
A Chosen Ciphertext Attack on RSA Optimal
Asymmetric Encryption Padding (OAEP) as

Standardized in PKCS #1 v2.0

James Manger

Telstra Research Laboratories,
Level 7, 242 Exhibition Street, Melbourne 3000, Australia

James.H.Manger@team.telstra.com

Abstract. An adaptive chosen ciphertext attack against PKCS #1 v2.0
RSA OAEP encryption is described. It recovers the plaintext – not the
private key – from a given ciphertext in a little over log2 n queries of an
oracle implementing the algorithm, where n is the RSA modulus. The
high likelihood of implementations being susceptible to this attack is
explained as well as the practicality of the attack. Improvements to the
algorithm to defend against the attack are discussed.

Keywords: chosen ciphertext attack, RSA, OAEP, PKCS

1 Introduction

At CRYPTO ’98 Daniel Bleichenbacher presented an adaptive chosen cipher-
text attack against PKCS #1 v1.5 RSA block type 2 padding [1]. The attack
needs roughly one million oracle queries to succeed for a 1024-bit RSA key. He
concluded that RSA encryption should include an integrity check and that the
phase between decryption and integrity verification is crucial, because any infor-
mation leaking from this phase can present a security risk. Version 2.0 of PKCS
#1 introduced a new algorithm RSAES- OAEP that uses Optimal Asymmetric
Encryption Padding (OAEP) to counteract this attack [2][5]. It says, “a chosen
ciphertext attack is ineffective against a plaintext-aware encryption scheme such
as RSAES-OAEP”. However, the design of RSAES-OAEP makes it highly likely
that implementations will leak information between the decryption and integrity
check operations making them susceptible to a chosen ciphertext attack that re-
quires many orders of magnitude less effort than similar attacks against PKCS
#1 v1.5 block type 2 padding. The attack needs roughly one thousand oracle
queries to succeed for a 1024-bit RSA key.
Section 2 summarizes RSA Optimal Asymmetric Encryption Padding as de-

fined in PKCS #1 v2.0 . 1 Section 3 describes a chosen ciphertext against this
algorithm. Section 4 explores the practicality of the assumptions necessary for

1 The same algorithm is standardized in IEEE 1363, where the relevant message en-
coding method for encryption is called EME1 [4]



the attack to proceed. Section 5 discusses approaches for changing the algorithm
or its implementation to prevent the attack and restore the intended security
properties.

2 RSAES-OAEP

RSAES-OAEP encryption starts by encoding a seed, a hash, padding octets and
the secret (typically a session key) into an octet string. Masking operations ef-
fectively randomize these octets before they are treated as the unsigned binary
representation of an integer – the integer used in the RSA modular exponenti-
ation operation. The number of padding octets is chosen so that the encoding
consumes one less octet than required for a unsigned binary representation of
the modulus. This ensures the integer is less than the modulus as required in
RSA. Alteratively, the encoded messages can be considered as an octet string
the same length as the modulus, but with the most significant octet set to ‘00’h.
Figure 1 shows the RSAES-OAEP decryption and decoding process. The

ciphertext is converted to the plaintext by modular exponentiation with the
private exponent followed by integer-to-octet translation. A mask generation
function (MGF) uses the least significant portion of the plaintext to unmask
the seed. A mask generated from the seed unmasks a hash, padding and the
confidential message. The integrity of the ciphertext is verified by comparing
the unmasked hash to an independently calculated hash of the parameters (and
by checking the padding).

Ciphertext

00 Plaintext

Mask1 Mask2

Seed Hash′ Padding Secret

Hash Parameters

§̈ ¥¦RSA
6

§̈ ¥¦MGF

@@

@@I

§̈ ¥¦MGF
@@

@@R

§̈ ¥¦HASH¾

j=6
?

j6 j6

? ??
?
????

?

Fig. 1. RSAES-OAEP Decoding



After the private key operation the decryption operation can fail in the
integer-to-octet translation (e.g. the integer is too large to fit in one fewer octets
than the modulus) or in the OAEP-decoding (e.g. integrity check fails). In both
instances PKCS #1 v2.0 says to output “decryption error” and stop.

