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Abstract. The shrinking generator is a well-known keystream genera-
tor composed of two linear feedback shift registers, LFSR1 and LFSR2,
where LFSR1 is clock-controlled according to regularly clocked LFSR2.
A probabilistic analysis of the shrinking generator which shows that this
generator can be vulnerable to a specific fast correlation attack is con-
ducted. The first stage of the attack is based on a recursive computation
of the posterior probabilites of individual bits of the regularly clocked
LFSR1 sequence when conditioned on a given segment of the keystream
sequence. Theoretical analysis shows that these probabilities are signifi-
cantly different from one half and can hence be used for reconstructing
the initial state of LFSR1 by iterative probabilistic decoding algorithms
for fast correlation attacks on regularly clocked LFSR’s. In the second
stage of the attack, the initial state of LFSR2 is reconstructed in a similar
way, which is based on a recursive computation of the posterior proba-
bilites of individual bits of the LFSR2 sequence when conditioned on the
keystream sequence and on the reconstructed LFSR1 sequence.

Key words. Stream ciphers, unconstrained irregular clocking, posterior
probabilities, fast correlation attacks.

1 Introduction

The shrinking generator [1] is a well-known keystream generator for stream ci-
pher applications. It consists of only two linear feedback shift registers (LFSR’s).
The clock-controlled LFSR, LFSR1, is irregularly clocked according to the clock-
control LFSR, LFSR2, which is regularly clocked. More precisely, at each time,
both LFSR’s are clocked once and the bit produced by LFSR1 is taken as the
output bit if the clock-control bit produced by LFSR2 is equal to 1. Otherwise,
the output bit is not produced. The output sequence is thus a nonuniformly dec-
imated LFSR1 sequence. It is recommended in [1] that the LFSR initial states
and the feedback polynomials be defined by the secret key. Under certain condi-
tions, the output sequences possess a long period, a high linear complexity, and
good statistical properties.

As pointed out in [1], a basic divide-and-conquer attack on the shrinking
generator is the linear consistency attack [17] on LFSR2 which requires the ex-
haustive search through all possible initial states and feedback polynomials of



LFSR2. On the other hand, a probabilistic correlation attack targeting LFSR1

which requires the exhaustive search through all possible initial states and feed-
back polynomials of LFSR1 is proposed in [4] and analyzed by computer sim-
ulations in [15]. A reduced complexity method based on searching for specific
subsequences of the output sequence is suggested in [9], but both the complex-
ity and the required keystream segment length are exponential in the length of
LFSR1.

It is shown in [3] that the output sequence may have a detectable linear sta-
tistical weakness if the feedback polynomial of LFSR1 has low-weight polynomial
multiples of moderately large degrees. It is suggested in [5] that this weakness
may even be used for recovering the LFSR1 feedback polynomial. A theoretical
framework for a fast correlation attack targeting the initial state of LFSR1 is
also proposed in [5], but the attack is not implemented as it requires a search
for specific polynomial multiples of the LFSR1 feedback polynomial.

The objective of this paper is to investigate if the initial states of LFSR1

and LFSR2 can be reconstructed by an algorithm that would not require the
exhaustive search through all possible initial states and whose complexity can
be sufficiently small even for large LFSR lengths. The LFSR feedback polyno-
mials are assumed to be known. The basic point of our approach is to consider
the posterior probabilites of individual bits of the regularly clocked LFSR1 se-
quence when conditioned on a given segment of the keystream sequence. In the
probabilistic model where the LFSR sequences are assumed to be independent
and purely random,1 a recursion and an explicit expression for computing these
probabilities with complexity quadratic in the keystream segment length are
both derived. A theoretical analysis shows that the computed posterior proba-
bilities can be significantly different from one half for a purely random output
sequence. In a more general probabilistic model, in which the LFSR1 sequence is
assumed to be a sequence of independent, not necessarily uniformly distributed,
binary random variables, it is proved that the posterior probabilities can be
recursively computed with complexity cubic in the keystream segment length.

Accordingly, as these probabilities represent soft-valued estimates of the cor-
responding bits of the regularly clocked LFSR1 sequence, they can be used in an
iterative probabilistic decoding algorithm for fast correlation attacks on regularly
clocked LFSR’s (e.g., see [11], [12], and [8]). It is known that the complexity of
such an algorithm primarily depends on the degrees and numbers of low-weight
polynomial multiples of the feedback polynomial of LFSR1 which, according
to [10], [7], and [14], may also contain an additional number of concentrated
nonzero terms. The initial state of LFSR1 can thus be recovered. A more sophis-
ticated method in which the posterior probabilities are iteratively updated by
intertwining the probabilistic decoding with the recursive computation is also
introduced.

In addition, a composite method that effectively enhances the posterior prob-
abilities for longer keysteam segments is proposed. Essentially, it consists in

1 A sequence of independent uniformly distributed random variables over a finite set
is called purely random.



dividing a longer keystream segment into subsegments of equal length, in com-
puting the posterior probabilities for the subsegments, and then in combining
these posterior probabilities appropriately.

If the posterior probabilities corresponding to a given keystream sequence are
not sufficiently different from one half, they can be computed for subsequences
of the keystream sequence obtained by discarding the initial segment of variable
length until the significant posterior probabilities are obtained. This will improve
the performance of the fast correlation attacks explained above, but the length
of the initial LFSR1 segment has to be guessed. For the initial output segment of
length j− 1, one has to make O(

√
2j) guesses around the expected value 2j− 1.

