
The Order of Encryption and Authentication
for Protecting Communications

(Or: How Secure is SSL?)?

Hugo Krawczyk??

Abstract. We study the question of how to generically compose sym-

metric encryption and authentication when building “secure channels”
for the protection of communications over insecure networks. We show
that any secure channels protocol designed to work with any combina-
tion of secure encryption (against chosen plaintext attacks) and secure
MAC must use the encrypt-then-authenticate method. We demonstrate
this by showing that the other common methods of composing encryp-
tion and authentication, including the authenticate-then-encrypt method
used in SSL, are not generically secure. We show an example of an en-
cryption function that provides (Shannon’s) perfect secrecy but when
combined with any MAC function under the authenticate-then-encrypt
method yields a totally insecure protocol (for example, finding passwords
or credit card numbers transmitted under the protection of such protocol
becomes an easy task for an active attacker). The same applies to the
encrypt-and-authenticate method used in SSH.
On the positive side we show that the authenticate-then-encrypt method
is secure if the encryption method in use is either CBC mode (with an
underlying secure block cipher) or a stream cipher (that xor the data
with a random or pseudorandom pad). Thus, while we show the generic
security of SSL to be broken, the current practical implementations of
the protocol that use the above modes of encryption are safe.

1 Introduction

The most widespread application of cryptography in the Internet these days is
for implementing a secure channel between two end points and then exchanging
information over that channel. Typical implementations first call a key-exchange
protocol for establishing a shared key between the parties, and then use this
key to authenticate and encrypt the transmitted information using (efficient)
symmetric-key algorithms. The three most popular protocols that follow this
approach are SSL [11] (or TLS [9]), IPSec [18, 19] and SSH [27]. In particular,
SSL is used to protect a myriad of passwords, credit card numbers, and other
sensitive data transmitted between Web clients and servers, and is used to secure
many other applications. IPSec is the standard for establishing a secure channel
between any two IP entities for protecting information at the network layer.

? A full version of this paper can be found in [21].
?? EE Department, Technion, Haifa, Israel. Email: hugo@ee.technion.ac.il

As said, all these protocols apply both symmetric authentication (MAC) and
encryption to the transmitted data. Interestingly, each of these three popular
protocols have chosen a different way to combine authentication and encryption.
We describe these three methods (here x is a message; Enc(·) is a symmetric
encryption function; Auth(·) is a message authentication code; and ‘,’ denotes
concatenation — in this notation the secret keys to the algorithms are implicit):

SSL: a = Auth(x), C = Enc(x, a), transmit C

IPSec: C = Enc(x), a = Auth(C), transmit (C, a)

SSH: C = Enc(x), a = Auth(x), transmit (C, a).

We refer to these three methods as authenticate-then-encrypt (abbreviated AtE),
encrypt-then-authenticate (EtA), and encrypt-and-authenticate (E&A), respec-
tively.

This disparity of choices reflects lack of consensus in the cryptography and
security communities as for the right way to apply these functions. But is there
a “right way”, or are all equally secure? Clearly, the answer to this question
depends on the assumptions one makes on the encryption and authentication
functions. However, since protocols like the above are usually built using crypto-
graphic functions as replaceable modules, the most useful form of this question is
obtained by considering both functionalities, encryption and authentication, as
generic cryptographic primitives with well defined (and independent from each
other) properties. Moreover, we want these properties to be commonly achieved
by the known efficient methods of symmetric encryption and authentication, and
expected to exist in future practical realizations of these functions as well.

Specifically, we consider generic MAC functions secure against chosen-messa-
ge attacks and generic symmetric encryption functions secure against chosen-
plaintext attacks. These security properties are the most common notions used
to model the security of these cryptographic primitives. In particular, chosen-
message security of the authentication function allows to use the MAC in the
above protocols independently of the encryption in cases where only integrity
protection is required but not secrecy. As for encryption, chosen-plaintext secu-
rity is the most common property under which encryption modes are designed
and analyzed. We note that a stronger property of encryption is resistance to
chosen-ciphertext attacks; while this property is important against active at-
tacks it is NOT present in the prevalent modes of symmetric encryption (such
as in stream ciphers or CBC mode even when the underlying block cipher is
chosen-ciphertext secure) and therefore assuming this strong property as the
basic secrecy requirement of the encryption function would exclude the use of
such standard efficient mechanisms.

Rather than just studying the above ways of composing encryption and au-
thentication as a stand-alone composed primitive, our focus is on the more com-
prehensive question of whether these methods provide for truly secure commu-
nications (i.e., secrecy and integrity) when embedded in a protocol that runs in
a real adversarial network setting (where links are controlled by the attacker,

where some of the parties running the protocol may be corrupted, where multiple
security sessions are run simultaneously and maliciously interleaved, etc.).

Recent results. In a recent work, Canetti and Krawczyk [8] describe a model
of secure channels that encompasses both the initial exchange of a key between
pairs of communicating parties and the use of the resultant shared key for the
application of symmetric encryption and authentication on the transmitted data.
The requirements made from secure channels in this model include protecting the
data’s integrity (in the sense of simulating ideally authenticated channels) and
secrecy (in the sense of plaintext indistinguishability) in the presence of a net-
work attacker with powerful and realistic abilities of the type mentioned above. A
main result in [8] is that if the key is shared securely then applying to the data
the encrypt-then-authenticate method achieves secure channels provided that
the encryption function is semantically secure (or plaintext-indistinguishable)
under a chosen-plaintext attack and the authentication function is a MAC that
resists chosen message attacks. This provides one important answer to the ques-
tions raised above: it proves that encrypt-then-authenticate is a generically secure
method for implementing secure channels.

Our results. In this paper we complement the above result on the encrypt-
then-authenticate method with contrasting results on the other two methods.

The generic insecurity of AtE. We show that the authenticate-then-
encrypt method (as in SSL) is not generically secure under the sole assumption
that the encryption function is secure against chosen plaintext attacks and the
MAC secure against chosen message attacks. We show an example of a simple
encryption function that enjoys perfect (in the sense of Shannon) secrecy against
chosen plaintext attacks and when combined under the AtE method with any
MAC (even a perfect one) results in a totally breakable implementation of se-
cure channels. To illustrate the insecurity of the resultant scheme we show how
passwords (and credit card numbers, etc) transmitted under such a method can
be easily discovered by an active attacker that modifies some of the information
on the links. A major issue to highlight here is that the attack is not against
the authenticity of information but against its secrecy! This result is particu-
larly unfortunate in the case of SSL where protection of this form of sensitive
information is one of the most common uses of the protocol.

The generic insecurity of E&A. The above example is used also to demon-
strate the insecurity of the encrypt-and-authenticate method (as in SSH) where
the same attack (and consequences) is possible. It is worth noting that the E&A

is obviously insecure if one uses a MAC function that leaks information on the
data. However, what our attack shows is that the method is not generically se-
cure even if one assumes a stronger MAC function with secrecy properties as
commonly used in practice (e.g. a MAC realized via a pseudorandom family or
if the MAC’s tag itself is encrypted).