3 Chosen Ciphertext Attack

Let n be an RSA modulus, with e and d the public and private exponents
respectively. Let k = dlog256 ne be the byte length of n and let B = 28(k−1). 2

Assume an attacker knows the public key (n, e) and has access to an oracle
that for any chosen ciphertext x indicates whether the corresponding plaintext
y ≡ xd (mod n) is less than B or not — returning “y < B” or “y ≥ B”. For
the last assumption to hold it is sufficient for the oracle to distinguish a failure
in the integer-to-octets conversion (in which case “y ≥ B” is returned) from any
subsequent failure, e.g. of the integrity check.

The attacker wishes to determine the plaintext m ≡ cd (mod n) corre-
sponding to a captured ciphertext c. The basic step is to choose a multiple f

and send fe ·c (mod n) to the oracle. This ciphertext corresponds to the plain-
text f ·m. 3 The oracle indicates if this is in the range [0, B) or (B,n) modulo
n, thus providing a mathematical relationship about m that reduces the range
(or ranges) in which it must lie. The aim is to reduce this range with successive
oracle queries until just one value is left — m.

The approach of the attack described in this paper is to choose values of f

such that the range where f ·m could lie spans exactly one boundary between
a region where f ·m < B (mod n) and a region where f ·m ≥ B (mod n).
The oracle response narrows the range to one of these regions.

Initially we know m ∈ [0, B), as all valid messages are in this range by
construction. One point to note is that since m < B there is always a multiple
of m that lies in any region of width B. For instance, for any integer i there is
always some integer f such that f ·m ∈ [in, in+B).

The following attack assumes 2B < n. This assumption will usually be sat-
isfied as RSA moduli are typically chosen to be exact multiples of 8 bits long
making n between 128 and 256 times larger than B. Situations where this as-
sumption does not hold are discussed toward the end of this section.

Step 1: Try multiples of 2, 4, 8, . . . 2i, . . . in turn until the oracle returns “≥ B”.
For each multiple f1 the possible values of f1 ·m span a single boundary point
at B.

1.1 We know m ∈ [0, B). Let f1 = 2.

1.2 So f1 ·m ∈ [0, 2B). Try f1 with the oracle, i.e. send f e
1 · c (mod n).

2 Any number less than B encoded into k octets will start with a ‘00’h octet.
3 (fe

· c)d ≡ fed
· cd

≡ f ·m (mod n)



1.3a If the oracle indicates “< B”:
This implies f1 ·m ∈ [0, B), so 2f1 ·m ∈ [0, 2B).
Set f1 ← 2f1 and go back to step 1.2.

1.3b If the oracle indicates “≥ B:
This implies f1 ∈ [B, 2B) for a known (even) multiple f1. Rephrasing this
gives f1

2 ·m ∈ [
B
2 , B) for a known multiple f1

2 . Now move to the next step.

Step 2: Start with a multiple f2 such that f2 · m is just less than n + B for
the maximum possible m. Keep increasing this multiple until the oracle returns
“< B”. For each multiple f2 the possible values of f2 ·m span a single boundary
point at n.

2.1 We have f1

2 ·m ∈ [
B
2 , B). Let f2 = b

n+B
B
c · f1

2 .
2.2 So f2 ·m ∈ [

n
2 , n+B). Try f2 with the oracle.

2.3a If the oracle indicates “≥ B”:
This implies f2 ·m ∈ [

n
2 , n), so (f2 +

f1

2 ) ·m ∈ [
n
2 , n+B).

Set f2 ← f2 +
f1

2 and go back to step 2.2.
2.3b If the oracle indicates “< B”:

This implies f2 ·m ∈ [n, n + B) for a known multiple f2. Now move to the
next step.

As f2 increases at iterations through step 2.3a the lower bound on f2 · m
increases, eventually exceeding n when f2 = d

2n
B
e · f1

2 . Branch 2.3b must occur
at or before this multiple. That is, step 2 will always terminate — taking at most
d n

B
e oracle queries.

Step 3: Try multiples f3 that give a range for f3 ·m about 2B integers wide
and spanning a single boundary point. Each oracle response will half the range
back to a width of about B integers, so the next multiple is approximately twice
the previous value.

