
Parallel Coin-Tossing and Constant-Round

Secure Two-Party Computation

Yehuda Lindell

Department of Computer Science and Applied Math,
Weizmann Institute of Science, Rehovot, Israel.

lindell@wisdom.weizmann.ac.il

Abstract. In this paper we show that any two-party functionality can
be securely computed in a constant number of rounds, where security is
obtained against malicious adversaries that may arbitrarily deviate from
the protocol specification. This is in contrast to Yao’s constant-round
protocol that ensures security only in the face of semi-honest adversaries,
and to its malicious adversary version that requires a polynomial number
of rounds.
In order to obtain our result, we present a constant-round protocol for
secure coin-tossing of polynomially many coins (in parallel). We then
show how this protocol can be used in conjunction with other existing
constructions in order to obtain a constant-round protocol for securely
computing any two-party functionality. On the subject of coin-tossing,
we also present a constant-round perfect coin-tossing protocol, where by
“perfect” we mean that the resulting coins are guaranteed to be statis-
tically close to uniform (and not just pseudorandom).

1 Introduction

1.1 Secure Two-Party Computation

In the setting of two-party computation, two parties, with respective private in-
puts x and y, wish to jointly compute a functionality f(x, y) = (f1(x, y), f2(x, y)),
such that the first party receives f1(x, y) and the second party receives f2(x, y).
This functionality may be probabilistic, in which case f(x, y) is a random vari-
able. Loosely speaking, the security requirements are that nothing is learned from
the protocol other than the output (privacy), and that the output is distributed
according to the prescribed functionality (correctness). The actual definition [14,
1, 5] blends these two conditions (see Section 2). This must be guaranteed even
when one of the parties is adversarial. Such an adversary may be semi-honest in
which case it correctly follows the protocol specification, yet attempts to learn
additional information by analyzing the transcript of messages received during
the execution. On the other hand, an adversary may be malicious, in which case
it can arbitrarily deviate from the protocol specification.
The first general solutions for the problem of secure computation were pre-

sented by Yao [17] for the two-party case (with security against semi-honest

adversaries) and Goldreich, Micali and Wigderson [13] for the multi-party case
(with security even against malicious adversaries). Thus, despite the stringent
security requirements placed on such protocols, wide-ranging completeness re-
sults were established, demonstrating that any probabilistic polynomial-time
functionality can be securely computed (assuming the existence of trapdoor per-
mutations).

Yao’s protocol. In [17], Yao presented a constant-round protocol for securely
computing any functionality, where the adversary may be semi-honest. Denote
Party 1 and Party 2’s respective inputs by x and y and let f be the functionality
that they wish to compute (for simplicity, assume that both parties wish to
receive f(x, y)). Loosely speaking, Yao’s protocol works by having one of the
parties (say Party 1) first generate an “encrypted” circuit computing f(x, ·) and
send it to Party 2. The circuit is such that it reveals nothing in its encrypted form
and therefore Party 2 learns nothing from this stage. However, Party 2 can obtain
the output f(x, y) by “decrypting” the circuit. In order to ensure that nothing
is learned beyond the output itself, this decryption must be “partial” and must
reveal f(x, y) only. Without going into unnecessary details, this is accomplished
by Party 2 obtaining a series of keys corresponding to its input y such that given
these keys and the circuit, the output value f(x, y) (and only this value) may be
obtained. Of course, Party 2 must obtain these keys without revealing anything
about y and this can be done by running |y| instances of a (semi-honest) secure
2-out-of-1 Oblivious Transfer protocol [7], which is constant-round. By running
the Oblivious Transfer protocols in parallel, this protocol requires only a constant
number of rounds.
Now consider what happens if Yao’s protocol is run when the adversary may

be malicious. Firstly, we have no guarantee that Party 1 constructed the circuit so
that it correctly computes f(x, ·). Thus, correctness may be violated (intuitively,
this can be solved using zero-knowledge proofs). Secondly, the Oblivious Transfer
protocol must satisfy the requirements for secure computation (in the face of
malicious adversaries), and must maintain its security when run in parallel. We
note that we know of no such (highly secure) oblivious transfer protocol that runs
in a constant number of rounds. Finally, if the functionality f is probabilistic,
then Party 1 must be forced to input a truly random string into the circuit.
Thus, some type of coin-tossing protocol is also required.

Secure protocol compilation. As we have mentioned, Goldreich, Micali andWigder-
son [12, 13] showed that assuming the existence of trapdoor permutations, there
exist protocols for securely computing any multi-party functionality, where the
adversary may be malicious. They achieve this in two stages. First, they show a
protocol for securely computing any functionality in the semi-honest adversar-
ial model. Next, they construct a protocol compiler that takes any semi-honest
protocol and “converts” it into a protocol that is secure in the malicious model.
As this compiler is generic, it can be applied to any semi-honest protocol and
in particular, to the constant-round two-party protocol of Yao. However, due to
the nature of their compilation, the output protocol is no longer constant-round.

1.2 Our Results

The focus of this paper is to construct a protocol compiler such that the round-
complexity of the compiled protocol is of the same order as that of the original
protocol. We observe that the only component of the GMW compiler for which
there does not exist a constant-round construction is that of coin-tossing in
the well [3]. Therefore, our technical contribution is in constructing a constant-
round protocol for coin-tossing in the well of polynomially many coins. That is,
we obtain the following theorem (informally stated):

Theorem 1 (constant-round coin-tossing): Assuming the existence of one-way
functions, there exists a constant-round protocol for the coin-tossing functionality
(as required by the GMW compiler).