Moreover, one can thus also search for the outstanding posterior probabilities
and then apply an information set decoding algorithm to recover the LFSR1

initial state. The success of such an algorithm is independent of the LFSR1

feedback polynomial, but the achievable complexity is still exponential in the
length of LFSR1. This improves the reduced complexity method [9].

The second point of our approach is to consider the posterior probabilites
of individual bits of the regularly clocked LFSR2 sequence when conditioned
on a given segment of the keystream sequence and on the reconstructed LFSR1

sequence, as suggested in [9]. It is proved that these probabilities can be recur-
sively computed with complexity cubic in the keystream segment length, thus
showing that the expression given in [9] is incorrect. As the LFSR1 sequence
is assumed to be known, the computed posterior probabilities are more distin-
guished from one half than in the case of LFSR1. This makes the reconstruction
much easier. Consequently, the initial state of LFSR2 can be recovered either
by an iterative probabilistic decoding algorithm or by a simple information set
decoding algorithm using a subset of the probabilities close to zero or one.

Section 2 contains an overview of known results concerning the posterior
probabilities of blocks of LFSR1 bits. The results regarding the posterior prob-
abilities of individual LFSR1 and LFSR2 bits are presented in Sections 3 and 4,
respectively. These posterior probabilities are theoretically analyzed in Section
5. The combined fast correlation attacks are proposed in Section 6, and conclu-
sions are given in Section 7. Proofs of two underlying theorems are presented in
Appendices A and B.

2 Posterior Probabilities of Blocks of LFSR1 Bits

We use the notation A = a1, a2, . . . for a binary sequence, Ak for its subsequence
ak, ak+1, . . ., A

n for its prefix (ai)
n
i=1 = a1, a2, . . . an, and An

k for its subsequence
(ai)

n
i=k = ak, ak+1, . . . , an. If its length is finite, then A is called a string. Let

w(A) and d(A) denote the numbers of 1’s and 0’s in A, respectively. For sim-
plicity, we keep the same notation for random variables and their values.

Let X, C, and Y denote the output sequences of LFSR1, LFSR2, and the
shrinking generator itself, respectively. In a general model, let X and C be
arbitrary binary sequences. Then Y is obtained from X by the nonuniform deci-
mation according to C, that is, a bit xi is deleted from X iff ci = 0. Accordingly,



Y is a function of X and C, Y = F (X,C), where the length of Y may be finite
and is equal to w(C). Thus Y n is a function of X and C, Y n = Fn(X,C), for
any 1 ≤ n ≤ w(C). If w(C) = 0, then Y is not produced. If w(Cn) = l ≥ 1 and
cn = 1, then yl = xn. It follows that yn is a function of Xn and C, fn(Xn, C).

We assume a probabilistic model where X and C are independent and purely
random binary sequences. It then follows that the output sequence Y is also
purely random. We are first interested in deriving the posterior probability
Pr{Xn | Y } which is in this model equal to Pr{Xn | Y n}. To this end, ac-
cording to [4], define the following conditional probability for prefixes of X and
Y

Q(e, s)
def
= Pr{Y s, d(Ce+s) = e | Xe+s}. (1)

It is in fact the probability that Y s is obtained by deleting e bits from a given
string Xe+s. The permissible values of s and e are 0 ≤ s ≤ n and 0 ≤ e ≤ n− s,
where Y 0 denotes an empty set and, formally, Q(0, 0) = 1. This probability can
be computed recursively by

Q(e, s) =
1

2
Q(e− 1, s) +

1

2
δ(xe+s, ys)Q(e, s− 1) (2)

where the terms on the right-hand side corresponding to unpermissible values
of e or s (i.e., for e = 0 or s = 0) are assumed to be equal to zero (see [4] and
Appendix B). Here, δ(i, j) or δi,j is the Kronecker symbol, i.e., δ(i, j) = 1 if i = j
and δ(i, j) = 0 if i 6= j.

Consequently, we have

Pr{Y n | Xn} =
n
∑

e=0

Pr{Y n, d(Cn) = e | Xn}

=
n
∑

e=0

Pr{Y n
n−e+1 | Y n−e, d(Cn) = e,Xn}Q(e, n− e)

=
n
∑

e=0

2−e Q(e, n− e) (3)

in view of the fact that, on the condition that d(Cn) = e, the string Y n
n−e+1 is

obtained by decimating Xn+1 according to Cn+1, where Xn+1 and Cn+1 remain
to be mutually independent and purely random (even when conditioned on Xn

and Y n−e). Therefore, under the given conditions, Y n
n−e+1 remains to be uni-

formly distributed. Further, as Xn and Y n are both uniformly distributed, we
have

Pr{Xn | Y n} = Pr{Y n | Xn} =

n
∑

e=0

2−e Q(e, n− e) (4)

which is computed in O(n2) time and O(n) space. The probability (4) can be
found in [9], and also corresponds to the probability derived in [6] for the alter-
nating step generator, because the nonuniform decimation of a purely random



sequence can be regarded as the inverse operation to the nonuniform interleaving
of two purely random sequences which is inherent to this generator.