The security of AtE with specific encryption modes. This paper
does not bring just bad news. We also show that the authenticate-then-encrypt
method is secure under two very common forms of encryption: CBC mode (with
an underlying secure block cipher) and stream ciphers (that xor the data with

a random or pseudorandom pad). We provide a (near optimal) quantified secu-
rity analysis of these methods. While these positive results do not resolve the
“generic weakness” of the authenticate-then-encrypt method (and of SSL), they
do show that the common implementations currently in use do result in a secure
channels protocol.

In conjunction, these results show a quite complete picture of the security
(and lack of security) of these methods. They point to the important conclu-
sion that any secure channels protocol designed to work with any combination of
secure encryption (against chosen plaintext attacks) and secure MAC must use
the encrypt-then-authenticate method. On the other hand, protocols that use
the authenticate-then-encrypt method with encryption in either stream cipher
or CBC modes are safe. However, we note the fragility of this last statement:
very simple (seemingly innocuous) changes to the encryption function, including
changes that do not influence the secrecy protection provided by the encryption
when considered as a stand-alone primitive, can be fatal for the security of the
implemented channels. This is illustrated by our example of a perfect cipher
where the sole use of a simple encoding before encryption compromises the se-
curity of the transmitted data, or by the case of CBC encryption where the join
encryption of message and MAC results in a secure protocol but separate en-
cryption of these elements is insecure. Thus, when using a non-generically secure
method one has to be very careful with any changes to existing functions or with
the introduction of new encryption mechanisms (even if these mechanisms are
secure as stand-alone functions).

Open question. Our results demonstrate that chosen-plaintext security is not a
sufficient condition for an encryption scheme to guarantee a secure authenticate-
then-encrypt composition even if the MAC is secure. An interesting open ques-
tion is to find a stronger property that is enjoyed by common modes of encryption
but at the same time is sufficient to ensure the security of the authenticate-then-
encrypt method when combined with a secure MAC. Note that we are looking
for a property that is significantly weaker than chosen-ciphertext security since
the latter is not achieved by most symmetric encryption modes, but also because
our results show that this condition is not really necessary.

Related work. While the interaction between symmetric encryption and au-
thentication is a fundamental issue in the design of cryptographic protocols, this
question seems to have received surprisingly little explicit attention in the cryp-
tographic literature until very recently. In contrast, in the last year we have seen
a significant amount of work dealing with this and related questions.

We already mentioned the work by Canetti and Krawczyk [8] that estab-
lishes the security of the encrypt-then-authenticate method for building secure
channels. Here, we use this result (and some extensions of it) as a basis to de-
rive some of our positive results. In particular, we borrow from that paper the
formalization of the notion of secure channels; a short outline of this model is
presented in Section 2.3 but the reader is referred directly to [8] for the (many
missing) details.

A recent, independent, work that deals directly with the ordering of generic
encryption and authentication is Bellare and Namprempre [5]. They study the
same three forms of composition as in this paper but focus on the properties
of the composed function as a stand-alone composed primitive rather than in
the context of its application to secure channels as we do. The main contribu-
tion of [5] is in providing careful quantitative relations and reductions between
different methods and security notions related to these forms of composition.
These results, however, are insufficient in general for claiming the security, or
demonstrating the insecurity, of channels that use these methods for protecting
data. For example, while [5] show that authenticate-then-encrypt is not neces-
sarily CCA-secure, it turns out (by results in [8] and here) that the lack of this
property is no reason to consider insecure the channels that use such a method
(moreover, even the specific non-CCA example in [5] does provide secure chan-
nels). This demonstrates that the consideration of secure channels requires a
finer treatment of the question of encryption/authentication composition (see
discussion at the beginning of Section 4.2). In particular, none of our results is
claimed or implied by [5].

A related subject that received much attention recently is the construction of
encryption modes that provide integrity in addition to secrecy. Katz and Yung
[16] suggest a mode of operation for block ciphers that provides such functional
combination; for their analysis (and for its independent interest) they introduce
the notion of “unforgeable encryption”. A very similar notion is also introduced
in [5] and called there “integrity of ciphertexts” (INT-CTXT). We use this notion
in our work too (see Section 3) as a tool in some of our proofs. In another
recent work, An and Bellare [1] study the use of redundancy functions (with
and without secret keys) as a method for adding authentication to encryption
functions. They show several positive and negative results about the type of
redundancy functions that are required in combination with different forms of
encryption and security notions. Our results concerning the authenticate-then-
encrypt method with stream ciphers and CBC modes contribute also to this
research direction since these results provide sufficient and necessary conditions
on the redundancy functions (viewed as MAC functions) required for providing
integrity to these important modes of encryption. Of particular interest is our
proof that a secure AtE composition that uses CBC encryption requires a strong
underlying MAC; this contradicts a common intuition that (since the message
and MAC are encrypted) weaker “redundancy functions” could replace the full-
fledge MAC.

Recently, Jutla [15] devised an elegant CBC-like scheme that provides in-
tegrity at little cost beyond the traditional CBC method, as well as a parallel
mode of encryption with integrity guarantee (a related scheme is presented in
[26]). We note that while schemes such as [15] can be used to efficiently imple-
ment secure channels that provide secrecy and authenticity, generic schemes like
encrypt-then-authenticate have several design and analysis advantages due to
their modularity and the fact that the encryption and authentication compo-
nents can be designed, analyzed and replaced independently of each other. In

particular, generic schemes can allow for faster implementations than the spe-
cific ones; even today the combination of fast stream ciphers with a fast MAC
function such as UMAC [6] under the encrypt-then-authenticate method would
result in a faster mechanism than the one proposed in [15] which requires the
use of block ciphers. Also, having a separate MAC from encryption allows for
much more efficient authentication in the cases where secrecy is not required.

2 Preliminaries

We informally outline some well-known notions of security for MAC and en-
cryption functions as used throughout the paper, and introduce some notation.
References are given below for formal treatment of these notions. We also sketch
the model of “secure channels” from [8].

2.1 Secure message authentication.

Functions that provide a way to verify the integrity of information (for example,
against unauthorized changes over a communications network) and which use
a shared secret key are called MAC (message authentication codes). The notion
of a MAC and its security definition is well understood [4]. Here we outline the
main ingredients of this definition as used later in the paper.
A MAC scheme is described as a family of (deterministic) functions over

a given domain and range. (We will usually assume the domain to be {0, 1}∗

and the range {0, 1}n for fixed size n.). The key shared by the parties that use
the MAC scheme determines a specific function from this family. This specific
function is used to compute an authentication tag on each transmitted message
and the tag is appended to the message. A recipient of the information that
knows the MAC key can re-compute the tag on the received message and compare
to the received tag. Security of a MAC scheme is defined through the inability of
an attacker to produce a forgery, namely, to generate a message, not transmitted
between the legitimate parties, with its valid authentication tag. The formal
definition of security provides the attacker with access to a MAC oracle OMAC

that on input a message x outputs the authentication tag corresponding to that
message. The oracle uses for its responses a key that is generated according to
the probability distribution of keys defined by the MAC scheme. The attacker
succeeds if after this interaction with the oracle it is able to find a forgery (for a
message not previously queried). To quantify security we say that a MAC scheme
has security EM (q,Q, T) if any attacker that works time T and asks q queries
from OMAC involving a total of Q bits has probability at most EM (q,Q, T) to
produce a forgery.

