As S1, . . . , St gives no information about S, but S1, . . . , St, Yt+1 determines

S, we also have H(Yt+1) ≥ H(S), and hence H(Yt+1) ∈ Ω(H(S) + kn). ut

In Appendix E we illustrate the power of rushing by giving an example
of a concrete scheme secure against a non-rushing adversary, that beats the
lower bound, and sketch a tight lower bound result. We also briefly discuss the
minimal complexity of the distribution phase of schemes secure against a rushing
adversary.

5 Tightness of the Lower Bound

We first describe a very natural, generic construction of a Single-Round Honest-
Dealer VSS and then present a particular instantiation that meets the lower
bound from the previous section. Rabin and Ben-Or [12] first considered a solu-
tion of this type. The scheme below differs from theirs only in the choice of the
authentication code (which, however, will be relevant later on).

Let a (t + 1, n)-threshold secret-sharing scheme be given as well as an au-
thentication scheme, e.g. based on a family of strongly universal hash func-
tions {hκ}κ∈K (see e.g. [15]). To share a secret s, the dealer D generates shares
s1, . . . , sn according to the secret sharing scheme, and, for each pair of players
Pi, Pj , he selects a random authentication key κij ∈ K which will be sent to Pj
who will later use it to verify a share contributed by Pi. Then D computes for
each share si and for each Pj the authentication tag yij = hκij

(si) that should
be revealed by Pi at reconstruction time to convince Pj that Pi’s share si is
valid. D then simply sends shares, tags and keys privately to the players who
own them. To reconstruct, every player broadcasts his share together with the
tags (or, alternatively, sends to every player his share and the corresponding
tag), and verifies the authenticity of the received shares using his keys.

We use Shamir’s secret sharing scheme [13] over a field F with |F | > n, and
the well-known family of hash functions h(α,β)(X) = αX+β defined over F . The



success probability of a substitution attack of the corresponding authentication
scheme is 1/|F |. It follows that the probability of player Pi accepting a false
share from another player is 1/|F |, and hence the probability of player Pi not
reconstructing the correct secret is at most t/|F |. By comparing all the accepted
shares with the reconstructed sharing polynomial and outputting “failure” in
case of inconsistencies, he makes sure not to output an incorrect secret. Hence,
choosing F such that |F | is in 2Θ(k) (assuming n to be at most polynomial in k),
we have the following upper bound, already achieved in [12].

Theorem 2. For t = b(n − 1)/2c, there exists a Single-Round Honest-Dealer
VSS scheme, (t, n, 1−2−Ω(k))-secure against an adaptive and rushing adversary,
with a total communication complexity of O(kn2) bits.

A remark concerning the authentication code. The choice of the code is not
completely arbitrary, since it is important for our later purposes that compu-
tation of tags has low arithmetic complexity (here one multiplication and one
addition over F ) and that the tags are linear if α is fixed, as shown in Section 7.1.

6 Upper Bound in the Presence of a Corrupted Dealer

In this section, we present a VSS scheme with a one-round reconstruction, where
the complexity of the distribution phase matches that of the previous best known
VSS for our scenario [4], but where the reconstruction phase meets our lower
bound up to a constant factor. This is at least a factor of n better than previous
VSS protocols.

6.1 Definition

Since now the dealer might be corrupt as well and so the distribution of the
secret takes the form of an interactive protocol, the adversary can not only
intrude faults in the reconstruction, but also in the distribution. Therefore, our
definition operates with two error probabilities, which for a concrete scheme do
not have to be equal: first the probability that the distribution fails to work as
supposed, and second the probability that the reconstruction fails, even though
the distribution succeeded.

Assume an active adversary that corrupts at most t of the n players plus
the dealer (respectively, including the dealer, in case he is one of the players).
Additionally, the adversary can be static or adaptive, and rushing or non-rushing.
Consider a scheme with an arbitrary distribution phase resulting in every player
Pi holding a key ki and a public share yi and with a one-round reconstruction
phase as in the honest dealer case. We call such a scheme (t, n, 1−β, 1−δ)-secure
if, except with probability β (taken over the coin flips during the distribution),
the following holds.

Privacy: As long as the dealer remains honest, the adversary gains no infor-
mation about the shared secret s as a result of the distribution phase.



(1− δ)-Correctness: Once all currently uncorrupted players complete the dis-
tribution phase, there exists a fixed value s′ such that in the reconstruction
phase each uncorrupted player outputs either s′ or “failure”, where for every
player the latter happens with probability at most δ < 1, independent of s′.
If the dealer remains uncorrupted during the distribution, then s′ = s.
In the special case that the adversary introduces only crash-faults or remains
passive, all honest players recover s′ with probability 1.