For ease of computation, one can introduce N(e, s) = 2e+s Q(e, s) which
represents the number of clock-control strings Ce+s that result in Y s from a
given Xe+s. These integers can be computed by the recursion

N(e, s) = N(e− 1, s) + δ(xe+s, ys)N(e, s− 1). (5)

Then

Pr{Xn | Y n} = 2−n
n
∑

e=0

2−e N(e, n− e). (6)

It is proposed in [4] to use the probability Q(m − n, n), where m ≈ 2n, in
order to reconstruct the LFSR1 initial state from a given keystream segment
Y n. This probability is computed in O(n(m − n)) = O(n2) time. Statistical
experiments from [15] show that n ≈ 20r1 is sufficient for a successful recon-
struction.2 Here, Q(m − n, n) is used as a measure of correlation between Y n

and Xm, where Xm is produced from an assumed LFSR1 initial state. It would
be interesting to compare Q(m − n, n) with the posterior probability (4) with
respect to the minimum keystream segment length and the complexity required.
However, the exhaustive search over all possible LFSR1 initial states is required
for both measures. It is worth mentioning that a conclusion from [9] that the
required n is independent of r1 is incorrect, because, according to the deletion
channel capacity argument, n must be linear in r1 (see [4] and [15]).

3 Posterior Probabilities of Individual LFSR1 Bits

In this section, the posterior probabilities of individual bits of the regularly
clocked LFSR1 sequence when conditioned on a given segment of the keystream
sequence are introduced. In Section 3.1, it is shown that these probabilities can
be computed recursively in a probabilistic model in which the LFSR2 sequence is
assumed to be purely random, the LFSR1 sequence is assumed to be a sequence
of independent binary random variables, and both sequences are assumed to
be mutually independent. This general model is relevant for a fast correlation
attack on LFSR1 in which the posterior probabilities are iteratively updated by
intertwining the recursive computation with a probabilistic decoding algorithm
used in fast correlation attacks on regularly clocked LFSR’s. In Section 3.2, a
special case of this model in which the LFSR1 sequence is assumed to be purely
random is considered. This case is especially relevant for a fast correlation attack
on LFSR1 in which the posterior probabilities recursively computed in the first
stage are then processed by an iterative probabilistic decoding algorithm in the
second stage.

2 The length of LFSRi is denoted as ri, i = 1, 2.



3.1 General Probabilistic Model

Generalize the probabilistic model from Section 2 in such a way that a prefix of X
need not be purely random. More precisely, let X be a sequence of independent
binary random variables (bits) such that Pr{xi = 1} = pi for 1 ≤ i ≤ n and
Pr{xi = 1} = 0.5 for i > n, where n is a given positive integer. Our objective here
is to determine the posterior probabilities p̂i = Pr{xi = 1 | Y n} for 1 ≤ i ≤ n.
It follows that

p̂i = pi
Pr{Y n | xi = 1}

Pr{Y n} . (7)

The problem is how to compute the probabilities Pr{Y n | xi = 1} and
Pr{Y n} efficiently. To this end, introduce the following partial probabilities, for
prefixes of Y ,

Pi(e, s)
def
= Pr{Y s, d(Ce+s) = e | xi = 1} (8)

P (e, s)
def
= Pr{Y s, d(Ce+s) = e} (9)

for 0 ≤ s ≤ n and 0 ≤ e ≤ n− s, where formally P (0, 0) = 1 and Pi(0, 0) = 1.
The following theorem, proved in Appendix A, shows that the partial proba-

bilities can be computed recursively and then used to obtain the desired posterior
probabilities by (7).

Theorem 1. For any given Y n and each 1 ≤ i ≤ n, we have

p̂i = pi

∑n
e=0 2

−e Pi(e, n− e)
∑n

e=0 2
−e P (e, n− e)

(10)

where the partial probabilities are determined recursively by

Pi(e, s) =
1

2
Pi(e− 1, s)

+
1

2
(δi,e+sys + (1− δi,e+s)(yspe+s + (1− ys)(1− pe+s)))Pi(e, s− 1)

(11)

P (e, s) =
1

2
P (e− 1, s) +

1

2
(yspe+s + (1− ys)(1− pe+s))P (e, s− 1) (12)

for 0 ≤ s ≤ n, 0 ≤ e ≤ n − s, and (e, s) 6= (0, 0), from the initial values
Pi(0, 0) = P (0, 0) = 1. (The terms on the right-hand sides of these equations
corresponding to unpermissible values of e or s, i.e., for e = 0 or s = 0, are
assumed to be equal to zero.)

The time and space complexities of the corresponding algorithm are clearly
O(n3) and O(n), respectively. The algorithm may thus be feasible even if n
is large. For computational convenience, the multiplicative factor 0.5 can be
removed from the recursions without affecting the values of the posterior proba-
bilities. The time complexity can be reduced to O(n2

√
n) if Pi(e, s) and P (e, s)

are computed approximately, only for O(
√
2s) values of e around s.



3.2 Purely Random String Probabilistic Model

Consider now the model in which X is a purely random sequence. It is a particu-
lar instance of the general model from Section 3.1 in which pi = 0.5, 1 ≤ i ≤ n. In
this model, the recursion (12) can be explicitly solved as P (e, s) =

(

e+s
e

)

2−(e+2s),
so that Pr{Y n} = 2−n, as to be expected. Accordingly, the posterior probabili-
ties can be computed by the following corollary to Theorem 1.

Corollary 1. If X is purely random, then for any given Y n and each 1 ≤ i ≤ n,
we have

p̂i = 2n−1
n
∑

e=0

2−e Pi(e, n− e) (13)

where the partial probability is determined recursively by

Pi(e, s) =
1

2
Pi(e− 1, s) +

1

4
(1 + δi,e+s(2ys − 1))Pi(e, s− 1) (14)

for 0 ≤ s ≤ n, 0 ≤ e ≤ n − s, and (e, s) 6= (0, 0), from the initial value
Pi(0, 0) = 1.