Remark. In the case of MAC functions (e.g., randomized ones) where there
may be multi-valued valid tags for the same message, we extend the definition of
security as follows. If the messages queried to OMAC are x1, x2, . . . , xq and the
responses from OMAC are t1, t2, . . . , tq then a forgery (x, t) output by the attacker
is considered valid if (x, t) 6= (xi, ti) for all i = 1, . . . , q. (Namely, we consider the
attacker successful even in case its forgery includes a queried message as long

as the tag t was not generated by the oracle for that message.) This technical
strengthening of the definition is used in some of our results. This notion appears
(due to similar reasons) also in [5].

2.2 Secure symmetric encryption

We do not develop a formal definition of encryption security here as the subject
is well established and treated extensively in the literature. Yet, we summarize
informally the main aspects of the security notions of symmetric encryption that
are relevant to our work and establish some notation. For formal and precise
definitions see the references mentioned below.
An encryption scheme is a triple of (probabilistic) algorithms (KEYGEN,ENC,

DEC) where KEYGEN defines the process (and resultant probability distribu-
tion) by which keys are generated, while ENC and DEC are the encryption and
decryption operations with the usual inverse properties. To simplify notation
we use ENC to denote the encryption operation itself but also as representing
the whole scheme (i.e., a triple as above). The main notion behind the common
definitions of security of encryption is semantic security [13], or its (usually)
equivalent formulation via plaintext indistinguishability. In this formulation an
attacker against a scheme ENC is given a target ciphertext y and two candidate
plaintexts x1, x2 such that y = ENC(xi), i ∈R {0, 1}.

1 The encryption scheme
has the indistinguishability property if the attacker cannot guess the right value
of i with probability significantly better than 1/2. The security of the scheme is
quantified via the time invested by the attacker and the probability beyond 1/2
to guess correctly.
The above describes the goal of the attacker but not the ways of attack it

is allowed to use. Two common models of attack are CPA (chosen plaintext
attack) and CCA (chosen ciphertext attack). In the first the attacker has access
to an encryption oracle OENC to which it can present plaintexts and receive the
ciphertexts resulting from the encryption of these plaintexts. In the second model
the attacker can, in addition to the above queries to the encryption oracle, also
ask for decryptions of arbitrary ciphertexts (except for the target ciphertext
y) from a decryption oracle ODEC. We note that both OENC and ODEC use
the same key for their responses which is also the key under which the target
ciphertext y, as described above, is produced. In both cases the queries to the
oracles can be generated adaptively by the attacker, i.e. as a function of previous
responses from the oracles and of the target ciphertext y (actually, also the
candidate plaintexts x1, x2 on which the target ciphertext y is computed can
be chosen by the attacker). Under these formulations two new parameters enter
the quantification of security: the number of queries to OENC and the number
of queries to ODEC (the latter is 0 in the case of CPA). A finer quantification
would also consider the total number of bits in these queries.
As it is customary we denote the above two notions of encryption security

as IND-CPA and IND-CCA. Extensive treatment of these notions can be found

1 We use the notation a ∈R A to denote that the element a is chosen with uniform
probability from the set A.

among other works in [13, 12, 2] and [24, 3, 17], respectively. A notion strongly
related to IND-CCA is non-malleability of ciphertexts [10] which we do not use
directly here; a weaker notion of CCA security was introduced earlier in [23].
We also note that we are only concerned with symmetric encryption; asymmet-
ric encryption shares many of the same aspects but there are some important
differences as well (in particular, in the asymmetric case encryption oracles are
meaningless since everyone can encrypt at will any plaintext).

2.3 Secure Channels

In order to claim our positive results, i.e. that a certain combination of en-
cryption and authentication provides secure communications, we need to define
what is meant by such “secure communications”. For this we use the model of
secure channels introduced by Canetti and Krawczyk [8] and which is intended
to capture the standard network-security practice in which communications over
public networks are protected through “sessions” between pairs of communicat-
ing parties, and where each session consists of two stages. First, the two parties
run a key-exchange protocol that establishes an authenticated and secret session
key shared between the parties. Then, in the second stage, this session key is
used, together with symmetric-key cryptographic functions, to protect the in-
tegrity and/or secrecy of the transmitted data. The formalism of [8] involves
the definition of a key-exchange protocol for implementation of the session and
key establishment stage, as well as of two functions, snd and rcv, that define
the actions applied to transmitted data for protection over otherwise insecure
links. A protocol that follows this formalism is called in [8] a “network channels
protocol”, and its security is defined in terms of authentication and secrecy.
These notions are defined in [8] in the context of communications controlled

by an attacker with full control of the information sent over the links and with the
capability of corrupting sessions and parties. We refer to the full version of [8] for
a full description of the adversarial model and security definitions. Here we only
mention briefly the main elements in this definition concerning the functions snd
and rcv. The function snd represents the operations and transformations applied
to a message by its sender in order to protect it from adversarial action over
the communication links. Namely, when a message m is to be transmitted from
party P to party Q under a session s established between these parties, the
function snd is applied to m and, possibly, to additional information such as a
message identifier. The definition of snd typically consists of the application of
some combination of a MAC and symmetric encryption keyed via the session
key. The function rcv describes the action at the receiving end for “decoding”
and verifying incoming messages, and it typically involves the verification of a
MAC and/or the decryption of an incoming ciphertext.
Roughly speaking, [8] define that authentication is achieved by the protocol if

any message decoded and accepted as valid by the receiving party to a session was
indeed sent by the partner to that session. (That is, any modification of messages
produced by the attacker over the communications links, including the injection
or replay of messages, should be detected and rejected by the recipient; in [8] this
is formalized as the “emulation” of an ideally-authenticated channel.) Secrecy

is formalized in the tradition of semantic security: among the many messages
exchanged in a session the attacker chooses a pair of “test messages” of which
only one is sent; the attacker’s goal is to guess which one was sent. Security
is obtained if the attacker cannot guess correctly with probability significantly
greater than 1/2. A network channels protocol is called a secure channels protocol
if it achieves both authentication and secrecy in the sense outlined above.
In this paper we focus on the way the functions snd and rcv are to be defined

to achieve secure channels, i.e. to provide both authentication and secrecy in
the presence of an attacker as above. We say that any of the combinations
EtA,AtE,E&A implements secure channels if when used as the specification of
the snd and rcv functions the resultant protocol is a “secure channels protocol”.
Note that we are not concerned here with a specific key-exchange mechanism,
but rather assume a secure key-exchange protocol [8], and may even assume an
“ideally shared” session key.