Again, existing VSS schemes essentially fulfill our stronger definition, in parti-
cular the most efficient solution known, [4], fulfills it without any changes in the
required communication, while the [12] protocol requires some straightforward
modifications.

6.2 Towards VSS with Optimized Reconstruction

The security of the scheme from the last section evidently completely breaks
down in case the dealer is corrupted. In the distribution phase, he could hand
out inconsistent shares and inconsistent authentication tags, and, in the recon-
struction phase, since he knows all the keys, he could compute correct tags for
false shares. This would allow him to disrupt the reconstruction and even to
actually cause different secrets to be reconstructed (see the analysis in [4] of
WSS from [12]). To remedy this, we have to ensure that the players that re-
main honest receive consistent shares, and that they accept each others shares
at reconstruction, while rejecting false shares. Of course, as mentioned in the
introduction, this could in principal be achieved by replacing the dealer of the
Honest-Dealer VSS by a general MPC. This, however, would result in a rather
inefficient distribution phase. Also the following approach seems to be no satis-
factory solution because of the same reason. We force the dealer to distribute
consistent shares s1, . . . , sn by doing a “two-dimensional sharing” as in [2] or [4]
and then every tag yij for a share si is computed in a multi-party fashion, such
that it is guaranteed to be correct and the corresponding key is only known to
the verifier Pj . Again, doing general MPC would result in a rather inefficient
distribution phase; however, the following points provide some intuition as to
why the full generality of MPC protocols is not needed, and instead we can do
a specialized MPC.

1. A “two-dimensional sharing” from [2] or [4] not only ensures that the un-
corrupted players hold consistent shares, but also that every share si is
again correctly shared. Hence, one input to the MPC, si, is already cor-
rectly shared.

2. We only have to guarantee that a tag is computed correctly, if the player
who will later verify it is honest at distribution time. At reconstruction, a
corrupted player can always claim a tag to be invalid, even if it were good.
For this reason, full VSS of the authentication key will not be necessary.

3. The function to be computed uses only one multiplication and one addition.
This will allow us to do the distributed multiplication locally, i.e. no re-
sharing as in [8] will be needed.



6.3 The CDDHR VSS Sharing Protocol

To describe the sharing protocol from [4], we start by reviewing the concept of
Information Checking (IC), introduced in [12]. In essence, an IC scheme provides
unconditionally secure “signatures” with limited transferability. More concretely,
it allows a sender S to provide a transmitter T (also called intermediary) with
a message m and a “signature” σ, such that T can later pass (m,σ) on to
a recipient R, claiming that m originates with S. The signature σ enables R
to verify this. We use the notation σm(S, T ;R) to refer to such a signature.
Although in reality the “signing” procedure is an interactive protocol involving
all three players and using a broadcast channel, we abuse language slightly and
simply say that S “sends the signature σm(S, T ;R) to T”. IC must fulfill the
following requirements, except with some small error probability. If T and R
are uncorrupted, then R indeed accepts T ’s message m (consistency). If, on the
other hand, S and R are uncorrupted, then R rejects any message m′ 6= m
(correctness). Finally, if S and T are uncorrupted, then R gets no information
on m before T passes (m,σ) on to him (secrecy). It is easy to extend this concept
and the corresponding protocols to multiple recipients, say R1, . . . , Rn, by simply
executing the single recipient protocol for each possible recipient. We then use the
notation σm(S, T ) = (σm(S, T ;R1), . . . , σm(S, T ;Rn)). For a formal definition
and technical details, please refer to [12, 4].

Please recall that the IC-signatures from [4] over a field F have the following
linearity properties. If T holds two signatures σm(S, T ;R) and σm′(S, T ;R) and
if λ is known to R and T , then T can compute a signature σm+m′(S, T ;R)
for m + m′ and a signature σλm(S, T ;R) for λm. This holds analogously in
the multi-recipient case. As to efficiency, generating a signature σm(S, T ;R)
costs O(log |F |) bits of communication, generating a signature σm(S, T ) with
n recipients costs O(n log |F |) bits of communication. Furthermore, the secrecy
condition holds perfectly while correctness and consistency hold with probability
1 − 2− log |F | for a single-recipient and 1 − 2− log |F |+log(n) for a multi-recipient
signature.

We present the VSS sharing protocol from [4], which we will call Pre Share, in
a slightly modified version. Namely, for ease of exposition, we use a symmetrical
polynomial and we omit the signatures made by the dealer (since these are
needed only to catch a corrupted dealer early on).

Protocol Pre Share

1. To share a secret s ∈ F , the dealer chooses a random symmetrical bivari-
ate polynomial f of degree at most t in both variables with s as constant
coefficient, i.e. f(0, 0) = s.

2. To every player Pi, the dealer privately sends the actual share si = f(i, 0)
and the sharing si1 = f(i, 1), . . . , sin = f(i, n) of si.