In order to construct such a constant-round protocol we introduce a technique
relating to the use of commitment schemes, which we believe may be useful in
other settings as well. Commitment schemes are a basic building block and are
used in the construction of many protocols. Consider, for example, Blum’s proto-
col for coin-tossing a single bit [3]. In this protocol, Party 1 sends a commitment
to a random-bit; then, Party 2 replies with its own random bit and finally Party 1
decommits. The difficulty in simulating such protocols is that the simulator only
knows the correct value to commit to after the other party sends its message.
However, since the simulator is bound to its commitment, it must somehow guess
the correct value before this message is sent. In case the messages are long (say
n bits rather than a single bit or log n bits), this may be problematic. Thus,
rather than decommitting, we propose to have the party reveal the committed
value and then prove (in zero-knowledge) the validity of this revealed value. In
a real execution, this is equivalent to decommitting, since the committing party
is effectively bound to the committed value by the zero-knowledge proof. How-
ever, the simulator is able to provide a simulated zero-knowledge proof (rather
than a real one). Furthermore, this proof remains indistinguishable from a real
proof even if the revealed value is incorrect (and thus the statement is false).
Therefore, the simulator can effectively “decommit” to any value it wishes and
is not bound in any way by the original commitment that it sends.
Combining the constant-round protocol of Theorem 1 with other known con-

structions, we obtain the following theorem:

Theorem 2 Assume the existence of one-way functions. Then, there exists a
protocol compiler that given a two-party protocol Π for securely computing f in
the semi-honest model produces a two-party protocol Π ′ that securely computes
f in the malicious model, so that the number of rounds of communication in Π ′

is within a constant factor of the number of rounds of communication in Π.

We stress that, when ignoring the “round preservation” clause, the existence of
a protocol compiler is not new and has been shown in [12, 13] (in fact, as we have
mentioned, we use most of the components of their compiler). Our contribution
is in reducing the overhead of the compiler, in terms of the round-complexity,

to a constant. The main result, stated in the following theorem, is obtained by
applying the compiler of Theorem 2 to the constant-round protocol of Yao.

Theorem 3 Assuming the existence of trapdoor permutations, any two-party
functionality can be securely computed in the malicious model in a constant num-

ber of rounds.

On the subject of coin-tossing, we also present a constant-round protocol for
“perfect” coin-tossing (of polynomially many coins) that guarantees that the
output of the coin-tossing protocol is statistically close to uniform, and not just
computationally indistinguishable.

1.3 Related Work

In the setting of multi-party computation with an honest majority, Beaver, Mi-
cali and Rogaway [2] showed that any functionality can be securely computed
in a constant number of rounds, where the adversary may be malicious. Unfor-
tunately, their technique relies heavily on the fact that a majority of the parties
are honest and as such cannot be applied to the case of two-party protocols. As
we have described, in this paper we establish the analogous result for the setting
of two-party computation.

1.4 Organization

In Section 2 we present the definition of secure two-party computation. Then,
in Section 3 we discuss the protocol compiler of GMW and observe that in
order to achieve “round-preserving” compilation, one needs only to construct a
constant-round coin-tossing protocol. Our technical contribution in this paper
thus begins in Section 4 where we present such a constant-round coin-tossing
protocol. Finally, in Section 5 we show how perfect coin-tossing can be achieved.

2 Definitions – Secure Computation

In this section we present the definition of secure two-party computation. Our
presentation is based on [9], which in turn follows [14, 1, 5]. We first introduce
the following notation: Un denotes the uniform distribution over {0, 1}

n; for a set
S we denote s ∈R S when s is chosen uniformly from S; finally, computational

indistinguishability is denoted by
c
≡ and statistical closeness by

s
≡.

Two-party computation. A two-party protocol problem is cast by specifying a
random process that maps pairs of inputs to pairs of outputs (one for each party).
We refer to such a process as a functionality and denote it f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair of inputs (x, y),
the output-pair is a random variable (f1(x, y), f2(x, y)) ranging over pairs of
strings. The first party (with input x) wishes to obtain f1(x, y) and the second
party (with input y) wishes to obtain f2(x, y). We often denote such a function-
ality by (x, y) 7→ (f1(x, y), f2(x, y)). Thus, for example, the basic coin-tossing
functionality is denoted by (1n, 1n) 7→ (Un, Un).

Adversarial behavior. Loosely speaking, the aim of a secure two-party proto-
col is to protect an honest party against dishonest behavior by the other party.
This “dishonest behavior” can manifest itself in a number of ways; in partic-
ular, we focus on what are known as semi-honest and malicious adversaries.
A semi-honest adversary follows the prescribed protocol, yet attempts to learn
more information than “allowed” from the execution. Specifically, the adver-
sary may record the entire message transcript of the execution and attempt to
learn something beyond the protocol output. On the other hand, a malicious

adversary may arbitrarily deviate from the specified protocol. When consider-
ing malicious adversaries, there are certain undesirable actions that cannot be
prevented. Specifically, a party may refuse to participate in the protocol, may
substitute its local input (and enter with a different input) and may abort the
protocol prematurely.

Security of protocols (informal). The security of a protocol is analyzed by com-
paring what an adversary can do in the protocol to what it can do in an ideal
scenario that is secure by definition. This is formalized by considering an ideal
computation involving an incorruptible trusted third party to whom the parties
send their inputs. The trusted party computes the functionality on the inputs
and returns to each party its respective output. Loosely speaking, a protocol is
secure if any adversary interacting in the real protocol (where no trusted third
party exists) can do no more harm than if it was involved in the above-described
ideal computation.

Execution in the ideal model. The ideal model differs for semi-honest and ma-
licious parties. First, for semi-honest parties, an ideal execution involves each
party sending their respective input to the trusted party and receiving back
their prescribed output. An honest party then outputs this output, whereas a
semi-honest party may output an arbitrary (probabilistic polynomial-time com-
putable) function of its initial input and the message it obtained from the trusted
party. (See [9] for a formal definition of the ideal and real models for the case of
semi-honest adversaries.)
We now turn to the ideal model for malicious parties. Since some malicious

behavior cannot be prevented (for example, early aborting), the definition of the
ideal model in this case is somewhat more involved. An ideal execution proceeds
as follows:

Inputs: Each party obtains an input, denoted z.
Send inputs to trusted party: An honest party always sends z to the trusted

party. A malicious party may, depending on z, either abort or sends some
z′ ∈ {0, 1}|z| to the trusted party.