3 CUF-CPA: Ciphertext Unforgeability

In addition to the traditional notions of security for an encryption scheme out-
lined in Section 2.2 we use the following notion of security that we call ciphertext
unforgeability. A similar notion has been recently (and independently) used in
[16, 5] where it is called “existential unforgeability of encryption” and “integrity
of ciphertexts (INT-CTXT)”, respectively.
Let ENC be a symmetric encryption scheme, and k be a key for ENC. Let

P (k) be the set of plaintexts on which ENCk is defined, and C(k) be the set
of ciphertexts {y : ∃x ∈ P (k) s.t. y = ENCk(x)} (note that if ENC is not
deterministic then by y = ENCk(x) we mean that there is a run of ENC on x that
outputs y). We call C(k) the set of valid ciphertexts under key k. For example,
under a block cipher only strings of the block length are valid ciphertexts while
in the basic CBC mode only strings that are multiples of the block length can be
valid ciphertexts. We assume that the decryption oracle ODEC outputs a special
“invalidity symbol” ⊥ when queried with an invalid ciphertext (and otherwise
outputs the unique decrypted plaintext x).
We say that an encryption scheme is ciphertext unforgeable, and denote it

CUF-CPA, if it is infeasible for any attacker F (called a “ciphertext forger”)
that has access to an encryption oracle OENC with key k to produce a valid
ciphertext under k not generated by OENC as response to one of the queries by F .
More precisely, we quantify ciphertext unforgeability by the function EU (q,Q, T)
defined as the maximal probability of success for any ciphertext forger F that
queries q plaintexts totalling Q bits and spends time T in the attack. We stress
that this definition does not involve access to a decryption oracle and thus its
name CUF-CPA (this is consistent with other common notations of the form
X-Y where X represents the goal of the attacker and Y the assumed abilities of
the attacker).
Our main use of the CUF-CPA notion is for proving (see Section 5) that

under certain conditions the AtE composition is secure, i.e., it implements secure

channels. However, the notion of CUF-CPA while sufficient for our purposes is
actually stronger than needed. For example, any scheme ENC that allows for
arbitrary padding of ciphertexts to a length-boundary (e.g., to a multiple of
8-bits) will not be CUF-CPA (since given a ciphertext with padded bits any
change to these bits will result in a different yet valid ciphertext). However,
such a scheme may be perfectly secure in the context of implementing secure
channels (see [8]); moreover, schemes of this type are common in practice. Thus,
in order to avoid an artificial limitation of the schemes that we identify as secure
for implementing secure channels we present next a relaxation of the CUF-CPA
notion that is still sufficient for our purposes (we stress that this is not necessarily
the weakest relaxation for this purpose and other weakenings of the CUF-CPA
notion are possible).

Let ρ be a polynomial-time computable relation on pairs of ciphertexts com-
puted under the encryption function ENC with the property that ρ(c, c′) implies
that c and c′ decrypt to the same plaintext. Then we say that the encryption
scheme ENC is CUFρ-CPA if for any valid ciphertext c that the attacker can fea-
sibly produce there exists a ciphertext c′ output by the encryption oracle such
that ρ(c, c′). When the relation ρ is not explicitly described we will refer to this
notion as loose ciphertext unforgeability.

For instance, in the above example of a scheme that allows for arbitrary
padding of ciphertexts, if one defines ρ(c, c′) to hold if c and c′ differ only on the
padding bits, then the scheme can achieve CUFρ-CPA. We note that while CUF-
CPA implies CCA-security, loose CUF-CPA does not (as the above “padding
example” shows). Indeed, as we pointed out in the introduction (see also Sec-
tion 4.2) CCA-security is not a necessary condition for a MAC/encryption com-
bination to implement secure channels.

4 Generic composition of encryption and authentication

In this section we study the security of the three methods, EtA,AtE,E&A, under
generic symmetric encryption and MAC functions where the only assumption is
that the encryption is IND-CPA and the MAC is secure against chosen mes-
sage attacks. Our focus is on the appropriateness of these methods to provide
security to transmitted data in a realistic setting of adversarially-controlled net-
works. In other words, we are interested in whether each one of these methods
when applied to adversarially-controlled communication channels achieve the
goals of information secrecy and integrity. As we will see only the encrypt-then-
authenticate method is generically secure.

4.1 The known security of encrypt-then-authenticate

The results in this subsection are from [8] and we present them briefly for com-
pleteness. We refer the reader to that paper for details. In particular, in the
statement of the next theorem we use the notion of “secure channels” as intro-
duced in the above paper and sketched in Section 2.3.

Theorem 1. [8] If ENC is a symmetric encryption scheme secure in the sense
of IND-CPA and MAC is a secure MAC family then method EtA(ENC,MAC)
implements secure channels.

Following our terminology from Section 2.3, the meaning of the above theorem
is that if in the network channels model of [8] one applies to each transmitted
message the composed function EtA(ENC,MAC) (as the snd function) then the
secrecy and authenticity of the resultant network channels is guaranteed. More
precisely, in proving the above theorem, [8] specify the snd function as follows.
First, a pair of (computationally independent) keys, κa and κe, are derived
from each session key. Then, for each transmitted message, m, a unique message
identifier m-id is chosen (e.g., a sequence number). Finally, the function snd
produces a triple (x, y, z) where x = m-id, y = ENCκe

(m), z = MACκa
(m-id, y).

On an incoming message (x′, y′, z′) the rcv function verifies the uniqueness of
message identifier x′ and the validity of the MAC tag z (computed on (x′, y′));
if the checks succeeds y′ is decrypted under key κe and the resultant plaintext
accepted as a valid message.2

A main contribution of the present paper is in showing (see next subsec-
tions) that a generic result as in Theorem 1 cannot hold for any of the other two
methods, AtE and E&A (even if the used keys are shared with perfect security).
Therefore, any secure channels protocol designed to work with any combination
of secure encryption (against chosen plaintext attacks) and secure MAC must
use the encrypt-then-authenticate method. However, we note in Section 5 that
the above theorem can be extended in the setting of method AtE if one as-
sumes a stronger property on the encryption function; in particular, we show
two important cases that satisfy the added security requirement.

Remark. Note that the authentication of the ciphertext provides plaintext
integrity as long as the encryption and decryption keys used at the sender and
receiver, respectively, are the same. While this key synchrony is implicit in our
analytical models [8], a key mismatch can happen in practice. A system con-
cerned with detecting such cases can check the plaintext for redundancy in-
formation (such redundancy exists in most applications: e.g., message formats,
non-cryptographic checksums, etc.). If the redundancy entropy is significant then
a key mismatch will corrupt this redundancy with high probability.

4.2 Authenticate-then-encrypt is not generically secure

Here we show that the authenticate-then-encrypt method AtE(ENC,MAC) is not
guaranteed to be secure for implementing secure channels even if the function
ENC is IND-CPA and MAC provides message unforgeability against chosen mes-
sage attacks. First, however, we discuss shortly why this result does not follow
from [5] where it is shown that the AtE composition (viewed as an encryp-
tion scheme) does not necessarily provide IND-CCA. The reason is simple: as

2 Protocols that use a synchronized counter as the message identifier, e.g. SSL, do not
need to transmit this value; yet they must include it under the MAC computation
and verification. If transmitted, identifiers are not encrypted under ENCκe

since
they are needed for verifying the MAC value before the decryption is applied.

demonstrated in [8] IND-CCA is not a necessary condition for a combination of
encryption and MAC functions to implement secure channels. An example is pro-
vided by the main construction of secure channels in [8] (see Theorem 1): if the
MAC used in this scheme enjoys regular MAC security, rather than the strength-
ened notion described in the last remark of Section 2.1, then this construction
guarantees secure channels but not necessarily CCA security. (For example, if
the MAC function has the property that flipping the last bit of an authentication
tag does not change the validity of the tag, then the scheme in [8] is not IND-
CCA yet it suffices for implementing secure channels. For a similar example, see
remark on “multi-valued MAC” following our Theorem 3.) Moreover, the spe-
cific example from [5] of a non-CCA AtE(ENC,MAC) scheme3 can by itself be
used to show an example of a non-CCA scheme that provably provides secure
channels. Therefore, the result in [5] does not say anything about the suitability
of AtE(ENC,MAC) for implementing secure channels; it rather points out to the
fact that while CCA security is a useful security notion it is certainly too strong
for some (fundamental) applications such as secure channels.
Thus if we want to establish the insecurity of authenticate-then-encrypt chan-

nels under generic composition we need to show an explicit example and a suc-
cessful attack. We provide such example now. In this example the encryption
scheme is IND-CPA (actually, it enjoys “perfect secrecy” in the sense of Shan-
non) but when combined with any MAC function under the AtE method the
secrecy of the composed scheme breaks completely under an active attack.