3.1 We have f2 ·m ∈ [n, n+B).
Rephrasing, we have a multiple f2 and a range [mmin,mmax) of possible m

values, where mmin = d
n
f2
e , mmax = b

n+B
f2
c and f2 · (mmax −mmin) ≈ B.

3.2 Choose a multiple ftmp such that the width of ftmp ·m is approximately 2B.
ftmp = b

2B
mmax−mmin

c. This value is about double the previous multiple.
3.3 Select a boundary point, in+B, near the range of ftmp ·m.

i = b
ftmp·mmin

n
c.

3.4 Choose a multiple f3 such that f3 ·m spans a single boundary point at in+B.
f3 = d

in
mmin

e. This gives f3 ·m ∈ [in, in + 2B) (though the upper bound is
only approximate). f3 is approximately equal to ftmp. Try f3 with the oracle.

3.5a If the oracle indicates “≥ B”:
This implies f3 ·m ∈ [in+B, in+ 2B).
Set mmin ← d

in+B
f3
e and go back to step 3.2.

3.5b If the oracle indicates “< B”:
This implies f3 ·m ∈ [in, in+B).
Set mmax ← b

in+B
f3
c and go back to step 3.2.



Each answer from the oracle in step 3 selects either the top or bottom half
(approximately) of the f3 · m range, halving the range of possible m values.
Eventually the range in which m lies narrows to a single number, which is the
desired plaintext. At this point f3 ≈ B = 28(k−1).
The description of step 3 above does not provide a proof that those particular

choices of multiples, boundary points and interval widths will always work for
any key or message. Minor variations on these choices can make the attack
algorithm marginally more efficient. See [1] for a more mathematically rigorous
analysis of a closely related problem.

3.1 Complexity

Steps 1 and 3 approximately halve the range of possible m values with each
iteration so between them they take about log2 B = 8(k − 1) oracle queries. 4

Step 2 takes at most d n
B
e oracle queries (which must be ≤ 256), and half this

number on average.
RSA moduli are typically chosen to be exact multiples of 8 bits long, e.g.

1024-bit moduli are far more prevalent than, say, 1021-bit moduli. Hence, for
typical keys d n

B
e is in the range (128, 256], so step 2 will typically take on the

order of 100 oracle queries.
For a 1024-bit RSA key the attack requires about 1100 oracle queries, for a

2048-bit key about 2200.

3.2 When n < 2B

The attack procedure described above assumes 2B < n. If this is not the case,
an indication from the oracle of “< B” when f = 2 narrows the range in which
f ·m lies not to a single region, but to a pair of regions: f ·m ∈ [0, B)

⋃

[n, 2B).
The range in which m is known to lie is reduced is total size, but is no longer
confined to a single interval. This somewhat complicates the decision about
which multiples to try but an adaptive chosen ciphertext attack will still work.
The chosen ciphertext attack against RSA block type 2 padding had a similar
issue — see [1] for a full analysis.

3.3 Comparison to the RSA Block Type 2 Attack

Analysis in [1] of the number of oracle queries required for a chosen ciphertext
attack found an expression with two terms: the first term inversely proportional
to the probability that a random integer from [0, n) conforms to the encoding
format; the second term proportional to log2 n. The first term dominates for RSA
block type 2 padding (making the number of required queries quite dependent

4 Reduction of the range of possible m values in step 2 slightly reduces the number of
oracle queries required during steps 1 and 3, but this number also slightly increases
(by a few percent) as the ranges in step 3 not being exactly centred on boundary
points.



on various implementation issues, i.e. how the encoding format is checked). For
RSAES-OAEP the first term corresponds to the number of oracle queries in step
2, which is an order of magnitude less than the second term.

4 Likelihood of Susceptibility

The chosen ciphertext attack described in the previous section starts with an
assumption that the attacker can distinguish a failure in the integer-to-octets
conversion from any subsequent failure, e.g. of the integrity check during OAEP-
decoding. PKCS #1 v2.0, however, recognizes this risk by explicitly stating
”it is important that the error messages output in steps 4 [integer-to- octets
conversion] and 5 [OAEP decoding] be the same”. 5 This section investigates why,
in spite of this statement, it is likely that many RSAES-OAEP implementations
will be susceptible to chosen ciphertext attack.