3

3 In the descriptions of all the protocols, whenever a player expects to receive a message
from another player, but no message arrives or it is not in the right format, he takes
some fixed default value as received message.



3. For every two players Pi and Pj , the following is done. Pi sends sij together
with a signature σsij

(Pi, Pj) = (σsij
(Pi, Pj ;P1), . . . , σsij

(Pi, Pj ;Pn)) to Pj .
If sij 6= sji, then Pj broadcasts a complaint, to which the dealer has to
answer by broadcasting sji. If this value does not coincide with Pj ’s sji,
then Pj accuses the dealer publicly who then has to broadcast Pj ’s share sj
and subshares sj1, . . . , sjn.

4

4. If at some point, the broadcast information is inconsistent, the players take
some publicly known default sharing.

This protocol stands as a VSS sharing protocol on its own (but with “expensive”
reconstruction, as argued earlier). The proof of this fact is based on the following
observations. Please refer to [4] or the appendix.

Proposition 2. After the execution of Pre Share, every honest Pi holds a share
si and signed sub-shares si1 . . . sin such that

1. If the dealer remains honest, then the adversary has no information about
the secret s.

2. The sub-shares si1 . . . sin of any honest player Pi are a correct sharing of si,
and sij = sji holds for all Pi and Pj who remain honest.

3. The shares si of the honest players are correct shares of a unique value s′,
which is the secret s if the dealer remains honest.

4. For any (honest or dishonest) player Pj, the sub-shares sij of the honest
players Pi are correct shares of Pj’s share sj, which is well defined by the
shares si of the honest players.

The communication complexity of this Pre Share protocol is O(n3 log |F |) bits,
the dealer essentially distributes n2 sub-shares and each of these sub-shares is
signed, where signing costs O(n log |F |) bits of communication per signature.

6.4 Computing Tags by a Specialized MPC

Consider now a fixed player Pi after the execution of Pre Share, holding his share
si and the corresponding sub-shares si1, . . . , sin with signatures σsi1

(P1, Pi), . . . ,
σsin

(Pn, Pi). We now want to compute authentication tags yij = αij ·si+βij for
si as they are computed by the dealer in the Honest-Dealer VSS protocol, but
without letting the dealer know the keys, (αij , βij) should only be known to Pj .

At the heart, there is the following problem. A player P wants to compute
the tag y = α ·m+β for his secret message m with respect to a player V ’s secret
key α, β. As already mentioned earlier, this will be done by a specialised MPC.

We assume that P ’s message m is already correctly shared by shares m1, . . . ,
mn and that P holds signatures σm1

(P1, P ;V ), . . . , σmn
(Pn, P ;V ), verifiable by

V . If the protocol Pre Share from the previous section has been executed, and if
P ’s message m stands for Pi’s share si, then this is fulfilled with mk = sik and
σmk

(Pk, P ;V ) = σsik
(Pk, Pi;Pj).

4 Of course, broadcast values do not have to be signed anymore; however, for simpler
notation, we assume that also broadcast sub-shares sij are signed by σsij (Pi, Pj).



Protocol MPAuth

1. V chooses a random polynomial fα of degree at most t with fα(0) = α and
a random polynomial fβ of degree at most 2t with fβ(0) = β. For every
player Pk, V sends the shares αk = fα(k) and βk = fβ(k) to Pk together
with signatures σαk

(V, Pk;P ) and σβk
(V, Pk;P ), verifiable by P .

2. Every player Pk, having received the shares αk and βk with the corresponding
signatures and holding the share mk of m, computes yk = αk ·mk + βk and,
using the linearity property of the signatures, the corresponding signature
σyk
(V, Pk;P )

5 and passes yk and σyk
(V, Pk;P ) on to P , who verifies the

signature (see point 3. in Section 6.2).

3. If P receives all the yk and all the signatures are good, then he can recon-
struct y by interpolation, i.e. by computing a polynomial fy of degree at
most 2t with fy(k) = yk for all Pk and computing y = fy(0).
If some signature σyk

(V, Pk;P ) is not correct, then before computing y as
above, P passes mk and σmk

(Pk, P ;V ) on to V , who verifies the signature
and in case of a good signature returns yk = αk ·mk + βk to P (see point 2.
in Section 6.2 for the case V refuses).

Proposition 3. Under the assumptions stated before the protocol, the following
holds except with probability 2− log |F |+O(logn).

1. If P and V remain honest during the execution, then y = α ·m+ β.

2. If P remains honest, then the adversary learns nothing about m.

3. If V remains honest, then the adversary learns nothing about α.

Hence, the tag y can be thought of being computed by some honest player.

Proof. We will prove 1., 2. and 3. under the assumption that the security prop-
erties of the signatures hold without error probability; this proves the claim.