Further simplification and an explicit expression can be obtained by using
the fact that X is purely random. Namely, in a similar way as (34) in Appendix
A, we obtain

Pr{Y n | xi = 1} =
i
∑

e=0

Pr{Y n, d(Ci) = e | xi = 1}

=

i
∑

e=0

Pr{Y n
i−e+1, Y

i−e, d(Ci) = e | xi = 1}

=

i
∑

e=0

Pr{Y n
i−e+1 | Y i−e, d(Ci) = e, xi = 1}Pi(e, i− e)

= 2−(n−i)
i
∑

e=0

2−e Pi(e, i− e) = 2−(n−i) Pr{Y i | xi = 1}.

(15)

As a consequence, we have

Pr{xi = 1 | Y n} = Pr{xi = 1 | Y i}. (16)

Also, it follows that

Pi(e, i− e) =
1

2
P (e− 1, i− e) +

1

2
yi−e P (e, i− e− 1) (17)

where P (e, s) = 2−(e+2s) M(e, s), M(e, s) =
(

e+s
e

)

, and the binomial coefficients
can be computed recursively by

M(e, s) = M(e− 1, s) + M(e, s− 1) (18)



for 0 ≤ s ≤ n − 1, 0 ≤ e ≤ n − 1 − s, and (e, s) 6= (0, 0), from the initial value
M(0, 0) = 1. Then (13) and (17) imply that

p̂i =
1

2
2−i

i
∑

e=0

((

i− 1

e− 1

)

+ 2

(

i− 1

e

)

yi−e

)

. (19)

Finally, we obtain the following theorem.

Theorem 2. If X is purely random, then for any given Y n and each 1 ≤ i ≤ n,
we have

p̂i =
1

2

(

1

2
+ 2−(i−1)

i−1
∑

e=0

(

i− 1

e

)

yi−e

)

. (20)

The time and space complexities of the algorithm corresponding to Theorem
2 are O(n2) and O(n), respectively, where the binomial coefficients can be re-
cursively precomputed in O(n2) time by using (18). However, (20) shows that p̂i
can be numerically approximated with an arbitrarily small error by using only
O(
√
i− 1/2) values of e around (i − 1)/2. This reduces the time complexity to

O(n
√
n).

The following immediate corollary to Theorem 2 shows that the posterior
probabilities cannot approach 0 or 1.

Corollary 2. If X is purely random, then for any given Y n and each 1 ≤ i ≤ n,
we have

1

4
≤ p̂i ≤

3

4
(21)

where the lower and upper bounds are achieved if and only if Y i consists of all
0’s and of all 1’s, respectively.

4 Posterior Probabilities of Individual LFSR2 Bits

In this section, it is shown that the posterior probabilities of individual bits of
the regularly clocked LFSR2 sequence when conditioned on a given segment of
the keystream sequence and on a segment of the reconstructed LFSR1 sequence
can be computed recursively with complexity cubic in the segment length.

Assuming that X and C are independent and purely random, our objective is
to determine the posterior probabilities q̂i = Pr{ci = 1 | Y n, Xn} for 1 ≤ i ≤ n.
It follows that

q̂i =
1

2

Pr{Y n | ci = 1, Xn}
Pr{Y n | Xn} . (22)

In Section 2, it is shown that Pr{Y n | Xn} can be computed recursively. The
problem is how to compute Pr{Y n | ci = 1, Xn} efficiently. Similarly to (1),
define the following conditional probability for prefixes of X and Y

Qi(e, s)
def
= Pr{Y s, d(Ce+s) = e | ci = 1, Xe+s} (23)



for 0 ≤ s ≤ n and 0 ≤ e ≤ n− s, with Qi(0, 0) = 1.
The following theorem, proved in Appendix B, shows that this probabil-

ity can be computed recursively and then used to obtain the desired posterior
probabilities by (22). This theorem shows that the expression for the posterior
probabilities given in [9] is incorrect, not only in general, but also in a special
case of the probabilities Pr{ci = 1 | Y i, Xi}.

Theorem 3. For any given Y n and Xn and each 1 ≤ i ≤ n, we have

q̂i =
1

2

∑n
e=0 2

−e Qi(e, n− e)
∑n

e=0 2
−e Q(e, n− e)

(24)

where Q(e, s) and Qi(e, s), respectively, are determined recursively by (2) and by

Qi(e, s) =
1

2
(1− δi,e+s)Qi(e− 1, s) +

1

2
(1 + δi,e+s) δ(xe+s, ys)Qi(e, s− 1)

(25)

for 0 ≤ s ≤ n, 0 ≤ e ≤ n − s, and (e, s) 6= (0, 0), from the initial value
Qi(0, 0) = 1.

The time and space complexities of the corresponding algorithm are clearly
O(n3) and O(n), respectively. For ease of computation, one can introduce the
integers Ni(e, s) = 2e+s Qi(e, s) which can be computed by the recursion

Ni(e, s) = (1− δi,e+s)Ni(e− 1, s) + (1 + δe,i+s) δ(xe+s, ys)Ni(e, s− 1).

(26)

Then

q̂i =
1

2

∑n
e=0 2

−e Ni(e, n− e)
∑n

e=0 2
−e N(e, n− e)

(27)

where the integers N(e, s) satisfy the recursion (5). The time complexity can be
reduced to O(n2

√
n) if Ni(e, s) and N(e, s) are computed approximately, only

for O(
√
2s) values of e around s.