Trusted party answers first party: In case it has obtained an input pair,
(x, y), the trusted party (for computing f), first replies to the first party
with f1(x, y). Otherwise (i.e., in case it receives only one input), the trusted
party replies to both parties with a special symbol, ⊥.

Trusted party answers second party: In case the first party is malicious it
may, depending on its input and the trusted party’s answer, decide to stop

the trusted party. In this case the trusted party sends ⊥ to the second party.
Otherwise (i.e., if not stopped), the trusted party sends f2(x, y) to the second
party.

Outputs: An honest party always outputs the message it has obtained from
the trusted party. A malicious party may output an arbitrary (probabilistic
polynomial-time computable) function of its initial input and the message
obtained from the trusted party.

Let f : {0, 1}∗×{0, 1}∗ 7→ {0, 1}∗×{0, 1}∗ be a functionality, where f = (f1, f2),
and letM = (M1,M2) be a pair of families of non-uniform probabilistic expected
polynomial-time machines (representing parties in the ideal model). Such a pair
is admissible if for at least one i ∈ {1, 2} we have that Mi is honest. Then, the
joint execution of f under M in the ideal model (on input pair (x, y)), denoted
ideal

f,M
(x, y), is defined as the output pair of M1 and M2 from the above ideal

execution. For example, in the case that M1 is malicious and always aborts at
the outset, the joint execution is defined as (M1(x,⊥),⊥). Whereas, in case M1

never aborts, the joint execution is defined as (M1(x, f1(x
′, y)), f2(x

′, y)) where
x′ =M1(x) is the input that M1 gives to the trusted party.

Execution in the real model. We next consider the real model in which a real
(two-party) protocol is executed (and there exists no trusted third party). In
this case, a malicious party may follow an arbitrary feasible strategy; that is,
any strategy implementable by non-uniform expected polynomial-time machines.
In particular, the malicious party may abort the execution at any point in time
(and when this happens prematurely, the other party is left with no output).
Let f be as above and let Π be a two-party protocol for computing f . Fur-

thermore, let M = (M1,M2) be a pair of families of non-uniform probabilistic
expected polynomial-time machines (representing parties in the real model). Such
a pair is admissible if for at least one i ∈ {1, 2} we have that Mi is honest (i.e.,
follows the strategy specified by Π). Then, the joint execution of Π under M
in the real model (on input pair (x, y)), denoted real

Π,M
(x, y), is defined as the

output pair of M1 and M2 resulting from the protocol interaction.

Security as emulation of a real execution in the ideal model. Having defined the
ideal and real models, we can now define security of protocols. Loosely speaking,
the definition asserts that a secure two-party protocol (in the real model) em-
ulates the ideal model (in which a trusted party exists). This is formulated by
saying that admissible pairs in the ideal model are able to simulate admissible
pairs in an execution of a secure real-model protocol.

Definition 4 (security in the malicious model): Let f and Π be as above. Pro-
tocol Π is said to securely compute f (in the malicious model) if there exists
a probabilistic polynomial-time computable transformation of pairs of admis-
sible families of non-uniform probabilistic expected polynomial-time machines
A = (A1, A2) for the real model into pairs of admissible families of non-uniform
probabilistic expected polynomial-time machines B = (B1, B2) for the ideal model

such that

{ideal
f,B
(x, y)}x,y s.t. |x|=|y|

c
≡ {real

Π,A
(x, y)}x,y s.t. |x|=|y|

Remark: The above definition is different from the standard definition in that
the adversary (in both the ideal and real models) is allowed to run in ex-
pected polynomial-time (rather than strict polynomial-time). This seems to be
inevitable given that currently known constant-round zero-knowledge proofs re-
quire expected polynomial-time simulation. We stress that an honest party always
runs in strict polynomial time.

3 Two-Party Computation Secure Against Malicious

Adversaries

3.1 The Compiler of Goldreich, Micali and Wigderson [13]

Goldreich, Micali and Wigderson [13] showed that assuming the existence of
trapdoor permutations, there are secure protocols (in the malicious model) for
any multi-party functionality. Their methodology works by first presenting a
protocol secure against semi-honest adversaries. Next, a compiler is applied that
transforms any protocol secure against semi-honest adversaries into a protocol
secure against malicious adversaries. Thus, their compiler can also be applied to
the constant-round two-party protocol of Yao [17] (as it is secure against semi-
honest adversaries). However, as we shall see, the output protocol itself is not
constant-round. In this section, we describe the [13] compiler and show what
should be modified in order to obtain a constant-round compiler instead.

Enforcing semi-honest behavior. The GMW compiler takes for input a protocol
secure against semi-honest adversaries; from here on we refer to this as the “basic
protocol”. Recall that this protocol is secure in the case that each party follows
the protocol specification exactly, using its input and uniformly chosen random
tape. Thus, in order to obtain a protocol secure against malicious adversaries, we
need to enforce potentially malicious parties to behave in a semi-honest manner.
First and foremost, this involves forcing the parties to follow the prescribed
protocol. However, this only makes sense relative to a given input and random
tape. Furthermore, a malicious party must be forced into using a uniformly
chosen random tape. This is because the security of the basic protocol may
depend on the fact that the party has no freedom in setting its own randomness.

An informal description of the GMW compiler. In light of the above discussion,
the compiler begins by having each party commit to its input. Next, the par-
ties run a coin-tossing protocol in order to fix their random tapes (clearly, this
protocol must be secure against malicious adversaries). A regular coin-tossing
protocol in which both parties receive the same uniformly distributed string
does not help us here. This is because the parties’ random tapes must remain
secret. This is solved by augmenting the coin-tossing protocol so that one party

receives a uniformly distributed string (to be used as its random tape) and the
other party receives a commitment to that string. Now, following these two
steps, each party holds its own uniformly distributed random-tape and a com-
mitment to the other party’s input and random-tape. Therefore, each party can
be “forced” into working consistently with this specific input and random-tape.
We now describe how this behavior is enforced. A protocol specification is a

deterministic function of a party’s view consisting of its input, random tape and
messages received so far. As we have seen, each party holds a commitment to the
input and random tape of the other party. Furthermore, the messages sent so far
are public. Therefore, the assertion that a new message is computed according
to the protocol is of the NP type (and the party sending the message knows an
adequate NP-witness to it). Thus, the parties can use zero-knowledge proofs to
show that their steps are indeed according to the protocol specification. As the
proofs used are zero-knowledge, they reveal nothing. On the other hand, due to
the soundness of the proofs, even a malicious adversary cannot deviate from the
protocol specification without being detected. We thus obtain a reduction of the
security in the malicious case to the given security of the basic protocol against
semi-honest adversaries.