1. Let fm be the polynomial of degree at most t with fm(k) = mk and hence
fm(0) = m. The n shares yk = αk ·mk + βk define a unique polynomial fy
of degree at most 2t with fy(k) = yk and fy(0) = y = α · m + β, namely
fy = fα ·fm+fβ . So, if all n players Pk behave and send yk with the correct
signature to P , then P can compute fy and hence y. If on the other hand
some corrupted player Pk misbehaves and sends an incorrect yk to P (or an
incorrect signature or nothing at all), then P recognizes this and gets the
correct yk from V . Hence, even in this case P gets all the correct yk and can
therefore reconstruct y.

2. We assume wlog that V is corrupted. If all the corrupted players Pk follow
the protocol, then the adversary definitely gets no information at all. If
some corrupted player Pk misbehaves (e.g. by sending a bad yk), then the
adversary only learns mk, which he already knows.

3. We assume that P is corrupted. Note that the adversary does not learn any-
thing new by asking V for a yk in step 3., since the correct value mk must be
sent to V (otherwise V would not accept the signature and return nothing).

5 Note that mk is known to both Pk and P .



We have to show that the adversary’s view of this protocol gives no infor-
mation about α. The adversary’s view, excluding the signatures, consists
of m, m1, . . . ,mn, y1, . . . , yn and αk and βk for Pk ∈ A, where A is the
set of corrupted players, with yk = αk ·mk + βk. Consider the polynomial
dα(X) =

∏
Pk∈A(k−X)/k of degree t and the polynomial dβ = −dα·fm of de-

gree at most 2t. Note that dα(0) = 1 and dβ(0) = −m and dα(k) = 0 = dβ(k)
for all Pk in A. This implies that if fα and fβ are the sharing polyno-
mials for α and β, then for any α′, β′ with α′ · m + β′ = y, the poly-
nomials fα′ = fα + (α

′ − α)dα and fβ′ = fβ + (α
′ − α)dβ are sharing

polynomials for α′ and β′, consistent with the adversary’s view. Note that
fβ′(0) = β − (α′ − α)m = y − α′ ·m = β′. Since fα and fβ are randomly
chosen with fα(0) = α and fβ(0) = β, the adversary’s view of the protocol,
excluded the signatures, is independent of α. This together with the secrecy
property of the signatures proves the claim. ut

The communication complexity of one execution of MPAuth is O(n log |F |) bits.
Namely, V essentially shares α and β. Note that the signatures involved are
signatures verifiable by one player, hence they only cost O(log |F |) bits of com-
munication.

6.5 The VSS Protocol

The VSS sharing protocol that meets the lower bound of Theorem 1 now works
as follows. First, Pre Share is applied to the secret and then, by applyingMPAuth

to the shares, the sub-shares and signatures are stripped off and replaced by tags
for the actual shares:

Protocol Share

1. The above protocol Pre Share is executed on the secret s. As a result, every
player Pi holds a share si, sub-shares si1, . . . , sin and signatures σsi1

(P1, Pi),
. . . , σsin

(Pn, Pi).

2. For every player Pi, tags yi1, . . . , yin for si are computed by executingMP Auth

with every player Pj on the message si and Pj ’s randomly chosen key
(αij , βij).

Note that all the sub-shares sij and signatures σsij
(Pj , Pi) are only temporarily

used and can be deleted at the end of the protocol. For the reconstruction, as in
the honest-dealer case, only the shares, the tags and the keys are needed.

Theorem 3. For t = b(n−1)/2c, there exists a Verifiable Secret Sharing scheme,
(t, n, 1 − 2−Ω(k), 1 − 2−Ω(k))-secure against an adaptive and rushing adversary,
with a sharing complexity of O(kn3) and a single-round reconstruction of com-
plexity O(kn2).

Proof sketch: We can take the above scheme over a field F with |F | ∈ 2Θ(k).
Secrecy and correctness follow from Propositions 2 and 3. The communication
complexity of the Pre Share protocol is O(kn3), of the MPAuth protocol it is



O(kn). Therefore, the communication complexity of the sharing protocol, which
calls Pre Share once and MPAuth n2-times, is O(kn3). The communication com-
plexity of the reconstruction is as in the Honest-Dealer VSS O(kn2) bits. ut

7 Applications to MPC with Pre-processing

As an application of the above described VSS scheme, we will now present a
general MPC protocol in the pre-processing model [1]. Our protocol is secure
against an active, adaptive adversary who can corrupt up to t = b(n− 1)/2c, a
minority, of the players. The idea behind MPC with pre-processing, introduced
by Beaver [1], is to do as much work as possible in a pre-processing phase, before
the inputs and even the circuit 6 are known. This is to reduce the work and the
assumptions on the communication network required in the computation phase
when the inputs and circuit have actually become available.