5 Analysis of Posterior Probabilities

The posterior probabilities of individual LFSR1 bits computed according to The-
orem 2 may be useful for reconstructing the unknown LFSR1 sequence from a
known segment of the output sequence if they are sufficiently different from one
half. According to Theorem 2 and Corollary 2, the posterior probability p̂i will
be close to 1/4 (3/4) if there is an output segment of length relatively close
to
√
i− 1/2 around the position (i − 1)/2 in the output string such that the

relative number of 0’s (1’s) on this segment is considerably different from one
half. More generally, if Y j is relatively unbalanced, that is, if the relative number



of 0’s in Y j is considerably different from one half, then most of the posterior
probabilities of bits in X2j will be significant.

As p̂i depends on the output string Y i, it is interesting to analyze the average
value of the absolute difference |∆p̂i| = |p̂i−0.5| over purely random Y i. In view
of (20), we get

|∆p̂i| =
1

2
2−(i−1) |

i−1
∑

e=0

(

i− 1

e

)

(yi−e − 0.5)|. (28)

Exact analysis of (28) appears to be difficult. However, the following approximate
analysis establishes that |∆p̂i| is significantly different from zero for a uniformly
distributed Y i.

The analysis is based on approximating a binomial distribution B(n, 0.5) by a
uniform distribution, with the same expected value and standard deviation, over
a segment of length

√
3n centered around 0.5n. Consequently, let I(i) denote a

segment of lengthm(i) ≈
√

3(i− 1) centered around 0.5(i+1). Then (28) reduces
to

|∆p̂i| ≈
1

2

1

m(i)
|
∑

j∈I(i)

(yj − 0.5)|

≈ 1

2

1

m(i)
|m1(i)− 0.5m(i)| (29)

where m1(i) is the number of 1’s in Y i on the segment I(i). Now, as m1(i) is
binomially distributed, we further get the following average values over Y i

|m1(i)− 0.5m(i)|av ≈ 1√
2π

√

m(i) (30)

|∆p̂i|av ≈
1

2
√
2π

1
√

m(i)

≈ 1

2
√

2π
√
3

1
4
√
i− 1

≈ 0.1515
1
4
√
i
. (31)

Except maybe for the multiplicative constant, the approximation is very good
for i ≥ 100. Thus, as i increases, it turns out that |∆p̂i|av decreases approxi-
mately like 0.1515/ 4

√
i. The decrease is to be expected, because of a loss of

synchronization between the original and the decimated sequence. However, it
may be surprising that the decrease is very slow, so that the posterior probabil-
ities remain significant even for relatively large values of i. For example, |∆p̂i|av
is approximately 0.01515 for i = 10000 and 0.01 for i = 50000.

The posterior probabilities of individual LFSR2 bits computed according
to Theorem 3 depend on both the output sequence and on the reconstructed
LFSR1 sequence. They are harder to analyze theoretically, but should be much
more different from one half than the posterior probabilities of individual LFSR1

bits, because the LFSR1 sequence is assumed to be known. They can be used
for reconstructing the unknown LFSR2 sequence from a known segment of the
output sequence and a segment of the reconstructed LFSR1 sequence.



6 Combined Fast Correlation Attacks

It is assumed that the LFSR feedback polynomials and a sufficiently long segment
of the keystream sequence, in the known-plaintext scenario, are known. The
objective of cryptanalysis is to reconstruct the secret-key-dependent initial states
of LFSR1 and LFSR2 by an algorithm whose complexity can be relatively small
even for large LFSR lengths.

6.1 Basic Attack on LFSR1

Let Y n be a given segment of the keystream sequence and let Xn be the cor-
responding segment of the regularly clocked output sequence of LFSR1 whose
initial state is to be recovered. The basic attack on LFSR1 consists of two stages.

In the first stage, compute the posterior probabilities of individual bits of Xn

by using the probabilistic model in which the input strings are assumed to be
purely random. This is achieved in O(n

√
n) time by applying Theorem 2 from

Section 3.2. The obtained sequence of posterior probabilities, (p̂i)
n
i=1, is a soft-

valued estimate of Xn. A hard estimate, X̄n = (x̄i)
n
i=1, of X

n can be obtained
by applying the maximum posterior probability decision rule for individual bits,
i.e., x̄i = 1 if p̂i > 0.5 and x̄i = 0 otherwise. Therefore

Pr{x̄i 6= xi | Y i} = min (p̂i, 1− p̂i). (32)

The correlation coefficient between x̄i and xi, conditioned on Y i, is then

ci = 1− 2Pr{x̄i 6= xi | Y i} = |1− 2p̂i|. (33)

The analysis conducted in Section 5 shows that the expected value of ci over Y i

slowly decreases approximately like 0.303/ 4
√
i as i increases. So, it remains to be

significantly large even for relatively large i such as i = 10000.
In the second stage, Xn is reconstructed from (p̂i)

n
i=1 by using the LFSR1

linear recursion. Equation (32) means that X̄n can be modeled as a noisy out-
put of a time-varying binary symmetric channel when Xn is applied to its input,
where the errors are approximately independent. As Xn is a codeword of the
corresponding (truncated cyclic) linear block code, the problem of reconstructing
Xn is thus essentially a decoding problem. It can be solved by using parity-check
based iterative probabilistic decoding algorithms for fast correlation attacks on
regularly clocked LFSR’s (e.g., see [11], [12], and [8]). The time-variant correla-
tion coefficient should improve the performance of these attacks.