In summary, the components of the compiler are as follows (from here on “secure”
refers to security against malicious adversaries):

1. Input Commitment: In this phase the parties execute a secure protocol
for the following functionality:

((x, r), 1n) 7→ (λ,C(x; r))

where x is the party’s input string (and r is the randomness chosen by the
committing party).
A secure protocol for this functionality involves the committing party sending
C(x; r) to the other party followed by a zero-knowledge proof of knowledge of
(x, r). Note that this functionality ensures that the committing party knows
the value being committed to.

2. Coin Generation: The parties generate t-bit long random tapes (and cor-
responding commitments) by executing a secure protocol in which one party
receives a commitment to a uniform string of length t and the other party
receives the string itself (to be used as its random tape) and the decommit-
ment (to be used later for proving “proper behavior”). That is, the parties
compute the functionality:

(1n, 1n) 7→ ((Ut, Ut·n), C(Ut;Ut·n))

(where we assume that to commit to a t-bit string, C requires t · n random
bits).

3. Protocol Emulation: In this phase, the parties run the basic protocol
whilst proving (in zero-knowledge) that their steps are consistent with their
input string, random tape and prior messages received.

A detailed description of each phase of the compiler and a full proof that the
resulting protocol is indeed secure against malicious adversaries can be found
in [9].

3.2 Achieving Round-Preserving Compilation

As we have mentioned, our aim in this work is to show that the GMW compiler
can be implemented so that the number of rounds in the resulting compiled
protocol is within a constant factor of the number of rounds in the original semi-
honest protocol. We begin by noting that using currently known constructions,
Phases 1 and 3 of the GMW compiler can be implemented in a constant number
of rounds. That is,

Proposition 5 Assuming the existence of one-way functions, both the input-
commitment and protocol-emulation phases can be securely implemented in a
constant number of rounds.

First consider the input-commitment phase. As mentioned above, this phase can
be securely implemented by having the committing party send a perfectly bind-
ing commitment of its input to the other party, followed by a zero-knowledge
proof of knowledge of the committed value. Both constant-round commitment
schemes and constant-round zero-knowledge arguments of knowledge are known
to exist by the works of Naor [15] and Feige and Shamir [8], respectively (these
constructions can also be based on any one-way function). Thus the input-
commitment phase can be implemented as required for Proposition 5.1 Next,
we recall that a secure implementation of the protocol emulation phase requires
zero-knowledge proofs for NP only. Thus, once again, using the argument sys-
tem of [8], this can be implemented in a constant number of rounds (using any
one-way function).

Constant-round coin tossing. In contrast to the input-commitment and protocol-
emulation phases of the GMW compiler, known protocols for tossing polynomi-
ally many coins do not run in a constant number of rounds. Rather, single coins
are tossed sequentially (and thus poly(n) rounds are needed). In particular, the
proof of [9] does not extend to the case that many coins are tossed in parallel.
Thus, in order to obtain a round-preserving compiler, it remains to present a
secure protocol for the coin-generation functionality that works in a constant
number of rounds. Furthermore, it is preferable to base this protocol on the ex-
istence of one-way functions only (so that this seemingly minimal assumption is
all that is needed for the entire compiler). In the next section we present such a
coin-tossing protocol, thereby obtaining Theorem 2 (as stated in the introduc-
tion).

1 We note that the protocol for the commit-functionality, as described in [9], is for a
single-bit only (and thus the compiler there runs this protocol sequentially for each
bit of the input). However, the proof for the commit-functionality remains almost
identical when the functionality is extended to commitments of poly(n)-bit strings
(rather than for just a single-bit).

3.3 Constant-Round Secure Computation

Recall that by Yao [17], assuming the existence of trapdoor permutations, any
two-party functionality can be securely computed in the semi-honest model in
a constant-number of rounds. Thus, applying the constant-round compiler of
Theorem 2 to Yao’s protocol, we obtain a constant-round protocol that is secure
in the malicious model, and prove Theorem 3. That is, assuming the existence of
trapdoor permutations, any two-party functionality can be securely computed
in the malicious model in a constant-number of rounds.

4 The Augmented Coin-Tossing Protocol

4.1 The Augmented Coin-Tossing Functionality

In this section we present our coin-tossing protocol, thus proving Theorem 1. In
a basic coin-tossing functionality, both parties receive identical uniformly dis-
tributed strings. That is, the functionality is defined as: (1n, 1n) 7→ (Um, Um) for
some m = poly(n). This basic coin-tossing is augmented as follows. Let F be any
deterministic function. Then, define the augmented coin-tossing functionality by:

(1n, 1n) 7→ (Um, F (Um))

That is, the first party indeed receives a uniformly distributed string. However,
the second party receives F applied to that string (rather than the string itself).
Setting F to the identity function, we obtain basic coin-tossing. However, recall
that the coin-generation component of the GMW compiler requires the following
functionality:

(1n, 1n) 7→ ((Ut, Ut·n), C(Ut;Ut·n))

where C is a commitment scheme (and we assume that C requires n random
bits for every bit committed to). Then, this functionality can be realized with
our augmentation by setting m = t + t · n and F (Um) = C(Ut;Ut·n). Thus,
the second party receives a commitment to a uniformly distributed string of
length t and the first party receives the string and its decommitment. Recall
that in the compiler, the party uses the t-bit string as its random tape and the
decommitment in order to prove in zero-knowledge that it is acting consistently
with this random tape (and its input).