This is based on circuit randomization and a generic construction that can be
applied to any general MPC protocol based on a VSS with certain linearity prop-
erties explained below. The computation phase doesn’t require secure channels,
it only consists of broadcasting information and performing the local computa-
tions necessary for VSS reconstructions. It should therefore be clear that MPC
in the pre-processing model benefits from VSS with optimized reconstruction.

The required linearity properties are as follows. If s and s′ are two VSS’ed
secrets and λ a public constant, then the players should be able to locally com-
pute VSS shares of s+ s′ and λ · s (if this is the case then the scheme is called
homomorphic) and of s+ λ. Before showing that our VSS has these properties,
we sketch the protocol for general MPC with pre-processing. Assume that ad-
equate upperbounds on the number of inputs and multiplication gates in the
future circuit are known. In the pre-processing phase, each player chooses a
sufficient number of independent random values a and VSS’es them. Next, the
players jointly prepare a sufficient number of random triples r, r′ and r′′ such
that r′′ = rr′ and such that each of these values is VSS’ed. Note that mutual
randomness is easily achieved by having players VSS random values, and tak-
ing the sum of those as a mutually random value. By the linearity property,
this random value is effectively VSS’ed. By invoking the general MPC protocol,
products can be securely computed with the result VSS’ed.
In the computation phase, inputs and circuit are known. Assume for simplicity
that each player has a single private input value. Each player then takes his
actual private input s, and simply broadcasts the difference ε = a − s between
this input s and the random value a he VSS’ed in the pre-processing phase.
Subsequently, all players locally compute their shares in s from the shares in
a they hold and the now public value ε. In the computation phase, the addi-
tion gates are handled locally while to multiply two shared values s and s′, a
fresh precomputed random triple (r, r′, r′′) is taken, the differences δ = s − r
and δ′ = s′ − r′ are revealed by invoking the reconstruction of VSS. Since

6 Usually, the function that is to be securely computed is given as an arithmetic circuit



ss′ = (r + δ)(r′ + δ′) = rr′ + δ′r + δr′ + δδ′ = r′′ + δ′r + δr′ + δδ′, every
player Pi can locally compute a share of ss

′ from the shares of r, r′ and r′′ and
the values δ and δ′. Note that linearity of the VSS facilitates all of these steps.

7.1 Applying Our VSS to MPC with Pre-processing

We first argue that our VSS can be made to have the required linearity proper-
ties. Note that Shamir shares trivially possess these properties, so it suffices to
focus on the authentication code. As mentioned in Section 5, the only thing we
need to do is to fix throughout the computation the values α that are part of the
verification keys (α, β). Indeed, if y and y′ are authentication tags for m and m′

with keys (α, β) and (α, β′), respectively, then for every λ ∈ F , λ · y + y′ is an
authentication tag for the message λ ·m+m′ with key (α, λ · β + β′). Namely,
α · (λ ·m+m′)+(λ ·β+β′) = λ · (α ·m+β)+(α ·m′+β′) = λ ·y+y′. Analogue,
it can be shown that y is an authentication tag for the message m+ λ with key
(α, β − α · λ). Furthermore, it is not difficult to see by induction that after l
authentications and verifications with the same α, the substitution probability
still is l/(|F | − l + 1) (see e.g. [4]).

For a field F with |F | ∈ 2Θ(k), the protocol now works as follows. In the pre-
processing phase, the random input values a are treated just as above, based
on our VSS. In order to prepare the random triples, we use the general MPC
techniques of [4] to prepare triples r, r′ and r′′ with r′′ = rr′ as described
earlier. This results in a VSS of these values according to [4] (i.e., according
to the protocol Pre Share from Section 6.3). We can convert these to sharings
as they would have been produced by our VSS, we simply apply the protocol
MPAuth (see Section 6) to get shares according to Share. Hence, all necessary pre-
processing information will be shared according to our VSS. The computation
phase can now proceed based on the reconstruction phase of our VSS.

As to efficiency, generating the sharings of r and r′ consists essentially of
O(n) executions of Pre Share, and thus this has complexity O(kn3) bits. The
computation of the sharing of r′′ costs according to [4] O(kn4) bits of com-
munication, assuming everyone coorperates. Multi-party computing the tags is
negligible compared to the rest, namely O(kn3). Hence, we have a best case com-
plexity of O(kn4). If a corrupted player refuses to coorperate, then the easiest
thing to do is to exclude the player and restart the computation. This will allow
the adversary to slow down the computation by at most a factor linear in n. 7

Hence we have

Theorem 4. Let C be an arithmetic circuit over a field F with M multiplication
gates, where |F | ∈ 2Θ(k). Communicating O(Mkn5) bits in a pre-processing
phase, there exists a MPC protocol, secure, except with probability 2−Ω(k)+M ,
against a rushing adversary who can adaptively corrupt up to t = b(n− 1)/2c of
the players, computing the circuit C with O(Mkn2) bits of comunication.