It is known that the complexity of fast correlation attacks on a regularly
clocked LFSR and the required output string length n mainly depend on the
magnitude of the correlation coefficient and on the degrees and numbers of low-
weight polynomial multiples of the LFSR feedback polynomial (e.g., see [11], [13],
[7], and [8]). Successful fast correlation attacks are reported in [8], for random
feedback polynomials, and in [16], for low-weight feedback polynomials, for the
correlation coefficients as small as 2/15 and 1/16, respectively. For the shrinking
generator, according to Section 5, the expected value of the correlation coefficient



ci is considerably different from zero even if i is relatively large. For example,
this expected value is approximately equal to 1/10, 1/20, 1/35, and 1/50 for
i = 100, 1000, 10000, and 50000, respectively.

Since the expected value of ci slowly decreases as i increases, it is of interest
to keep n reasonably small. To this end, the so-called parity checks with memory
[10] (also see [7]) or the parity checks sharing a given number of bits in common
[14] may be utilized. In conclusion, the second stage of the basic fast correlation
attack on the shrinking generator may be successful for a large class of LFSR1

feedback polynomials.
If an information set decoding (e.g., error-free sliding window) technique is

applied at the end, then the reconstructed string X̂n will satisfy the LFSR1 re-
cursion, but should be tested for correlation with X̄n. Alternatively, one may use
the posterior probability (4) of blocks of LFSR1 bits as a measure of correlation.

6.2 Iterative Attack on LFSR1

The iterative probabilistic decoding algorithms in the second stage of the basic
attack from Section 6.1 iteratively update the posterior probabilities of individual
bits of Xn. Therefore, the basic attack can be (considerably) improved if the
first stage of the attack is incorporated in iterations of the iterative probabilistic
decoding algorithm chosen. For example, we propose an iterative attack whose
first iteration coincides with the basic attack and every subsequent iteration
consists of two stages. First, update the posterior probabilities of individual
bits of Xn by Theorem 1 from Section 3.1 where the posterior probabilities
from the preceding iteration are used as the prior probabilities. Second, update
the posterior probabilities of individual bits of Xn by applying the iterative
probabilistic decoding algorithm.

6.3 Composite Attack on LFSR1

As the posterior probabability p̂i slowly approaches one half as i increases, it
makes sense to divide a longer keystream segment into subsegments of equal
length, to compute the posterior probabilities for the subsegments, and then to
combine these posterior probabilities appropriately.

To this end, consider m overlapping output subsegments Y
jn+2n+τj

jn+1 , 0 ≤
j ≤ m − 1, where τj ≈

√

2(j + 1)n, 0 ≤ j ≤ m − 2, and τm−1 = 0. Compute

2n+ τj posterior probabilities for the corresponding LFSR1 segment X
ij+2n+τj

ij+1 ,
for each 0 ≤ j ≤ m − 1. Here, i0 = 0 and for j > 0, ij is unknown, but is
expected to be around 2jn+1 within an interval of length proportional to

√
2jn.

So, a segment of 2mn posterior probabilities can be composed by guessing ij ,
1 ≤ j ≤ m−1, and by taking the posterior probabilities more different from one
half for the overlapping parts of the LFSR1 subsegments. Additional τj bits for
the j-th subsegment serve to fill in a possible gap between the j-th and (j+1)-th
subsegments. As p̂i slowly changes with i, the method is not sensitive to m− 1
guesses of unknown positions ij .



Finally, a fast correlation attack is run by using the composed segment of
2mn consecutive posterior probabilities. It has to be run for each of about
√

(m− 1)!(2n)(m−1)/2 guesses. For example, n ≤ 20000 and m ≤ 5 are real-
istic choices of the parameters.

6.4 Subsequence Attack on LFSR1

Suppose that the posterior probabilities corresponding to a given keystream
segment Y n are not sufficiently different from one half, because the length n
required for the success of fast correlation attacks explained above is too large.
One can then compute the posterior probabilities for a number of subsequences
of the keystream sequence obtained by discarding the initial segment of vari-
able length until more significant posterior probabilities are obtained. This will
improve the performance of the fast correlation attacks, but the length of the

initial LFSR1 segment has to be guessed. More precisely, if a segment X j′+n−1
j′

of the LFSR1 sequence is reconstructed from the output segment Y j+n−1
j , one

has to make O(
√
2j) guesses around the expected value 2j in order to find the

unknown initial position j ′. The number of tested subsequences is j/δ if one
skips δ − 1 output bits at a time. Testing can be simplified by searching for
relatively unbalanced output subsequences instead of the significant posterior
probabilities.

In particular, one can also search for about r1, not necessarily consecutive,
outstanding posterior probabilities (close to 1/4 or 3/4) and then apply an in-
formation set decoding algorithm to recover the LFSR1 initial state, where the
posterior probability (4) of blocks of LFSR1 bits is used as a measure of cor-
relation. The success of such an algorithm is independent of the LFSR1 feed-
back polynomial, but, according to the information set decoding arguments, the
achievable complexity cannot be smaller than about 20.5 r1 corresponding steps.
This improves the reduced complexity method [9] based on specific subsequences
of the output sequence. Namely, as the class of usable subsequences is effectively
enlarged, the required keystream segment length, around 20.5 r1 , can be consider-
ably reduced. The expression given in [9] is approximative, whereas the accurate
expression for the posterior probabilities is provided by Theorem 2. Moreover,
the need for guessing the length of the initial LFSR1 segment is overlooked in
[9].

