
Universally Composable Commitments

(Extended Abstract)

Ran Canetti? and Marc Fischlin??

Abstract. We propose a new security measure for commitment pro-
tocols, called Universally Composable (UC) Commitment. The measure
guarantees that commitment protocols behave like an “ideal commitment
service,” even when concurrently composed with an arbitrary set of pro-
tocols. This is a strong guarantee: it implies that security is maintained
even when an unbounded number of copies of the scheme are running
concurrently, it implies non-malleability (not only with respect to other
copies of the same protocol but even with respect to other protocols), it
provides resilience to selective decommitment, and more.
Unfortunately, two-party uc commitment protocols do not exist in the
plain model. However, we construct two-party uc commitment proto-
cols, based on general complexity assumptions, in the common reference
string model where all parties have access to a common string taken from
a predetermined distribution. The protocols are non-interactive, in the
sense that both the commitment and the opening phases consist of a
single message from the committer to the receiver.

Keywords: Commitment schemes, concurrent composition, non-malleability,
security analysis of protocols.

1 Introduction

Commitment is one of the most basic and useful cryptographic prim-
itives. It is an essential building block in Zero-Knowledge protocols
(e.g., [gmw91,bcc88,d89]), in general function evaluation protocols (e.g.,
[gmw87,ghy88,g98]), in contract-signing and electronic commerce, and more.
Indeed, commitment protocols have been studied extensively in the past two
decades (e.g., [n91,ddn00,novy92,b99,dio98,ff00,dkos01]).

The basic idea behind the notion of commitment is attractively simple: A
committer provides a receiver with the digital equivalent of a “sealed envelope”
containing a value x. From this point on, the committer cannot change the value
inside the envelope, and, as long as the committer does not assist the receiver
in opening the envelope, the receiver learns nothing about x. When both parties
cooperate, the value x is retrieved in full.

? IBM T.J. Watson Research Center. Email: canetti@watson.ibm.com.
?? Goethe-University of Frankfurt; part of this work done while visiting IBM T.J. Wat-

son Research Center. Email: marc@mi.informatik.uni-frankfurt.de.



Formalizing this intuitive idea is, however, non-trivial. Traditionally, two
quite distinct basic flavors of commitment are formalized: unconditionally bind-

ing and unconditionally secret commitment protocols (see, e.g., [g95]). These
basic definitions are indeed sufficient for some applications (see there). But they
treat commitment as a “stand alone” task and do not in general guarantee se-
curity when a commitment protocol is used as a building-block within other
protocols, or when multiple copies of a commitment protocol are carried out
together. A good first example for the limitations of the basic definitions is the
selective decommitment problem [dnrs99], that demonstrates our inability to
prove some very minimal composition properties of the basic definitions.

Indeed, the basic definitions turned out to be inadequate in some scenarios,
and stronger variants that allow to securely “compose” commitment protocols
—both with the calling protocol and with other invocations of the commitment
protocol— were proposed and successfully used in some specific contexts. One
such family of variants make sure that knowledge of certain trapdoor informa-
tion allows “opening” commitments in more than a single way. These include
chameleon commitments [bcc88], trapdoor commitments [fs90] and equivoca-

ble commitments [b99]. Another strong variant is non-malleable commitments

[ddn00], where it is guaranteed that a dishonest party that receives an unopened
commitment to some value x will be unable to commit to a value that depends
on x in any way, except for generating another commitment to x. (A more re-
laxed variant of the [ddn00] notion of non-malleability is non-malleability with

respect to opening [dio98,ff00,dkos01].)

These stronger measures of security for commitment protocols are indeed very
useful. However they only solve specific problems and stop short of guaranteeing
that commitment protocols maintain the expected behavior in general crypto-
graphic contexts, or in other words when composed with arbitrary protocols. To
exemplify this point, notice for instance that, although [ddn00] remark on more
general notions of non-malleability, the standard notion of non-malleability con-
siders only other copies of the same protocol. There is no guarantee that a mali-
cious receiver is unable to “maul” a given commitment by using a totally different
commitment protocol. And it is indeed easy to come up with two commitment
protocols C and C′ such that both are non-malleable with respect to themselves,
but an adversary that plays a receiver in C can generate a C ′-commitment to a
related value.

This work proposes a measure of security for commitment protocols that
guarantees the “envelope-like” intuitive properties of commitment even when
the commitment protocol is concurrently composed with an arbitrary set of pro-
tocols. In particular, protocols that satisfy this measure (called universally com-
posable (uc) commitment protocols) remain secure even when an unbounded
number of copies of the protocol are executed concurrently in an adversarially
controlled way; they are resilient to selective decommitment attacks; they are
non-malleable both with respect to other copies of the same protocol and with re-
spect to arbitrary commitment protocols. In general, a uc commitment protocol
successfully emulates an “ideal commitment service” for any application proto-



col (be it a Zero-Knowledge protocol, a general function evaluation protocol, an
e-commerce application, or any combination of the above).