7 Instead of restarting, one could also reconstruct the share(s) of the caught cheater,
if needed. This way, the adversary cannot slow down the computation substantially,
resulting in a pre-processing complexity of O(Mkn4) instead of O(Mkn5).



The most efficient previously known protocol for MPC with pre-processing in
our model is based on [4]. Note that this would result in a pre-processing phase
with complexity of the same order as in our case. However, due to VSS with
optimized reconstruction, we gain an efficiency improvement of a multiplicative
factor n in the computation phase of our protocol.
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A Communication Pattern from Section 3: Justification

When justifying the claim that the proposed communication pattern is most
general, it should be kept in mind that we are interested in the complexity of
the reconstruction phase, and that all “re-modeling” operations are allowed as
long as they do not affect the complexity of reconstruction (apart from constant
factors).

By the assumption that the dealer is honest, we may assume without loss of
generality that the distribution phase only consists of the dealer sending private
information si to each of the players Pi, i.e., any secure distributed computation
carried out by the players in the distribution phase could as well be carried out by
the honest dealer, without consequences to the complexity of the reconstruction
phase. Similarly, we may assume that in the reconstruction phase each player Pi
merely broadcasts a piece of information, yi, that only depends on the private
information si received from the dealer. Namely, at the cost of at most a constant
factor of increased communication, private channels can be simulated by one-
time pads, the keys of which are distributed by the honest dealer. In fact, it can be
assumed that in general si = (ki, yi), where yi is required to be broadcast in the
reconstruction phase, and each player Pi makes a local (possibly probabilistic)
decision on the secret s based on the broadcast information and his private ki.

B Impossibility Lemmas from Section 3

Lemma 2. There exists a static, non-rushing adversary such that with non-zero
probability some honest players output “failure” in the reconstruction phase.

Proof. Given that t ≥ n/3, let B,A0, A1 be an arbitrary disjoint partition of
{1, . . . , n} such that |B| = t and 1 ≤ |A0|, |A1| ≤ t. We show a strategy for
the adversary that forces all players in B to output “failure” with non-zero
probability. The adversary corrupts the players in A0, selects a random secret s̃
and randomly guesses the shares si = (ki, yi) held by the players in B. By the
privacy of the scheme and assuming that he guessed the shares correctly and that
s 6= s̃ (which both happens with non-zero probability), he can sample random
shares s̃j for the corrupted players, so that these, together with the shares of the
players in B, are consistent with the secret s̃, and have the same distribution
as when sent by the honest dealer. It is now clear that in the reconstruction
phase (assumed that the adversary guessed the shares correctly and that s 6=
s̃), every player in B has to output “failure”. Indeed, the players in B must
definitely not output the incorrect secret s̃. On the other hand, if some player in
B outputs the correct secret s (with positive probability), then by corrupting the
players in A1 instead of A0, but otherwise playing the corresponding game, the
adversary creates the same view for the players in B, however with the correct
and the incorrect secrets exchanged, and hence this player would now output
the incorrect secret (with positive probability), which is a contradiction. ut



Lemma 3. There exists a static, rushing adversary such that such that with
non-zero probability some honest player recovers the secret in the reconstruction
phase, while some other honest player outputs “failure”.

Proof. Consider the case t > n/3. Let B,A0, A1 be an arbitrary disjoint partition
of {1, . . . , n} such that 1 ≤ |A0| ≤ t− 1 and 1 ≤ |A1| ≤ t. Note that 2 ≤ |B| ≤ t.
Let p, q be distinct members of B. We consider the same adversary as before,
except that in the reconstruction phase, the adversary “rushes”, and waits until
the players in B have broadcast their yi’s. He then makes a guess for player p’s
private kp, and broadcasts random ỹj ’s for the players, consistent with kp and
with the yi’s of the players in B and a random secret different from the correct
one (which he knows by now). For similar reasons as before we conclude that
player p does not reconstruct the secret if the guess for kp was correct. However,
in that case player q must reconstruct the secret with positive probability: for
if not, corrupting A0 and player p (note that this amounts to at most t cor-
ruptions), the adversary would not have to guess kp anymore, and hence there
would be a strategy that makes at least one honest player output “failure” in
the reconstruction with probability equal to 1. This contradicts correctness. ut

C Non-maximal t

In the main body of this paper, we have only considered a maximal t in the
interesting range n/3 ≤ t < n/2. We will now state the generalizations of the
Theorems 1 to 4 for a (nearly) arbitrary t in this range. The corresponding proofs
are similar but technically more involved.