6.5 Reinitialization Attack on LFSR1

Suppose that for resynchronization purposes the shrinking generator is reinitial-
ized by bitwise addition of a reinitialization vector to the secret-key-controlled
LFSR initial states, in view of the fact that the nonlinear next-state function
prevents the resynchronization attack [2]. The posterior probabilities of individ-
ual LFSR1 bits produced from the secret-key-controlled initial state can then be
computed for different initialization vectors and all combined into values more
different from one half, so that the corresponding fast correlation attack is easier.



6.6 Attack on LFSR2

After reconstructing a candidate initial state of LFSR1, the initial state of LFSR2

can be recovered by computing the posterior probabilities of individual LFSR2

bits by Theorem 3 from Section 4. More precisely, the posterior probabilities
of individual bits of Cm are computed in O(m2

√
m) time from given Y m and

reconstructed X̂m, m ≤ n. Here, Cm is the corresponding segment of the reg-
ularly clocked output sequence of LFSR2 whose initial state is to be recovered.
As X̂m is assumed to be known, the obtained posterior probabilities are much
more distinguished from one half than in the case of LFSR1. The reconstruction
problem is then much easier and m can be much smaller than n. The posterior
probabilities can be further enhanced by the reinitialization method described
in Section 6.5. Accordingly, the initial state of LFSR2 can be reconstructed by
iterative probabilistic decoding algorithms in the same way as in the basic at-
tack on LFSR1 explained in Section 6.1. Moreover, as the posterior probabilities
can be close to 0 or 1, simple information set decoding algorithms may also be
applicable.

One should repeat the attack on LFSR2 for several small phase shifts, positive
or negative, of the reconstructed LFSR1 sequence until the correct initial states of
both LFSR’s are reconstructed. Note that the number of solutions for the LFSR
initial states is the number of 0’s in a cycle of the LFSR2 sequence preceding
the first clock-control bit equal to 1 (see [15]).

7 Conclusions

The introduced probabilistic analysis of the shrinking generator shows that the
irregularly clocked LFSR’s, unlike a common belief in the open literature, may
be vulnerable to fast correlation attacks. The analysis can be generalized to deal
with arbitrary keystream generators based on clock-controlled LFSR’s.

In order to reconstruct the initial state of the clock-controlled LFSR, LFSR1,
in the shrinking generator, the new idea is to compute the posterior probabilities
of individual bits of the regularly clocked LFSR1 sequence when conditioned
on a given segment of the output sequence. Perhaps surprisingly, a theoretical
analysis indicates that these probabilities can be significantly different from one
half even for relatively long segments of the LFSR1 sequence. Accordingly, the
initial state of LFSR1 may be recovered by a fast correlation attack, applicable
to a regularly clocked LFSR, based on the computed posterior probabilities.
It is known that such an attack can be successful for certain LFSR feedback
polynomials. More sophisticated fast correlation attacks including the iterative
attack, the composite attack, the subsequence attack, and the reinitialization
attack are also proposed.

The initial state of the clock-control LFSR, LFSR2, can be reconstructed in a
similar way, but based on the computed posterior probabilities of individual bits
of the regularly clocked LFSR2 sequence when conditioned on a given segment
of the output sequence and on a segment of the reconstructed LFSR1 sequence.



As these probabilities are more distinguished from one half, the corresponding
fast correlation attack is easier.

Appendix

A Proof of Theorem 1

To prove (10), we start from (7). First, in view of (8), we get

Pr{Y n | xi = 1} =
n
∑

e=0

Pr{Y n, d(Cn) = e | xi = 1}

=

n
∑

e=0

Pr{Y n
n−e+1, Y

n−e, d(Cn) = e | xi = 1}

=

n
∑

e=0

Pr{Y n
n−e+1 | Y n−e, d(Cn) = e, xi = 1}Pi(e, n− e)

=

n
∑

e=0

2−e Pi(e, n− e). (34)

Namely, on the condition that d(Cn) = e, the string Y n
n−e+1 is obtained by

decimating Xn+1 according to Cn+1, where Xn+1 and Cn+1 are mutually inde-
pendent and purely random even when conditioned on xi and Y n−e. Therefore,
under the given conditions, Y n

n−e+1 is uniformly distributed. Similarly, in view
of (9), we have

Pr{Y n} =

n
∑

e=0

2−e P (e, n− e). (35)

Consequently, (7) together with (34) and (35) result in (10).
As for the recursions, we only prove (11), whereas (12) is proved analogously.