4.2 Motivating Discussion

In order to motivate our construction of a constant-round coin-tossing protocol,
we consider the special case of basic coin-tossing (i.e., where F is the identity
function). A natural attempt at a coin-tossing protocol follows:

Protocol 1 (Attempt at Basic Coin-Tossing):

1. Party 1 chooses a random string s1 ∈R {0, 1}
m and sends c = Commit(s1) =

C(s1; r) (where r is randomly chosen).

2. Party 2 chooses a random string s2 ∈R {0, 1}
m and sends it to Party 1.

3. Party 1 decommits to s1 sending the pair (s1, r).

Party 1 always outputs s
def
= s1⊕s2, whereas Party 2 outputs s1⊕s2 if Party 1’s

decommitment is correct and ⊥ otherwise.

We note that when m = 1 (i.e., a single bit), the above protocol is the basic coin-
tossing protocol of Blum [3] (a formal proof of the security of this protocol can
be found in [9]). However, here we are interested in a parallelized version where
the parties attempt to simultaneously generate an m-bit random string (for any
m = poly(n)). Intuitively, due to the secrecy of the commitment scheme, the
string s2 chosen by (a possibly malicious) Party 2 cannot be dependent on the
value of s1. Thus if s1 is chosen uniformly, the resulting string s = s1⊕s2 is close
to uniform. On the other hand, consider the case that Party 1 may be malicious.
Then, by the protocol, Party 1 is committed to s1 before Party 2 sends s2. Thus,
if s2 is chosen uniformly, the string s = s1⊕s2 is uniformly distributed. We note
that due to the binding property of the commitment scheme, Party 1 cannot
alter the initial string committed to. We conclude that neither party is able to
bias the output string.

However, the infeasibility of either side to bias the resulting string is not
enough to show that the protocol is secure. This is because the definition of
secure computation requires that the protocol simulate an ideal execution in
which a trusted third party chooses a random string s and gives it to both
parties. Loosely speaking, this means that there exists a simulator that works
in the ideal model and simulates an execution with a (possibly malicious) party
such that the joint output distribution (in this ideal scenario) is indistinguishable
from when the parties execute the real protocol.

Protocol 1 seems not to fulfill this more stringent requirement. That is, our
problem in proving the security of Protocol 1 is with constructing the required
simulator. The main problem that occurs is regarding the simulation of Party 2.

Simulating a malicious Party 2: The simulator receives a uniformly distributed
string s and must generate an execution consistent with s. That is, the commit-
ment c = C(s1) given by the simulator to Party 2 must be such that s1⊕ s2 = s
(where s2 is the string sent by Party 2 in Step 2 of the protocol). However,
s1 is chosen and fixed (via a perfectly binding commitment) before s2 is cho-
sen by Party 2. Since the commitment is perfectly binding, even an all-powerful
simulator cannot “cheat” and decommit to a different value. This problem is
compounded by the fact that Party 2 may choose s2 based on the commit-
ment received to s1 (by say invoking a pseudorandom function on c). Therefore,
rewinding Party 2 and setting s1 to equal s⊕ s2 will not help (as s2 will change
and thus once again s1 ⊕ s2 will equal s with only negligible probability). We
note that this problem does not arise in the single-bit case as there are only two
possible values for s2 and thus the simulator succeeds with probability 1/2 each
time.

A problem relating to abort: The above problem arises even when the parties
never abort. However, another problem in simulation arises due to the ability
of the parties to abort. In particular, simulation of Party 1 in Protocol 1 is
easy assuming that Party 1 never aborts. On the other hand, when Party 1’s
abort probability is unknown (and specifically when it is neither negligible nor
noticeable), we do not know how to construct a simulator that does not skew the
real probability of abort in the simulated execution. Once again, this problem
is considerably easier in the single-bit case since Party 1’s decision of whether
or not to abort is based on only a single bit sent by Party 2 in Step 2 of the
protocol (and so there are only three possible probabilities).

We note that basic coin-tossing is a special case of the augmented coin-tossing
functionality. Thus, the same problems (and possibly others) must be solved
in order to obtain an augmented coin-tossing protocol. As we will show, our
solutions for these problems are enough for the augmented case as well.

Evidence that Protocol 1 is not secure: One may claim that the above 3-round
protocol may actually be secure and that the above-described difficulties are due
to our proof technique. However, it can be shown that if there exists a secure 3-
round protocol for coin-tossing (where the simulation uses black-box access to the
malicious party), then there exist 3-round black-box zero-knowledge arguments
for NP. By [11], this would imply that NP ⊆ BPP. We note that all known
simulations of secure protocols are indeed black-box.

4.3 The Actual Protocol

Before presenting the protocol itself, we discuss how we solve the problems de-
scribed in the above motivating discussion.

• Party 1 is malicious: As described, when Party 1 is malicious, the problem
that arises is that of aborting. In particular, Party 1 may decide to abort
depending on the string s2 sent to it by Party 2. This causes a problem in
ensuring that the probability of abort in the simulation is negligibly close
to that in a real execution. This is solved by having Party 1 send a proof
of knowledge of s1 after sending the commitment. Then, the simulator can
extract s1 from the proof of knowledge and can send s2 = s1 ⊕ s (where
s is the string chosen by the trusted party) without waiting for Party 1 to
decommit in a later step.

• Party 2 is malicious: As described, the central problem here is that Party 1
must commit itself to s1 before s2 is known (yet s1 ⊕ s2 must equal s).
This cannot be solved by rewinding because Party 2 may choose s2 based on
the commitment to s1 that it receives (and thus changing the commitment
changes the value of s2). We solve this problem by not having Party 1 de-
commit at all; rather, it sends s = s1 ⊕ s2 (or F (s1 ⊕ s2) in the augmented
case) and proves in zero-knowledge that the value sent is consistent with its
commitment and s2. Thus, the simulator (who can generate proofs to false

statements of this type) is able to “cheat” and send s (or F (s)) irrespective
of the real value committed to in Step 1.2

This technique of not decommitting, but rather revealing the committed
value and proving (in zero-knowledge) that this value is correct, is central to
our simulation strategy. Specifically, it enables us to “decommit” to a value
that is unknown at the time of the commitment. (As we have mentioned,
in order for the simulation to succeed, Party 2 must be convinced that the
commitment of Step 1 is to s1, where s1⊕ s2 = s. However, the correct value
of s1 is only known to the simulator after Step 2.)