The encryption function ENC ∗. We start by defining an encryption scheme
ENC ∗ that can be based on any stream cipher ENC (i.e. any encryption function
that uses a random or pseudorandom pad to xor with the data). The scheme
ENC ∗ preserves the IND-CPA security of the underlying scheme ENC. In par-
ticular, if ENC has perfect secrecy (i.e., uses a perfect one-time pad encryption)
so does ENC ∗. Next, we define ENC ∗.
Given an n-bit plaintext x (for any n), ENC ∗ first applies an encoding of x into
a 2n-bit string x′ obtained by representing each bit xi, i = 1, . . . , n, in x with
two bits in x′ as follows:

1. if bit xi = 0 then the pair of bits (x
′

2i−1, x
′

2i) is set to (0, 0);
2. if bit xi = 1 then the pair of bits (x

′

2i−1, x
′

2i) is set to (0, 1) or to (1, 0) (by
arbitrary choice of the encrypting party).

The encryption function ENC is then applied to x′. For decrypting y = ENC ∗(x)
one first applies the decryption function of ENC to obtain x′ which is then
decoded into x by mapping a pair (0, 0) into 0 and either pair (0, 1) or (1, 0) into
1. If x′ contains a pair (x′2i−1, x

′

2i) that equals (1, 1) the decoding outputs the
invalidity sign ⊥.

The attack when only encryption is used. For the sake of presentation
let’s first assume that only ENC ∗ is applied to the transmitted data (we will then
treat the AtE case where a MAC is applied to the data before encryption). In

3 Just append an arbitrary one-bit pad to the ciphertext and discard the bit before
decryption.

this case when an attacker A sees a transmitted ciphertext y = ENC ∗(x) it can
learn the first bit x1 of x as follows. It intercepts y, flips (from 0 to 1 and from
1 to 0) the first two bits (y1, y2) of y, and sends the modified ciphertext y

′ to its
destination. If A can obtain the information of whether the decryption output
a valid or invalid plaintext then A learns the first bit of x. This is so since, as
it can be easily seen, the modified y′ is valid if and only if x1 = 1. (Remember
that we are using a stream cipher to encrypt x′.) Clearly, this breaks the secrecy
of the channel (note that the described attack can be applied to any of the bits
of the plaintext). One question that arises is whether it is realistic to assume
that the attacker learns the validity or invalidity of the ciphertext. The answer
is that this is so for many practical applications that will show an observable
change of behavior if the ciphertext is invalid (in particular, many applications
will return an error message in this case).

To make the point even clearer consider a protocol that transmits passwords
and uses ENC ∗ to protect passwords over the network (this is, for example, one
of the very common uses of SSL). The above attack if applied to one of the
bits of the password (we assume that the attacker knows the placement of the
password field in the transmitted data) will work as follows. If the attacked bit
is 1 then the password authentication will succeed in spite of the change in the
ciphertext. If it is 0 the password authentication will fail. In this case success or
failure is reported back to the remote machine and then learned by the attacker.
In applications where the same password is used multiple times (again, as in
many applications protected by SSL) the attacker can learn the password bit-
by-bit. The same can be applied to other sensitive information such as to credit
card numbers where a mistake in this number will be usually reported back and
the validity/invalidity information will be learned by A.

The attack against the AtE(ENC ∗,MAC) scheme. Consider now the case
of interest for us in which the encryption is applied not just to the data but also
to a MAC function computed on this data. Does the above attack applies? The
answer is YES. The MAC is applied to the data before encoding and encryption
and therefore if the original bit is 1 the change in ciphertext will result in the
same decrypted plaintext and then the MAC check will succeed. Similarly, if the
original bit is 0 the decrypted plaintext will have a 1 instead and the MAC will
fail. All the attacker needs now is the information of whether the MAC succeeded
or not. Note that in a sense the MAC just makes things worse since regardless
of the semantics of the application a failure of authentication is easier to learn
by the attacker: either via returned error messages, or by other effects on the
application that can be observed by the attacker.

Discussion: what have we learned? The example using ENC ∗ is certainly
sufficient to show that the method AtE can be insecure even if the encryption
function is IND-CPA secure and the MAC unforgeable (note that this conclu-
sion does not depend on any specific formalization of secure communications;
any reasonable definition of security must label the above protocol as insecure).
Therefore, if one wants to claim the security of AtE(ENC,MAC) for particular
functions ENC and MAC one needs to analyze the combination as a whole or

use stronger or specific properties of the encryption function (see Section 5). An
interesting issue here is how plausible it is that people will ever use an encryp-
tion scheme such as ENC ∗. We note that although this scheme does not appear
to be the most natural encryption mechanism some (equally insecure) variants
of it may arise in practice. First the application of an encoding to a plaintext
before encryption is used many times for padding and other purposes and is a
particularly common practice in public key encryption algorithms. Second, en-
codings of this type can be motivated by stronger security requirements: e.g. to
prevent an attacker from learning the exact length of transmitted messages or
other traffic analysis information. In this case one could use an encoding similar
to ENC ∗ but with variable size codes. (Just to make the point: note that a good
example of traffic analysis arises in the above examples where the attacker has a
lot to learn from error-reporting messages; even in cases where this information
is encrypted it can usually be learned through the analysis of packet lengths,
etc.) Another setting where plaintext encoding is introduced in order to improve
security is for combating timing and power analysis attacks.

The bottom line is that it is highly desirable to have schemes that are robust
to generic composition and are not vulnerable when seemingly innocuous changes
are made to an algorithm (or when a new more secure or more efficient algorithm
or mode is adopted)4.

4.3 Encrypt-and-authenticate is not generically secure

The first observation to make regarding the encrypt-and-authenticate method is
that under the common requirements from a MAC function this method cannot
guarantee the protection of secrecy (even against a passive eavesdropper). This
is so since a MAC can be secure against forgeries but still leak information on the
plaintext. Thus, the really interesting question is whether the method becomes
secure if we avoid this obvious weakness via the use of a “secrecy protecting”
MAC such as one implemented via a pseudorandom function or when the MAC
tag is encrypted (most, if not all, MAC functions used in practice are believed to
protect secrecy). Unfortunately, however, the attack from the previous section
applies here too, thus showing the (generic) insecurity of the E&A method even
under the above stronger forms of MAC. (See also last remark in Section 5.2.)