For (e, s) 6= (0, 0), (8) results in

Pi(e, s) = Pr{Y s, d(Ce+s) = e | xi = 1, ce+s = 0} · Pr{ce+s = 0 | xi = 1}
+ Pr{Y s, d(Ce+s) = e | xi = 1, ce+s = 1} · Pr{ce+s = 1 | xi = 1}

= Pr{Y s, d(Ce+s−1) = e− 1 | xi = 1, ce+s = 0} · 1
2

+ Pr{Y s, d(Ce+s−1) = e | xi = 1, ce+s = 1} · 1
2
. (36)

Now, as d(Ce+s−1) is independent of ce+s, and Y s is independent of ce+s on
the condition that d(Ce+s−1) = e− 1, we get

Pr{Y s, d(Ce+s−1) = e− 1 | xi = 1, ce+s = 0} =

Pr{Y s, d(Ce+s−1) = e− 1 | xi = 1} = Pi(e− 1, s). (37)



On the other hand, if ce+s = 1 and d(Ce+s−1) = e−1, then ys = xe+s. Thus,
we get

Pr{Y s, d(Ce+s−1) = e | xi = 1, ce+s = 1}
= Pr{xe+s = ys, Y

s−1, d(Ce+s−1) = e | xi = 1, ce+s = 1}
= Pr{xe+s = ys | Y s−1, d(Ce+s−1) = e, xi = 1, ce+s = 1}
·Pr{Y s−1, d(Ce+s−1) = e | xi = 1, ce+s = 1} (38)

= Pr{xe+s = ys | xi = 1}
·Pr{Y s−1, d(Ce+s−1) = e | xi = 1} (39)

= (δi,e+sys + (1− δi,e+s)(yspe+s + (1− ys)(1− pe+s))) · Pi(e, s− 1).

(40)

The first line of (39) follows from the first line of (38) because xe+s is independent
of Ce+s and, on the condition that d(Ce+s−1) = e, it is also independent of Y s−1.
In addition, as d(Ce+s−1) is independent of ce+s and Y s−1 is independent of ce+s

on the condition that d(Ce+s−1) = e, the second line of (39) follows from the
second line of (38).

Equation (11) directly follows from (36), (37), and (40). If e = 0, then the
first term on the right-hand side of (11) is omitted, and if s = 0, then the second
term on the right-hand side of (11) is omitted. The correct values of Pi(1, 0) and
Pi(0, 1) are both obtained from the initial value Pi(0, 0) = 1.

B Proof of Theorem 3

The proof is essentially similar to the proof of Theorem 1, but should be con-
ducted carefully. To prove (24), we start from (22). First, in view of (23), we
get

Pr{Y n | ci = 1, Xn}

=

n
∑

e=0

Pr{Y n, d(Cn) = e | ci = 1, Xn}

=

n
∑

e=0

Pr{Y n
n−e+1, Y

n−e, d(Cn) = e | ci = 1, Xn}

=
n
∑

e=0

Pr{Y n
n−e+1 | Y n−e, d(Cn) = e, ci = 1, Xn}Qi(e, n− e)

=
n
∑

e=0

2−e Qi(e, n− e). (41)

Namely, on the condition that d(Cn) = e, the string Y n
n−e+1 is obtained by

decimating Xn+1 according to Cn+1, where Xn+1 and Cn+1 are mutually inde-
pendent and purely random even when conditioned on ci and Y n−e. Therefore,



under the given conditions, Y n
n−e+1 is uniformly distributed. Note that (3) is

similarly derived from (1). Consequently, (22) together with (41) and (3) result
in (24).

As for the recursions, we note that the proof of (2) is similar to the proof of
(25) given below. For (e, s) 6= (0, 0), (23) results in

Qi(e, s)

= Pr{Y s, d(Ce+s) = e | ci = 1, Xn, ce+s = 0} · Pr{ce+s = 0 | ci = 1, Xn}
+ Pr{Y s, d(Ce+s) = e | ci = 1, Xn, ce+s = 1} · Pr{ce+s = 1 | ci = 1, Xn}

= Pr{Y s, d(Ce+s−1) = e− 1 | ci = 1, Xn, ce+s = 0} · 1
2
(1− δi,e+s)

+ Pr{Y s, d(Ce+s−1) = e | ci = 1, Xn, ce+s = 1} · 1
2
(1 + δi,e+s) (42)

where the conditional probability in the first term is computed only for i 6= e+s.
Now, as d(Ce+s−1) is independent of ce+s, and Y s is independent of ce+s on

the condition that d(Ce+s−1) = e− 1, we get that for i 6= e+ s

Pr{Y s, d(Ce+s−1) = e− 1 | ci = 1, Xn, ce+s = 0}
= Pr{Y s, d(Ce+s−1) = e− 1 | ci = 1, Xn} = Qi(e− 1, s). (43)

On the other hand, if ce+s = 1 and d(Ce+s−1) = e−1, then ys = xe+s. Thus,
we get

Pr{Y s, d(Ce+s−1) = e | ci = 1, Xn, ce+s = 1}
= Pr{xe+s = ys, Y

s−1, d(Ce+s−1) = e | ci = 1, Xn, ce+s = 1}
= Pr{xe+s = ys | Y s−1, d(Ce+s−1) = e, ci = 1, Xn, ce+s = 1}
·Pr{Y s−1, d(Ce+s−1) = e | ci = 1, Xn, ce+s = 1} (44)

= Pr{xe+s = ys | xe+s}
·Pr{Y s−1, d(Ce+s−1) = e | ci = 1, Xn} (45)

= δ(xe+s, ys) ·Qi(e, s− 1). (46)

The first line of (45) follows from the first line of (44) as xe+s is contained in
Xn. In addition, as d(Ce+s−1) is independent of ce+s and Y s−1 is independent
of ce+s on the condition that d(Ce+s−1) = e, the second line of (45) follows from
the second line of (44).

Equation (25) directly follows from (42), (43), and (46). If e = 0, then the
first term on the right-hand side of (25) is omitted, and if s = 0, then the second
term on the right-hand side of (25) is omitted. The correct values of Qi(1, 0) and
Qi(0, 1) are both obtained from the initial value Qi(0, 0) = 1.
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