This measure of security for commitment protocols is very strong indeed.
It is perhaps not surprising then that uc commitment protocols which involve
only the committer and the receiver do not exist in the standard “plain model”
of computation where no set-up assumptions are provided. (We formally prove
this fact.) However, in the common reference string (crs) model things look
better. (The crs model is a generalization of the common random string model.
Here all parties have access to a common string that was chosen according to
some predefined distribution. Other equivalent terms include the reference string

model [d00] and the public parameter model [ff00].) In this model we construct
uc commitment protocols based on standard complexity assumptions. A first
construction, based on any family of trapdoor permutations, requires the length
of the reference string to be linear in the number of invocations of the protocol
throughout the lifetime of the system. A second protocol, based on any claw-free
pair of trapdoor permutations, uses a short reference string for an unbounded
number of invocations. The protocols are non-interactive, in the sense that both
the commitment and the decommitment phases consist of a single message from
the committer to the receiver. We also note that uc commitment protocols can
be constructed in the plain model, if the committer and receiver are assisted by
third parties (or, “servers”) that participate in the protocol without having local
inputs and outputs, under the assumption that a majority of the servers remain
uncorrupted.

1.1 On the new measure

Providing meaningful security guarantees under composition with arbitrary pro-
tocols requires using an appropriate framework for representing and arguing
about such protocols. Our treatment is based in a recently proposed such gen-
eral framework [c00a]. This framework builds on known definitions for function
evaluation and general tasks [gl90,mr91,b91,pw94,c00,dm00,pw01], and al-
lows defining the security properties of practically any cryptographic task. Most
importantly, in this framework security of protocols is maintained under general
concurrent composition with an unbounded number of copies of arbitrary proto-
cols. We briefly summarize the relevant properties of this framework. See more
details in Section 2.1 and in [c00a].

As in prior general definitions, the security requirements of a given task (i.e.,
the functionality expected from a protocol that carries out the task) are captured
via a set of instructions for a “trusted party” that obtains the inputs of the
participants and provides them with the desired outputs. However, as opposed
to the standard case of secure function evaluation, here the trusted party (which
is also called the ideal functionality) runs an arbitrary algorithm and in particular
may interact with the parties in several iterations, while maintaining state in
between. Informally, a protocol securely carries out a given task if running the
protocol amounts to “emulating” an ideal process where the parties hand their



inputs to the appropriate ideal functionality and obtain their outputs from it,
without any other interaction.

In order to allow proving the concurrent composition theorem, the notion of
emulation in [c00a] is considerably stronger than previous ones. Traditionally,
the model of computation includes the parties running the protocol and an ad-
versary, A, and “emulating an ideal process” means that for any adversary A
there should exist an “ideal process adversary” (or, simulator) S that results in
similar distribution on the outputs for the parties. Here an additional adversar-
ial entity, called the environment Z, is introduced. The environment generates
the inputs to all parties, reads all outputs, and in addition interacts with the
adversary in an arbitrary way throughout the computation. A protocol is said to
securely realize a given ideal functionality F if for any adversary A there exists an
“ideal-process adversary” S, such that no environment Z can tell whether it is
interacting with A and parties running the protocol, or with S and parties that
interact with F in the ideal process. (In a sense, here Z serves as an “interactive
distinguisher” between a run of the protocol and the ideal process with access
to F . See [c00a] for more motivating discussion on the role of the environment.)
Note that the definition requires the “ideal-process adversary” (or, simulator)
S to interact with Z throughout the computation. Furthermore, Z cannot be
“rewound”.

The following universal composition theorem is proven in [c00a]. Consider
a protocol π that operates in a hybrid model of computation where parties can
communicate as usual, and in addition have ideal access to (an unbounded num-
ber of copies of) some ideal functionality F . Let ρ be a protocol that securely
realizes F as sketched above, and let πρ be the “composed protocol”. That is,
πρ is identical to π with the exception that each interaction with some copy of
F is replaced with a call to (or an invocation of) an appropriate instance of ρ.
Similarly, ρ-outputs are treated as values provided by the appropriate copy of F .
Then, π and πρ have essentially the same input/output behavior. In particular,
if π securely realizes some ideal functionality G given ideal access to F then πρ

securely realizes G from scratch.

To apply this general framework to the case of commitment protocols, we
formulate an ideal functionality Fcom that captures the expected behavior of
commitment. Universally Composable (uc) commitment protocols are defined to
be those that securely realize Fcom. Our formulation of Fcom is a straightforward
transcription of the “envelope paradigm”: Fcom first waits to receive a request
from some party C to commit to value x for party R. (C and R are identities
of two parties in a multiparty network). When receiving such a request, Fcom
records the value x and notifies R that C has committed to some value for him.
When C later sends a request to open the commitment, Fcom sends the recorded
value x to R, and halts. (Some other variants of Fcom are discussed within.)
The general composition theorem now implies that running (multiple copies of)
a uc commitment protocol π is essentially equivalent to interacting with the
same number of copies of Fcom, regardless of what the calling protocol does. In
particular, the calling protocol may run other commitment protocols and may



use the committed values in any way. As mentioned above, this implies a strong
version of non-malleability, security under concurrent composition, resilience to
selective decommitment, and more.