4.1 Spelling

Simply misspelling a word, including a full-stop or starting with a capital letter
at one point is sufficient to distinguish two error messages that are otherwise the
same. Having to relying for security on the absence of any such trivial occurrence
in an implementation should not be necessary.

4.2 Logs

Even when a system avoids revealing error details in, say, its protocol response
it is likely to reveal more detailed error descriptions in its logs. 6 “Integer too

large” and “decoding error” – included in PKCS #1 v2.0 as error messages
from sub-routines used by RSAES-OAEP – are just the sort of details a log may
contain yet their presence is sufficient for the attack to proceed. Requiring access
to system logs clearly lessens the risk of an attack but it is still an attack that
must be considered. Logs are typically available to a much larger set of people
than have direct access to a private key and logs will be given less protection
(and should not be required to have the same protection as a private key).

4.3 Other Error Conditions

There are many possible errors that are not mentioned in the definition of
RSAES-OAEP in PKCS #1 v2.0. This seems sensible as most are implementa-
tion issues but it becomes problematic when, due to the algorithm’s design, these

5 PKCS #1 v2.0, section 7.1.2 Decryption operation, last paragraph.
6 Divulging less detail and only very general error indications is a well-known security
technique, but it does come at a cost. Less information for an attacker also means
less information for developers, support staff and users to understand the state of a
system and respond appropriately.



errors can have serious security implications. Consider what could happen when
an unsupported mask generation function (MGF) is specified (by the attacker,
along with his chosen ciphertext). Though not explicitly considered in PKCS
#1, some sort of error must result, say “unsupported algorithm”, and it may
not be detected until the MGF is first used – in the OAEP-decoding stage. Any
indication that the OAEP-decoding stage has been reached, however, is sufficient
for the attack to proceed as it implies the previous integer-to-octet conversion
stage was successful, i.e. plaintext < B.

4.4 Timing

Even identical error responses can be distinguished if they take different amounts
of time to occur. For instance, detecting an integrity error during OAEP-decoding
takes at least the time of two mask generation operations longer than detecting
an error in the integer-to-octet conversion. Though this time difference may be
small compared to the total response time (e.g. the modular exponentiation is
likely to take much longer) it is still likely to be measurable, even if extra oracle
queries and statistical analysis have to be employed.
RSAES-OAEP offers an even bigger target for a timing attack. The integrity

check compares a hash from the OAEP-decoding to a locally calculated hash
of the parameters. The parameters can be an octet string of arbitrary length
chosen by the attacker. The hash is only needed in the OAEP-decoding stage
and it is reasonable to assume many implementations would calculate it during
this stage (as the standard suggests), but this point is after the integer-to-octet
conversion. An attacker can achieve whatever time difference he or she requires
to distinguish the relevant error sources by using a sufficiently large octet string
for the parameters — set the parameters to be 10MB long and do the attack
with a wristwatch.
This use of the hash operation to attack RSAES-OAEP illustrates the al-

gorithm’s fragile nature. The hash does not involve the private key or the se-
cret in the plaintext at all, so even a diligent implementer is unlikely to expect
its operation to impact the security. Performing the hash operation before the
integer-to-octet conversion eliminates its usefulness in a timing attack.

4.5 Summary

An algorithm that relies on identical responses to errors (despite their disparate
sources), no access to logs, a specific (undocumented and not obvious) order of
sub-tasks and attention to timing must be considered quite fragile. Though it is
possible some implementations of RSAES-OAEP will be immune, it is quite likely
that many others will be susceptible to the chosen ciphertext attack described in
this paper. To some degree RSAES-OAEP achieves security through obscurity
— obscurity of the source of errors, of implementation details and of timing
information. Obscurity, however, is widely recognized as a poor principle for
designing an algorithm.