5 Authenticate-then-encrypt with CBC and OTP modes

In Section 4.2 we saw that authenticate-then-encrypt cannot guarantee secure
channels under the sole assumption that the encryption function is IND-CPA,
even if the MAC function is perfectly secure. In this section we prove that for
two common modes of encryption, CBC (with a secure underlying block cipher)
and OTP (stream ciphers that xor data with a (pseudo) random pad), the AtE

mode does work for implementing secure channels.
4 See the last remark in Section 5.2 for another example where seemingly harmless
changes transform a secure protocol into an insecure one.

5.1 A sufficient condition for the security of AtE

We start by pointing out to the following Theorem that can be proven in the
security model of [8] (see Section 2.3).

Theorem 2. (derived from [8]) Let ENC be an IND-CPA encryption function
and MAC a MAC function. If the composed function AtE(ENC,MAC), consid-
ered as an encryption scheme, is (loose) CUF-CPA, then AtE(ENC,MAC) im-
plements secure channels.

That is, under the assumptions on the ENC and MAC functions as stated in
the Theorem, applying the function AtE(ENC,MAC) to information transmit-
ted over adversarially-controlled links protects the secrecy and integrity of this
information. More specifically, the Theorem implies the following definition of
the function snd in the network channels model of [8] (see Section 2.3). For each
transmitted message m with unique message identifier m-id the function snd
produces a pair (x, y) where x = m-id and y = ENCκe

(m,MACκa
(m-id,m)),

where the keys κe and κa are computationally independent keys derived from
the session key. On an incoming message (x′, y′) the rcv function verifies the
uniqueness of message identifier x′, decrypts y′ under key κe, verifies the valid-
ity of the decrypted MAC tag, and if all tests succeed the recipient accepts the
decrypted message as valid. We note that if the message identifier is maintained
in synchrony by sender and receiver (as in SSL) then there is no need to send
its value over the network. On the other hand, if sent, the message identifier can
be encrypted too. The above Theorem holds in either case.
We stress that the Theorem holds for strict CUF-CPA as well as for the

relaxed “loose” version (see Section 3).
Based on this Theorem, and on the fact that OTP and CBC are IND-CPA

[2], we can prove the security of AtE under OTP and CBC by showing that
in this case the resultant AtE scheme is CUF-CPA. The rest of this section is
devoted to prove these facts.

5.2 AtE with OTP

The OTP scheme. Let F be a family of functions with domain {0, 1}` and
range {0, 1}`

′

. We define the encryption scheme OTP (F) to work on messages
of length at most `′ as follows. A key in the encryption scheme is a description
of a member f of the family F . The OTP encryption under f of plaintext x
is performed by choosing r ∈R {0, 1}

` and computing c = f(r) ⊕ x where f(r)
is truncated to the length of x. The ciphertext is the pair (r, c). Decryption
works in the obvious way. If F is the set of all functions with the above domain
and range and f is chosen at random from this family we get perfect secrecy
against chosen-plaintext attacks as long as there are no repetitions in the values
r chosen by the encryptor (after encrypting q different messages a repetition
happens with probability q2/2`); we denote this scheme by OTP$. If F is a
family of pseudorandom functions then the same security is achieved but in a
computational sense, i.e., up to the “indistinguishability distance” between the

pseudorandom family and a truly random function. A formal and exact-security
treatment of this mode of encryption can be found in [2].

The AtE(OTP$,MAC) composition. Let MAC be a MAC family with n-bit
outputs, and k a key to a member of that family. Let f be a random function
with domain and range as defined above. The AtE(OTP$,MAC) function with
f and k acts as follows: (i) it receives as input a message x of length at most
`′ − n, (ii) computes t = MACk(x), (iii) appends t to x, (iv) outputs the OTP
encryption under f of the concatenated message (x, t).
The following theorem establishes the CUF-CPA security ofAtE(OTP$,MAC)

as a function of the security EM (·, ·, ·) of MAC.

Theorem 3. If MAC is a MAC family that resists one-query attacks then
AtE(OTP$,MAC) is CUF-CPA (and then by Theorem 2 it implements secure
channels). More precisely, any ciphertext forger F against AtE(OTP$,MAC) that
runs time T has success probability EU of at most q2/2` + EM (1, p, T

′), where `
is a parameter of OTP$, q is the number of queries F makes during the attack,
p is an upper bound on the length of each such query and on the length of the
output forgery, and T ′ = T + cqp for some constant c.

For a proof of the Theorem see [21].
Using standard techniques one can show that the theorem holds also for

a OTP scheme realized via a family of pseudorandom functions if we add to
the above probability bound the distinguishability distance between the pseu-
dorandom family and a truly random function. Also, the q2/2` component can
be eliminated if one uses non-repeating nonces instead of random r’s (such as
in counter mode or via a stateful pseudorandom generator used to generate a
pseudorandom pad).

Remark (Tightness: one-query resistance is necessary). Here is an ex-
ample of a MAC that does not resist one-queries and with which valid cipher-
text can be forged against AtE(OTP$,MAC). Assume MAC allows for finding
two same-length messages with the same MAC tag. (For example, MAC first ze-
ros the last bit of the message and then applies a secure MAC function on the
resultant message. Thus, MAC resists zero-queries but fails to one-queries: ask
for a MAC on a message, then forge for the message with last bit flipped.) The
strategy of the ciphertext forger against AtE(OTP$,MAC) is to find such pair
of messages x1, x2. Then, it queries the first one and gets the ciphertext (r, c).
Finally, it outputs the forgery (r, c′) where c′ is obtained from c by xor-ing x2

to the first |x2| bits of c. It is easy to see that (r, c
′) decrypts to (x2,MAC(x2)).

Remark (Multi-valued MAC). In Section 2.1 we strengthened the regular
security definition of a MAC function in the case that the function allows for
different valid authentication tags for the same message. This extended defini-
ton is used (explicitly) in the proof of Theorem 3 and is essential for ensuring
the CUF-CPA property of AtE(OTP$,MAC). To see this, let MAC be a secure
single-valued MAC function and define MAC′ to be the same as MAC except
that an additional arbitrary bit is appended to each authentication tag. The
verification procedure will just ignore this bit. It is easy to see that in this case

AtE(OTP$,MAC′) will not be CUF-CPA. However, if one examines the proof of
Theorem 3 it can be seen that AtE(OTP$,MAC′) achieves loose CUF-CPA (see
Section 3) and then it is sufficient for implementing secure channels (which is
what we care about). So can we dispense of the strengthened notion of MAC
when multi-valued MACs are used? The answer is no. It is possible to build a
multi-valued function MAC′ that satisfies the regular MAC definition, but not
the strengthened version, for which AtE(OTP$,MAC′) is insecure for building
secure channels (see [21]).