We now present our constant-round protocol for the augmented secure coin-
tossing functionality: (1n, 1n) 7→ (Um, F (Um)), for m = poly(n). For the sake of
simplicity, our presentation uses a non-interactive commitment scheme (which is
easily constructed given any 1–1 one-way function). However, the protocol can
easily be modified so that an interactive commitment scheme is used instead (in
particular, the two-round scheme of Naor [15]).

Protocol 2 (Augmented Parallel Coin-Tossing):

1. Party 1 chooses s1 ∈R {0, 1}
m and sends c = C(s1; r) for a random r to

Party 2 (using a perfectly binding commitment scheme).
2. Party 1 proves knowledge of (s1, r) with a (constant round) zero-knowledge
argument of knowledge with negligible error. If the proof fails, then Party 2
aborts with output ⊥.

3. Party 2 chooses s2 ∈R {0, 1}
m and sends s2 to Party 1.

4. If until this point Party 1 received an invalid message from Party 2, then
Party 1 aborts, outputting ⊥.
Otherwise, Party 1 sends y = F (s1 ⊕ s2).

5. Party 1 proves to Party 2 using a (constant round) zero-knowledge argument
that there exists a pair (s1, r) such that c = C(s1; r) and y = F (s1⊕s2) (that
is, Party 1 proves that y is consistent with c and s2).

3 If the proof fails, then
Party 2 aborts with output ⊥.

6. Output:

• Party 1 outputs s1 ⊕ s2 (even if Party 2 fails to correctly complete the
verification of the proof in Step 5).

• Party 2 outputs y.

2 In general, nothing can be said about a simulated proof of a false statement. How-
ever, in the specific case of statements regarding commitment values, proofs of false
statements are indistinguishable from proofs of valid statements. This is due to the
hiding property of the commitment scheme.

3 It may appear that the reason that Party 1 does not decommit to c is due to the fact
that Party 2 should only learn F (s), and not s itself (if Party 1 decommits, then s

is clearly revealed). Following this line of thinking, if F was the identity function,
then Steps 4 and 5 could be replaced by Party 1 sending the actual decommitment.
However, we stress that we do not know how to prove the security of such a modified
protocol. The fact that Party 1 does not decommit, even when F is the identity
function, is crucial to our proof of security.

Round complexity: Using the constant-round zero-knowledge argument system
of Feige and Shamir [8] and the constant-round commitment scheme of Naor [15],
Protocol 2 requires a constant number of rounds only. We note that the proof
system of [8] is also a proof of knowledge.

Sufficient assumptions: All the components of Protocol 2 can be implemented
using any one-way function. In particular the string commitment of Naor [15] can
be used (this requires an additional pre-step in which Party 2 sends a random
string to Party 1; however this step is of no consequence to the proof). Fur-
thermore, the zero-knowledge argument of knowledge of [8] can be used in both
Steps 2 and 5. Since both the [15] and [8] protocols only assume the existence
of one-way functions, this is the only assumption required for the protocol.

Theorem 6 Assuming the existence of one-way functions, Protocol 2 is a secure
protocol for augmented parallel coin-tossing.

Proof: We need to show how to efficiently transform any admissible pair of
machines (A1, A2) for the real model into an admissible pair of machines (B1, B2)
for the ideal model. We denote the trusted third party by T , the coin-tossing
functionality by f and Protocol 2 by Π. We first consider the case that A1 is
adversarial.

Lemma 7 Let (A1, A2) be an admissible pair of probabilistic expected polynomial-
time machines for the real model in which A2 is honest. Then, there exists an
efficient transformation of (A1, A2) into an admissible pair of probabilistic ex-
pected polynomial-time machines (B1, B2) for the ideal model such that

{ideal
f,B
(1n, 1n)}n∈N

c
≡ {real

Π,A
(1n, 1n)}n∈N

Proof Sketch: In this case the second party is honest and thus B2 is deter-
mined. We now briefly describe the transformation of the real-model adversary
A1 into an ideal-model adversary B1. Machine B1 emulates an execution of A1

with A2 by playing the role of (an honest party) A2 in most of the execution. (In
particular, B1 verifies the zero-knowledge proofs provided by A1 and “checks”
that A1 is not cheating.) However, instead of randomly choosing the string s2

in Step 3 (as A2 would), machine B1 first obtains the value s1 (committed to
by A1) by running the extractor for the proof of knowledge of Step 2. Then, B1

sets s2 = s1 ⊕ s where s is the output provided by the trusted third party.
It is easy to see that if A1 follows the instructions of Protocol 2, then the

output distributions in the ideal and real models are identical. This is because
A1’s view in the ideal-model emulation with B1 is identical to that of a real
execution with A2. Furthermore, since s1⊕ s2 = s, the result of the execution is
consistent with the outputs chosen by the trusted third party. However, A1 may
not follow the instructions of the protocol and nevertheless we must show that
the real and ideal output distributions remain computationally indistinguishable

(in fact, they are even statistically close). This can be seen by noticing that
differences between the ideal and real executions can occur only if the extraction
fails even though A1 succeeded in proving the proof of Step 2, or if A1 successfully
cheats in the zero-knowledge proof of Step 5. Since both of these events occur
with at most negligible probability, we have that the distributions are statistically
close.

We now consider the case that A2 is adversarial.