5 Directions Towards a Solution

The attack relies on distinguishing different actions of the oracle resulting from
a decision about the structure of the plaintext. This suggests two possible ap-
proaches for a solution: ensure the actions are indistinguishable; or avoid any
decision based on the structure of the plaintext. The former approach uses obscu-
rity to achieve security, while the latter approach offers better hope of reducing
the security dependence on seemingly innocuous implementation choices.
PKCS #1 v2.0 makes a basic effort at obscurity by outputting the same error

message for all identified errors. PKCS #1 v2.1 draft 2 enhances this effort by
noting that errors from integer-to-octet conversion and OAEP-decoding must be
indistinguishable and, importantly, that execution time must not reveal which
error occurred [3]. 7

A naive solution for avoiding a decision about the structure of the plaintext
is to simply ignore its structure, i.e. ignore its most significant octet (after con-
verting integer m to k octets). Ignoring this octet during decryption allows it to
be set to any value (e.g. a random value) during encryption (subject to the re-
striction m < n). As it stands, however, this is not a good solution because these
modifications mean the algorithm is no longer plaintext-aware — destroying the
security proof that OAEP offered. An operation on a ciphertext that only al-
tered the most significant octet of the corresponding plaintext would produce a
different, but still valid, ciphertext without requiring knowledge of the plaintext.
How to perform such an operation is an open question (at least to the author),
as is the question of how such an ability would affect security in practice.
Another open question is how to modify RSAES-OAEP to eliminate the last

vestige of structure from the plaintext, yet retain a proof of its security against
chosen ciphertext attack in the random oracle model. Not only would such a
solution avoid decisions based on plaintext structure – it would ensures no such
decision could reasonably be made (even inadvertently) as there is no structure
upon which to make it. 8

5.1 Best Practise

Though the check that m < B is the basis of the attack, it is other details (such
the time a hash operation takes) that allow the attack to proceed. This rein-
forces Bleichenbacher’s conclusion that the “integrity check must be performed
in the correct step of the protocol – preferably immediately after decryption”
[1]. Moving any processing that does not have to occur between the decryption
and integrity check to another location is a practical step towards satisfying

7 PKCS #1 v2.1 draft 2, section 7.1.2 [RSAES-OAEP] Decryption operation, see the
note at the bottom of page 18.

8 Such an inadvertent decision (i.e. a software bug) has been noticed by the author
in one RSAES-OAEP implementation. It never explicitly checked if the plaintext
“integer [was] too large”, but just assumed it would fit in k − 1 octets and
suffered buffer overflow problems when this was not the case.



this criterion, hence lessening the exposure to chosen ciphertext attacks (though
it does not, by itself, eliminate the threat). Processes that could be performed
before the decryption operation in RSAES-OAEP include hashing the parame-
ters, confirming relevant MGF and hash algorithms are supported and allocat-
ing memory required during mask generation and OAEP-decoding. Rearranging
these processes should occur in implementations and also in standards defining
algorithms, as the latter are the specification from which implementations are
built.

6 Conclusion

Optimal Asymmetric Encryption Padding adds an integrity check and masks
the structure of the message being encrypted to achieve plaintext-awareness and
consequent protection against chosen ciphertext attack. However, translating the
octet-aligned OAEP process into integers modulo n in RSAES-OAEP reintro-
duced sufficient structure to make an adaptive chosen ciphertext attack possible,
with a high likelihood, in many implementations.

7 Acknowledgements

I thank the Director of Research, Telstra Research Laboratories, for supporting
this work. I also thank the reviewers of this paper for highlighting the risks of
simply ignoring the structure in RSAES-OAEP.

References

1. D. Bleichenbacher: Chosen Ciphertext Attacks Against Protocols Based on the RSA
Encryption Standard PKCS #1. In Hugo Krawczyk (ed.), Advances in Cryptology
– CRYPTO ’98, pages 1–12, Berlin, Springer, 1998 (Lecture Notes in Computer
Science, vol. 1462).

2. PKCS #1 v2.0: RSA Cryptography Standard, 1 October 1998.
http://www.rsasecurity.com/rsalabs/pkcs/

3. PKCS #1 v2.1 draft 2: RSA Cryptography Standard, 5 January 2001.
http://www.rsasecurity.com/rsalabs/pkcs/

4. IEEE 1363 draft 13: Standard Specifications for Public Key Cryptography, 12 Novem-
ber 1999.
http://grouper.ieee.org/groups/1363/

5. M. Bellare and P. Rogaway: Optimal Asymmetric Encryption Padding — How to
Encrypt with RSA. In Advances in Cryptology — EUROCRYPT ’94, pages 92–111,
Springer-Verlag, 1994.