Theorem 1’. For any family of Single-Round Honest-Dealer VSS schemes,
(t, n, 1 − δ)-secure against an arbitrary active, rushing adversary, the following
holds. Let k be a security parameter and let ε > 0 be an arbitrary constant. If
δ = 2−Ω(k) and n/3 · (1 + ε) ≤ t < n/2 then the total information broadcast in
the reconstruction phase is lower bounded by Ω((nH(S) + kn2)/(n− 2t)).

Note that already an arbitrarily small linear gap between t and n/2 reduces the
lower bound by a factor of n. The following Theorem shows that the reconstruc-
tion complexity indeed reduces by a factor of n for such a t (at least in case of
a security parameter k slightly larger than linear in n).

Theorem 2’. For n/3 ≤ t < n/2 and k = Ω((n − 2t) log(t)), there ex-
ists a Single-Round Honest-Dealer VSS scheme, (t, n, 1− 2−Ω(k))-secure against
an adaptive and rushing adversary, with a total communication complexity of
O(kn2/(n− 2t)) bits.

The according holds for VSS.

Theorem 3’. For n/3 ≤ t < n/2 and k = Ω((n − 2t) log(t)), there exists a
Single-Round VSS scheme, (t, n, 1− 2−Ω(k), 1− 2−Ω(k))-secure against an adap-
tive and rushing adversary, with a sharing complexity of O(kn3) and a recon-
struction complexity of O(kn2/(n− 2t)).



Applied to MPC with preprocessing, we achieve

Theorem 4’. Let C be an arithmetic circuit over a field F with M multiplica-
tion gates, where |F | ∈ 2Θ(k)/(n−2t), n/3 ≤ t < n/2 and k = Ω((n− 2t) log(t)).
Communicating O(Mkn5) bits in a pre-processing phase, there exists a MPC
protocol, secure, except with probability 2−Ω(k)+M , against an adversary who
can adaptively corrupt up to t of the players, computing the circuit C with
O(Mkn2/(n− 2t)) bits of communication.

D General Adversaries

We now go beyond security against a dishonest minority by sketching how to
adjust our VSS and MPC protocols to be secure against a general Q2-adversary
[9], i.e. against an adversary who can corrupt any subset of players in a given
family of subsets, where no two subsets in the family cover the full player set.

By replacing the bivariate polynomial sharing in Pre Share by the information-
theoretic commitment/WSS protocol from [5] based on monotone span pro-
grams [10], we are in the same position as described by Proposition 2, except
that 4. is not guaranteed, i.e. the share si of a corrupted player Pi is not neces-
sarily correctly shared by the sub-shares sji of the honest players Pj . But this
can easily be achieved by doing another level of sharing: every player Pi shares
his share si with the WSS protocol from [5] where every player Pj insists that
the share they get of si is the sub-share sji.
In the MPAuth protocol, replacing the threshold sharings of the values α and β
by sharings based on monotone span program sharings [10] with multiplication,
and using the fact that these can be constructed from ordinary monotone span
programs with only constant overhead [5], Proposition 3 remains intact.
This results in a VSS scheme secure against a general Q2-adversary. Further-
more, the sharing and reconstruction complexities are O(knm2) and O(knm)
bits, respectively, where m ≥ n is the size of the monotone span program, while
the respective complexities of the general adversary VSS scheme suggested in
[4] are both O(knm3) bits (even though one could achieve O(knm2) using their
techniques in a more elaborate way).

Based on this general adversary VSS scheme, similar to the previous sec-
tion, one can achieve a general MPC protocol, secure against a general Q2 ad-
versary, which in the pre-processing model has a communication complexity
of O(Mknm) bits, compared to O(Mknm3) (respectively O(Mknm2)), which
would be achieved by the general adversary MPC protocol from [4].

E The Power of Rushing (Honest Dealer Case)

We show that our tight lower bound from Section 4 does not hold if the adversary
does not rush, and instead selects the corrupted shares he will broadcast in
the reconstruction phase before it has started. We also sketch a lower bound



and outline some applications, namely to a scenario in which the amount of
information sent in the distribution phase is to be minimized.

Let F be a finite field with |F | > n, and take Shamir’s (t + 1, n)-threshold
scheme defined over F . Cabello, Padró and Sáez [7] have proposed the following
so-called robust secret sharing scheme. To share a secret s in this scheme, the
honest dealer selects a random field element ρ, independently generates full sets
of Shamir-shares for the secrets s, ρ and ρ ·s, and privately distributes the shares
to the players.