Lemma 8 Let (A1, A2) be an admissible pair of probabilistic expected polynomial-
time machines for the real model in which A1 is honest. Then, there exists an
efficient transformation of (A1, A2) into an admissible pair of probabilistic ex-
pected polynomial-time machines (B1, B2) for the ideal model such that

{ideal
f,B
(1n, 1n)}n∈N

c
≡ {real

Π,A
(1n, 1n)}n∈N

Proof Sketch: In this case the first party is honest and thus B1 is determined.
We now transform the real-model adversary A2 into an ideal-model adversary
B2, where the transformation is such that B2 uses black-box access to A2. Specif-
ically, B2 chooses a uniform random tape, denoted R, for A2 and invokes A2 on
input 1n and random tape R. Once the input and random tape are fixed, A2 is
a deterministic function of messages received during a protocol execution. Thus
A2(1

n, R,m) denotes the message sent by A2 with input 1
n, random-tape R and

sequence m of incoming messages to A2.
The transformation works by having B2 emulate an execution of A2, while

playing A1’s role. Machine B2 does this when interacting with the trusted third
party T and its aim is to obtain an execution with A2 that is consistent with the
output received from T . Therefore, B2 has both external communication with T
and “internal”, emulated communication with A2. Machine B2 works as follows:

1. The ideal adversary B2 chooses a uniformly distributed random tape R for
the real adversary A2, invokes A2(1

n, R) and (internally) passes to A2 the
commitment c = C(0m; r) for a random r (recall that in a real execution,
A2 expects to receive C(s1; r) for a random s1).

2. B2 invokes the simulator for the zero-knowledge argument of knowledge of
the decommitment of c, using A2(1

n, R, c) as the verifier. (That is, this is a
simulation of the proof of knowledge that A1 is supposed to prove to A2 in
a real execution.)

3. B2 obtains s2 from A2. (Recall that this is formally stated by having B2

compute the function A2(1
n, R, c, tpok), where tpok is the resulting transcript

from the zero-knowledge proof of knowledge simulation).
If at any point until here A2 sent an invalid message, then B2 aborts and
outputs A2(1

n, R, c, tpok).
4. The ideal adversary B2 sends 1

n to the (external) trusted third party T and
receives the output F (s).
Next, B2 (internally) passes to A2 the string y = F (s).

5. B2 invokes the simulator for the zero-knowledge proof of Step 5 of the Pro-
tocol with the verifier role being played by A2(1

n, R, c, tpok, y). Denote the
transcript from the simulation of the zero-knowledge proof by tpf .

6. B2 outputs A2(1
n, R, c, tpok, y, tpf).

We need to show that

{ideal
f,B
(1n, 1n)}n∈N

c
≡ {real

Π,A
(1n, 1n)}n∈N

The following differences are evident between the ideal and real executions:

• The commitment received by A2 (in the internal emulation by B2) is to 0
m,

rather than to a random string consistent with y = F (s) and s2 (as is the case
in a real execution). However, by the indistinguishability of commitments,
this should not make a difference.

• In the internal emulation by B2, the zero-knowledge proofs are simulated
and not real proofs. However, by the indistinguishability of simulated proofs,
this should also not make a difference. As mentioned above, this holds even
though the statement “proved” by B2 in Step 5 is false with overwhelming
probability.

The natural way to proceed at this point would be to define a hybrid experiment
in which the commitment given by B2 to A2 is to s1 and yet the zero-knowledge
proofs are simulated. (In this hybrid experiment, s1 must be such that y =
F (s1⊕s2).) However, such a hybrid experiment is problematic because the value
of s1 that is consistent with both y (from T) and s2 is unknown at the point that
B2 generates the commitment. We must therefore bypass this problem before
defining the hybrid experiment. We do this by defining the following mental
experiment with a modified party B′

2 (replacing Step 4 only of B2 above):

4′. B′
2 chooses s1 ∈R {0, 1}

m (independently of what it has previously seen) and
computes y = F (s1 ⊕ s2) (rather than obtaining y = F (s) from T).
Next, B′

2 (internally) passes A2 the string y.

Notice that B′
2 does not interact with any trusted third party at all. Rather,

it chooses a uniformly distributed s, and computes F (s) itself (observe that
choosing s1 uniformly and setting s = s1⊕s2 is equivalent to uniformly choosing
s). We stress that B′

2 does not work in the ideal model, but is rather a mental
experiment. Despite this, since B′

2 chooses s1 independently of what it has seen,
the distribution generated by B′

2 is identical to that of the ideal model (where s
is chosen by the trusted party).
Next, notice that if we move the step in which s1 is chosen to before the

first step of B′
2, then this makes no difference to the output distribution. Having

done this, it is possible for B′
2 to send a commitment to s1 rather than to 0

m.
Thus, the above-described hybrid experiment can be defined. That is, we define a
hybrid setting (with a party B′′

2) in which B
′′
2 initially sends a commitment to s1

(rather than to 0m). Thus, in terms of the commitment, the hybrid experiment
is identical to a real execution (and different to the mental experiment and ideal

model). On the other hand, the zero-knowledge proofs in the hybrid experiment
are simulated (as in the mental experiment), rather than being actual proofs
(as in the real model). Then, the indistinguishability of the mental experiment
from the real model is demonstrated by first showing the indistinguishability of
the the hybrid and mental experiments (where the only difference is regarding
the initial commitment) and then showing the indistinguishability of the hybrid
and real executions (where the only difference is regarding the simulated zero-
knowledge proofs). Since the output of an ideal-model execution is identically
distributed to the output from the mental experiment, this completes the proof.

This completes the proof of Theorem 6.

4.4 Comparing Protocol 2 to the Protocol of [9]

The protocol for augmented coin-tossing presented by Goldreich [9] is for tossing
a single bit only (i.e., where m = 1). Thus, in order to toss polynomially many
coins, Goldreich suggests running the single-bit protocol many times sequentially.
However, the only difference between Protocol 2 and the protocol of [9] is that
here m can be any value polynomial in n and there m is fixed at 1 (i.e., by
setting m = 1 in our protocol, we obtain the exact protocol of [9]). Despite this,
our proof is different and works for any m = poly(n) whereas the proof of [9]
relies heavily on m = 1 (or at the most m = O(log n)).4 Furthermore, there
is a conceptual difference in the role of the two zero-knowledge proofs in the
protocol. In [9], these proofs are used in order to obtain augmented coin-tossing
(and are not needed for the case that F is the identity function). However, here
these proofs are used for obtaining coin-tossing of m = poly(n) coins in parallel,
even when F is the identity function.