Remark (Sufficiency of redundancy functions). In [1] An and Bellare
investigate the question of whether simple redundancy functions (such as com-
binatorial hash functions) applied to a plaintext before encryption suffice for
providing ciphertext unforgeability. In the case of AtE with OTP it seems natu-
ral to assume that a simple combinatorial property of the redundancy function
such as AXU [20, 25] should suffice. (In particular, this seems so since such a
property is sufficient [20] if one only considers plaintext integrity where only the
output of the redundancy function is encrypted under an OTP scheme.) How-
ever, this turns out not to be true in the case of ciphertext unforgeability. We
can show an example of an E-AXU (and also E-balanced [20]) MAC family for
which AtE(OTP$,MAC) is not CUF-CPA. It seems plausible, however, that a
more involved combinatorial property (involving the length of messages) of the
MAC function could suffice to guarantee ciphertext unforgeability in the case
of AtE with OTP. Actually, it is interesting to note that if the authentication
tag is positioned before the message, instead of at the end as defined above, the
AXU property is indeed sufficient (assuming fixed-length and single-valued valid
authentication tags).

Remark (Beware of “slight changes”). To highlight the “fragility” of the
result in Theorem 3 we note that the proof of this theorem uses in an essen-
tial way the fact that the encryption is applied as a whole on the concatenated
message and MAC tag. If we were to encrypt these two values separately (i.e.,
using separate IVs for the encryption of the message and of the MAC) even
under a truly random function we would not get CUF or CCA security. More
significantly, such separate encryption results in insecure channels. Indeed, un-
der this method an active attacker can get to learn whether two transmitted
messages, possibly with different message identifiers, are the same, something
clearly unwanted in a secure protocol. (This weakness allows for actual attacks
on practical applications, in particular several forms of “dictionary attacks”5)

In addition, this observation shows another weakness of the encrypt-and-
authenticate method (Section 4.3) since it exhibits the insecurity of this method
even under the use of a standard stream cipher for encryption and even when
the MAC tag is encrypted.

5 One such example would be finding passwords sent in the telnet protocol even
if the protocol is run over a secure channel protected as above; this is particularly
facilitated by the fact that in this case individual password characters are transmitted
separately, and thus a dictionary attack can be mounted on individual characters.

5.3 AtE with CBC

The CBC scheme. Let ` be a positive integer and F be a family of permuta-
tions over {0, 1}`. We define the encryption scheme CBC(F) to work on messages
of length a multiple of `. A key in the encryption scheme is a description of a
member f of the family F . The CBC encryption under f of plaintext x is per-
formed by partitioning x into blocks x[1], . . . , x[p] of length ` each, then choosing
r∈R {0, 1}

` (called the IV) and computing the ciphertext c = c[0], c[1], . . . , c[p]
as c[0] = r, c[i] = f(c[i− 1]⊕ x[i]), i = 1, . . . , p. Decryption works in the obvious
inverse way. If F is the set of all permutations over {0, 1}` and f is chosen at
random from F then we denote the scheme by CBC$. A formal and exact-security
treatment of this mode of encryption can be found in [2] who in particular prove
it to be IND-CPA also in the case where F is a pseudorandom family (in this
case the security depends on the “indistinguishability distance” between the
pseudorandom family and a truly random function).

The AtE(CBC$,MAC) composition. Let MAC be a MAC family with `-bit
outputs, and k a key to a member of that family. Let f be a random permutation
over {0, 1}`. The AtE(CBC$,MAC) function with f and k acts as follows: (i) it
receives as input a message x of length multiple of `, (ii) computes t = MACk(x),
(iii) appends t to x, (iv) outputs the CBC encryption under f of the concatenated
message (x, t) (note that the resultant output is two blocks longer than x due
to the added block t and the prepended IV r).
The following theorem establishes the CUF-CPA security ofAtE(CBC$,MAC)

as a function of the security EM (·, ·, ·) of MAC.

Theorem 4. If MAC is a secure MAC family then AtE(CBC$,MAC) is CUF-
CPA (and then by Theorem 2 it implements secure channels). More precisely,
any ciphertext forger F against AtE(CBC$,MAC) that runs time T has success
probability EU of at most

Q2/2` + 2qEM (0, 0, T
′) + EM (1, p`, T

′) + 2EM (q
∗, q∗p`, T ′)

where q is the number of plaintexts queried by F , p is an upper bound on the
number of blocks in each of these queries, p∗ is the length in blocks of the forgery
y∗ output by F , q∗ = min{q, p∗}, Q is the total number of blocks in the responses
to F ’s queries plus p∗, and T ′ = T + cQ for constant c.

For a proof of the Theorem see [21].
Using standard techniques one can show that the theorem holds also for a

CBC scheme realized via a family of pseudorandom permutations if we add to
the above probability bound the distinguishability distance between the pseudo-
random family and a truly random function. However, we note, that in this case
the distinguisher not only gets access to an oracle that computes the function
but also to an oracle that computes the inverse function (that is, we need to
assume the family of permutations to be “super pseudorandom” [22]).

Remark (Tightness: the necessity of the bound EM (q
∗)). The most “ex-

pensive” term in MAC security in the expression of the theorem is the value

EM (q
∗) since other terms only require protection against one-query or zero-

query. Since an attacker F does not get to see any of the MAC values one could
wonder why such a strong security from the MAC is required. We show here
that, in contrast to the AtE(OTP$,MAC) case, this requirement is unavoidable.
Specifically, we present for any i = 0, 1, 2, . . ., an example of a MAC function
MAC that is secure against i queries but yields an insecure AtE(CBC$,MAC)
scheme with q = i+1 (and p∗ = 2i+4). We describe the example for i = 1, the
extension to other values is straightforward.
Let {gk}k be a family of pseudorandom functions from ({0, 1}

`)∗ to {0, 1}`/2.
Define a MAC familyMAC ′ on the same domain as {gk}k, and with `-bit outputs
as follows: MAC ′

(k1,k2)
(x) = (gk1

(x), gk2
(gk1

(x))). Define a second MAC family

MAC that uses the same set of keys as MAC ′ and such that on key (k1, k2):

1. if the input x contains two `-bit blocks bi and bj , i < j, such that bi 6= bj
and both have the property that applying gk2

to the first half of the block
yields the second half of the block then output bi as the MAC value for x.

2. otherwise, output MAC ′

(k1,k2)
(x)

It is easy to see that the so definedMAC has security of roughly 2`/2 against single
queries (but is totally insecure after two queries since the output ofMAC provides
the block format that makes the authentication tag “trivial”). We show that
it yields a AtE(CBC$,MAC) scheme whose ciphertexts are forgeable after two
queries even if the encryption permutation f is purely random. The ciphertext
forger F against AtE(CBC$,MAC) proceeds as follows:

1. Choose two arbitrary one-block long plaintexts x1, x2 as the two queries.
2. Let the responses y1, y2 be the triples: (r1, c1 = f(r1 ⊕ x1),m1 = f(c1 ⊕

MAC(x1))) and (r2, c2 = f(r2 ⊕ x2),m2 = f(c2 ⊕MAC(x2))).
3. Output forgery y∗ = (c1,m1, c2,m2, c1,m1).