Given a set A of at least t + 1 shares (which possibly contains corrupted
shares), consider the three values s′, ρ′ and τ ′ that are computed by applying
the reconstruction procedure of Shamir’s scheme to the shares in A. The crucial
observation is that if s 6= s′ and if the corrupted shares are independently dis-
tributed from ρ, the probability that s′ ·ρ′ = τ ′ is at most 1/|F |. Hence, given for
instance a trusted party available for reconstruction, connected with each player
by an independent private channel, the independence requirement is satisfied
and although the secret may not always be reconstructed from a qualified set, a
corrupted secret is detected with high probability.

We note the following application of this scheme in our scenario of a non-
rushing adversary. By assumption, this is an adversary who chooses the cor-
rupted shares before the reconstruction phase. This ensures that the indepen-
dence requirement stated before is satisfied. Let k be a security parameter and
t < n/2 and assume additionally that |F | ≥ 2n+k. Let the distribution phase be
according to the scheme of [7]. Consider an arbitrary set A of t+1 shares revealed
in the reconstruction phase. If A consists exclusively of shares of honest players,
then the secret sA reconstructed by the procedure above would certainly be the
correct secret s. Else, either a failure would be detected, or with probability at
most 2−n−k, a secret sA 6= s is accepted based on the shares in A. Let V denote
the set of all distinct accepted “secrets” sA, by quantifying over all sets A. Note
that s ∈ A. Now each honest player simply computes V , and outputs “failure” if
V has more than one element, and s otherwise. This way all honest players are
in agreement, and the probability with which they output “failure” is clearly at
most 2n · 2−n−k = 2−k.

For the case that k > n and n = 2t+1, we now sketch an argument showing
that the distribution phase of this scheme is optimal, up to constant factors. A
basic result in secret sharing says, informally speaking, that the size of individual
shares is at least the size of the secret, and hence the question that remains is
whether the error probability ε of the above scheme is optimal. We define an
adversary who flips a random coin and either corrupts the first t players, or the
last t players. In either case, he makes a random guess S̃t+1 for the share St+1

that player Pt+1 received from the honest dealer in the distribution phase, deletes
the correct shares received from the dealer by the corrupted players, and instead
chooses random corrupted shares, consistent with his guess S̃t+1 and with a
random secret s̃. Assuming that the correct secret s was chosen at random by
the honest dealer, if the adversaries’ guess for player Pt+1’s share is correct, then
there is no way for any reconstruction procedure to distinguish between s and



s̃. Hence, in order for log 1/ε to be O(k), the size of each individual share must
be Ω(k).

Although it is generally not very realistic to assume that the adversary is
not rushing, it is possible to construct a “simultaneous broadcast” channel on
top of the “secure channels with broadcast model”. Namely, simply have each
player first VSS their values, e.g. by using the schemes of [12, 4], after which
all VSS’s are opened. Using the concrete scheme above, this procedure would
ensure that shares are “broadcast simultaneously”, and hence that the required
independence is achieved, at the cost of increased complexity of the reconstruc-
tion phase and use of private channels in that phase. The advantage, however,
is that the efficiency of the distribution phase has been substantially improved.

F Proof of Proposition 2

1. First note that the adversary does not gain any new information by making
players complain. Let A be the set of players who have been corrupted during
the execution of Pre Share. The existence the symmetrical polynomial

d(X,Y ) =
∏

Pi∈A

(X − i)(Y − i)

i2

of degree t, with d(0, 0) = 1 and d(i, ·) = d(·, i) = 0 for all Pi ∈ A, implies
that for every s′ ∈ F , the number of bivariate symmetrical polynomials of
degree at most t with s′ as constant coefficient and consistent with the adver-
sary’s view is the same. Therefore, as f is chosen at random, the shares and
sub-shares of the corrupted players give no information about the secret s.
The claim now follows from the secrecy property of the signatures.

2. If this was not the case, then there would have been complaining.

3. Let the set A consist of t + 1 honest players. Their shares define a unique
secret s′. Let now A′ consist of the players in A and a further honest
player (if there are only t + 1 honest players, then we are finished any-
way). Let λi, i ∈ A, be the reconstruction coefficients for the players in
A and λ′

i, i ∈ A′, for the players in A′. So we have s′ =
∑

i∈A λisi and
(according to 2.) sk =

∑
i∈A λiski =

∑
j∈A′ λ

′
jskj for all k ∈ A′. It fol-

lows that
∑

k∈A′ λ
′
ksk =

∑
k∈A′ λ

′
k

∑
i∈A λiski =

∑
i∈A λi

∑
k∈A′ λ

′
kski =∑

i∈A λi
∑

k∈A′ λ
′
ksik =

∑
i∈A λisi = s′, hence the shares of the players in

A′ are still consistent. Inductively, it follows that the shares of all honest
players are consistent and define a unique secret s′.

4. Can be shown with a similar argumentation as above using the fact that
every share sj can be written as a fix linear combination

∑
k µksk of the

shares of the honest players Pk. ut