5 Perfect Coin-Tossing

In this section we present a constant-round protocol for perfect coin tossing. By
perfect coin tossing, we mean that the output distribution of a real execution is
statistically close to the output distribution of the ideal process (rather than the
distributions being only computationally indistinguishable as required by secure
computation); see Theorem 9. As in the previous section, the functionality we
consider is that of augmented coin tossing: (1n, 1n) 7→ (Um, F (Um)).
The protocol is almost identical to Protocol 2 except that the commitment

scheme used is perfectly hiding and the zero-knowledge arguments are perfect.
These primitives are known to exist assuming the existence of families of clawfree
functions or collision-resistant hash functions. Thus we rely here on a (seemingly)
stronger assumption than merely the existence of one-way functions. We note
that Protocol 1 is a protocol for perfect coin tossing of a single bit and thus

4 In private communication, Goldreich stated that he did not know whether or not his
protocol [9] can be parallelized.

perfect coin tossing of m coins can be achieved in O(m) rounds (see the proof
in [9] which actually demonstrates statistical closeness). In this section we show
that perfect coin tossing of polynomially many coins can also be achieved in a
constant number of rounds.

Protocol 3 (Augmented Perfect Coin-Tossing):
An augmented perfect coin-tossing protocol is constructed by taking Protocol 2
and making the following modifications:

• The commitment sent by Party 1 in Step 1 is perfectly hiding.

• The proof of knowledge provided by Party 1 in Step 2 is perfect zero-knowledge.

• The proof provided by Party 1 in Step 5 is a perfect zero-knowledge proof

of knowledge. (Recall that in Protocol 2, this proof need not be a proof of
knowledge.)

Constant-round perfect zero-knowledge arguments of knowledge are known to
exist assuming the existence of constant-round perfectly hiding commitment
schemes [4, 8]. Furthermore, constant-round perfectly-hiding commitment schemes
can be constructed using families of clawfree [10] or collision-resistant hash func-
tions [16, 6]. These commitment schemes work by having the receiver first uni-
formly choose a function f from the family designated in the protocol. The
receiver then sends f to the sender who uses it to commit to a string by send-
ing a single message. Thus, using such a scheme, Protocol 3 begins by Party 2
choosing a function f from a clawfree or collision-resistant family and sending
it to Party 1. Then, Party 1 commits using f .
We stress the use of arguments of knowledge for both proofs here, whereas

in Protocol 2 the proof of Step 5 need not be a proof of knowledge. The reason
for this is that since the commitment is perfectly hiding, c is essentially a valid
commitment to every s1 ∈ {0, 1}

m. Thus, every y is “consistent” with c and
s2. Therefore, what we need to ensure is that y is consistent with s2 and the
decommitment of c that are known to Party 1. This can be accomplished using
a proof of knowledge.

Theorem 9 Assuming the existence of perfectly-hiding commitment schemes,
Protocol 3 is a secure protocol for augmented perfect coin-tossing. That is, there
exists an efficient transformation of every admissible pair of probabilistic expected
polynomial-time machines for the real model (A1, A2) into an admissible pair
of probabilistic expected polynomial-time machines for the ideal model (B1, B2),
such that

{ideal
f,B
(1n, 1n)}

s
≡ {real

Π2,A
(1n, 1n)}

where f is the augmented coin-tossing functionality and Π2 denotes Protocol 3.

The proof of this theorem is very similar to the proof of Theorem 6; the main
difference being with respect to the fact that the initial commitment is not
perfectly binding.

6 Acknowledgements

We would like to thank Oded Goldreich for his invaluable contribution to all
aspects of this work. We would also like to thank Moni Naor for his suggestion
that we look at the question of perfect coin-tossing as well.

References

1. D. Beaver. Foundations of Secure Interactive Computing. In Crypto91,
Springer-Verlag LNCS Vol. 576, pages 377–391, 1991.

2. D. Beaver, S. Micali and P. Rogaway. The Round Complexity of Secure Pro-
tocols. In 22nd STOC, pages 503–513, 1990.

3. M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133–137,
February 1982.

4. G. Brassard, C. Crepeau and M. Yung. Constant-round perfect zero-knowledge
computationally convincing protocols. In Theoretical Computer Science,
Vol. 84 (1), pp. 23–52, 1991.

5. R. Canetti. Security and Composition of Multi-party Cryptographic Protocols.
Journal of Cryptology, Vol. 13, No. 1, pages 143–202, 2000.

6. I. Damgard, T. Pederson and B. Pfitzmann. On the Existence of Statisti-
cally Hiding Bit Commitment Schemes and Fail-Stop Signatures. In Crypto93,
Springer-Verlag LNCS Vol. 773, pages 250–265, 1993.

7. S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing
Contracts. Communications of the ACM 28, pp. 637–647, 1985.

8. U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds.
In Crypto89, Springer-Verlag LNCS Vol. 435, pp 526-544.

9. O. Goldreich. Secure Multi-Party Computation. Manuscript. Preliminary ver-
sion, 1998. Available from: www.wisdom.weizmann.ac.il/∼oded/pp.html.

10. O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cam-
bridge University Press, 2001.

11. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM Journal on Computing, Vol. 25, No. 1, February 1996, pages
169-192.

12. O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but
their Validity or All Languages in NP Have Zero-Knowledge Proof Systems.
JACM, Vol. 38, No. 1, pages 691–729, 1991.

13. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th STOC,

pages 218–229, 1987. For details see [9].
14. S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript,

1992. Preliminary version in Crypto’91, Springer-Verlag (LNCS 576), 1991.
15. M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryp-

tology, Vol. 4, pages 151–158, 1991.
16. M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryp-

tographic Applications. In 21st STOC, pages 33–43, 1989.
17. A.C. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages

162–167, 1986.