A simple examination shows that y∗ is a valid ciphertext.
One consequence of the above lower bound on the required security of MAC

is that, somewhat surprisingly, the MAC function cannot be replaced by a sim-
ple combinatorial hash function, such as one enjoying AXU (see remark on
“redundancy functions” in Section 5.2). Indeed, had AXU been sufficient then
one-query resistant MACs would suffice too (since one-query resistance implies
AXU). We note that a modified CBC-like mode for which AXU is sufficient is
presented in [1].
In contrast to the above lower bound, we do not know if the term qEM (0) in

the bound of the theorem is necessary or not; we do not have so far an example
that shows this term to be unavoidable. Thus, it may well be the case that a
more careful analysis could lower the factor q (actually, even with the current
analysis it is possible to replace the factor q with q∗ by a slightly more involved
argument).

Remark (Non-adaptive security of MAC suffices). It is interesting to
note that the requirement from the security of the MAC in Theorem 4 is for non-

adaptive queries only. This can be seen by inspecting the proof of the theorem,
where the MAC forger G that we build makes non-adaptive queries only.

Remark (Beware of “slight changes”). Similarly to the case of AtE(OTP$,
MAC) the proof of Theorem 4 uses in an essential way the fact that the encryption
is done as a whole on the concatenated message and MAC. It is easy to build a
ciphertext forgery attack in case the encryption of the plaintext and of the MAC

tag are done separately (i.e. with independently chosen IVs).

Acknowledgment

I would like to thank Yaron Scheffer for motivating conversations on this topic
and for “forcing” me to find an explicit counter-example for the AtE method;
Yaron also helped in simplifying a previous example. I also thank Mihir Bellare
for interesting conversations and for highlighting some of the subtleties related
to the subject of this paper, and to Ran Canetti and Jonathan Katz for valuable
comments on earlier drafts of the paper.
This research is supported by an Irwin and Bethea Green & Detroit Chapter
Career Development Chair, and by the Fund for the Promotion of Research at
the Technion.

References

1. J. An, M. Bellare, “Does encryption with redundancy provide authenticity?”, Ad-
vances in Cryptology – EUROCRYPT 2001 Proceedings, Lecture Notes in Com-
puter Science, Vol. 2045, Springer-Verlag, B. Pfitzmann, ed, 2001.

2. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment
of symmetric encryption: Analysis of the DES modes of operation”, Proceedings
of the 38th Symposium on Foundations of Computer Science, IEEE, 1997.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations Among No-
tions of Security for Public-Key Encryption Schemes”, Advances in Cryptology
- CRYPTO’98 Proceedings, Lecture Notes in Computer Science Vol. 1462, H.
Krawczyk, ed., Springer-Verlag, 1998, pp. 26–45.

4. M. Bellare, J. Kilian and P. Rogaway, “ The security of cipher block chaining”,
Advances in Cryptology – CRYPTO’94 Proceedings, Lecture Notes in Computer
Science Vol. 839, Y. Desmedt, ed., Springer-Verlag, 1994. pp. 341-358.

5. M. Bellare and C. Namprempre, “Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm”, Advances in Cryptology
- ASIACRYPT’00 Proceedings, Lecture Notes in Computer Science Vol. 1976, T.
Okamoto, ed., Springer-Verlag, 2000.

6. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., and Rogaway, P., “UMAC: Fast
and Secure Message Authentication”, Advances in Cryptology – CRYPTO’99
Proceedings, Lecture Notes in Computer Science, Vol. 1666, Springer-Verlag, M.
Wiener, ed, 1999, pp. 216–233.

7. Bleichenbacher, D., “Chosen Ciphertext Attacks against Protocols Based on RSA
Encryption Standard PKCS #1”, Advances in Cryptology - CRYPTO’98 Proceed-
ings, Lecture Notes in Computer Science Vol. 1462, H. Krawczyk, ed., Springer-
Verlag, 1998, pp. 1–12.

8. Canetti, R., and Krawczyk, H., “Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels”, Advances in Cryptology – EUROCRYPT
2001 Proceedings, Lecture Notes in Computer Science, Vol. 2045, Springer-Verlag,
B. Pfitzmann, ed, 2001, pp. 453–474. Full version in: Cryptology ePrint Archive
(http://eprint.iacr.org/), Report 2001/040.

9. T. Dierks and C. Allen, “The TLS Protocol – Version 1”, Request for Comments
2246, 1999.

10. D. Dolev, C. Dwork, and M. Naor. “Non-malleable cryptography”. Proceedings of
the 23rd Annual ACM Symposium on Theory of Computing, pages 542-552, 1991.

11. A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0 Protocol”, Netscape Communica-
tions Corp., Nov 18, 1996. http://home.netscape.com/eng/ssl3/ssl-toc.html

12. O. Goldreich, “Foundations of Cryptography (Fragments of a book)”, Weizmann
Inst. of Science, 1995. http://www.wisdom.weizmann.ac.il/ oded/frag.html

13. S. Goldwasser, and S. Micali. “Probabilistic Encryption”, Journal of Computer
and System Sciences, Vol. 28, 1984, pp. 270-299.

14. Halevi, S., and Krawczyk H., “Public-Key Cryptography and Password Protocols”,
ACM Transactions on Information and System Security, Vol. 2, No. 3, August 1999,
pp. 230–268.

15. C. Jutla, “Encryption Modes with Almost Free Message Integrity”, Advances in
Cryptology – EUROCRYPT 2001 Proceedings, Lecture Notes in Computer Sci-
ence, Vol. 2045, Springer-Verlag, B. Pfitzmann, ed, 2001.

16. J. Katz and M. Yung, “Unforgeable encryption and adaptively secure modes of
operations”, Fast Software Encryption’00, 2000.

17. J. Katz and M. Yung, “Complete characterization of security notions for proba-
bilistic private-key encryption”, Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing, 2000.

18. S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol”, Re-
quest for Comments 2401, Nov. 1998.

19. S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP)”, Request
for Comments 2406, Nov. 1998.

20. H. Krawczyk, “LFSR-based Hashing and Authentication”, Proceedings of
CRYPTO ’94, Lecture Notes in Computer Science, vol. 839, Y. Desmedt, ed.,
Springer-Verlag, 1994, pp. 129-139.

21. H. Krawczyk, “The order of encryption and authentication for protecting commu-
nications (Or: how secure is SSL?)”. Full version: http://eprint.iacr.org/2001.

22. M. Luby and C. Rackoff, “How to construct pseudorandom permutations from
pseudorandom functions”, SIAM J. on Computing, Vol 17, Number 2, April 1988,
pp. 373–386.

23. M. Naor and M. Yung, “Public key cryptosystems provably secure against chosen
ciphertext attacks”. Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, 1990.

24. C. Rackoff and D. Simon, “Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack”, Advances in Cryptology - CRYPTO’91 Proceedings,
Lecture Notes in Computer Science Vol. 576, J. Feigenbaum ed, Springer-Verlag.

25. P. Rogaway. “ Bucket Hashing and its application to Fast Message Authentication”,
Proceedings of CRYPTO ’95, Lecture Notes in Computer Science, vol. 963, D.
Coppersmith, ed., Springer-Verlag, 1995, pp. 15-25.

26. P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB Mode”, Cryptology ePrint
Archive, Report 2001/026.

27. T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen, “SSH Transport
Layer Protocol”, January 2001, draft-ietf-secsh-transport-09.txt.