The definition of security and composition theorem carry naturally to the crs
model as well. However, this model hides a caveat: The composition operation
requires that each copy of the uc commitment protocol will have its own copy
of the crs. Thus, a protocol that securely realizes Fcom as described above
is highly wasteful of the reference string. In order to capture protocols where
multiple commitments may use the same reference string we formulate a natural
extension of Fcom that handles multiple commitment requests. Let Fmcom denote
this extension.

We remark that uc commitment protocols need not, by definition, be neither
unconditionally secret nor unconditionally binding. Indeed, one of the construc-
tions presented here has neither property.

1.2 On the constructions

At a closer look, the requirements from a uc commitment protocol boil down
to the following two requirements from the ideal-process adversary (simulator)
S. (a). When the committer is corrupted (i.e., controlled by the adversary), S
must be able to “extract” the committed value from the commitment. (That
is, S has to come up with a value x such that the committer will almost never
be able to successfully decommit to any x′ 6= x.) This is so since in the ideal
process S has to explicitly provide Fcom with a committed value. (b). When
the committer is uncorrupted, S has to be able to generate a kosher-looking
“simulated commitment” c that can be “opened” to any value (which will become
known only later). This is so since S has to provide adversary A and environment
Z with the simulated commitment c before the value committed to is known.
All this needs to be done without rewinding the environment Z. (Note that non-
malleability is not explicitly required in this description. It is, however, implied
by the above requirements.)

From the above description it may look plausible that no simulator S exists
that meets the above requirements in the plain model. Indeed, we formalize and
prove this statement for the case of protocols that involve only a committer and
a receiver. (In the case where the committer and the receiver are assisted by
third parties, a majority of which is guaranteed to remain uncorrupted, stan-
dard techniques for multiparty computation are sufficient for constructing uc
commitment protocols. See [c00a] for more details.)

In the crs model the simulator is “saved” by the ability to choose the ref-
erence string and plant trapdoors in it. Here we present two uc commitment
protocols. The first one (that securely realizes functionality Fcom) is based on
the equivocable commitment protocols of [dio98], while allowing the simulator
to have trapdoor information that enables it to extract the values committed
to by corrupted parties. However, the equivocability property holds only with



respect to a single usage of the crs. Thus this protocol fails to securely realize
the multiple commitment functionality Fmcom.

In the second protocol (that securely realizes Fmcom), the reference string
contains a description of a claw-free pair of trapdoor permutations and a public
encryption key of an encryption scheme that is secure against adaptive chosen ci-
phertext attacks (CCA) (as in, say, [ddn00,rs91,bdpr98,cs98]). Commitments
are generated via standard use of a claw-free pair, combined with encrypting po-
tential decommitments. The idea to use CCA-secure encryption in this context
is taken from [l00,dkos01].

Both protocols implement commitment to a single bit. Commitment to ar-
bitrary strings is achieved by composing together several instances of the basic
protocol. Finding more efficient uc commitment protocols for string commitment
is an interesting open problem.

Applicability of the notion. In addition to being an interesting goal in
their own right, uc commitment protocols can potentially be very useful in
constructing more complex protocols with strong security and composability
properties. To demonstrate the applicability of the new notion, we show how uc
commitment protocols can be used in a simple way to construct strong Zero-
Knowledge protocols without any additional cryptographic assumptions.

Related work. Pfitzmann et. al. [pw94,pw01] present another definitional
framework that allows capturing the security requirements of general reactive
tasks, and prove a concurrent composition theorem with respect to their frame-
work. Potentially, our work could be cast in their framework as well; however,
the composition theorem provided there is considerably weaker than the one in
[c00a].

Organization. Section 2 shortly reviews the general framework of [c00a]
and presents the ideal commitment functionalities Fcom and Fmcom. Section
3 presents and proves security of the protocols that securely realize Fcom and
Fmcom. Section 4 demonstrates that functionalities Fcom and Fmcom cannot be
realized in the plain model by a two-party protocol. Section 5 presents the appli-
cation to constructing Zero-Knowledge protocols. For lack of space most proofs
are omitted. They appear in [cf01].

2 Definitions

Section 2.1 shortly summarizes the relevant parts of the general framework of
[c00a], including the definition of security and the composition theorem. Section
2.2 defines the ideal commitment functionalities, Fcom and Fmcom.

2.1 The general framework

Protocol syntax. Following [gmra89,g95], protocols are represented as a set
of interactive Turing machines (ITMs). Specifically, the input and output tapes
model inputs and outputs that are received from and given to other programs



running on the same machine, and the communication tapes model messages
sent to and received from the network. Adversarial entities are also modeled as
ITMs; we concentrate on a non-uniform complexity model where the adversaries
have an arbitrary additional input, or an “advice”.

The adversarial model. [c00a] discusses several models of computation. We
concentrate on one main model, aimed at representing current realistic communi-
cation networks (such as the Internet). Specifically, the network is asynchronous

without guaranteed delivery of messages. The communication is public (i.e., all
messages can be seen by the adversary) but ideally authenticated (i.e., messages
cannot be modified by the adversary). In addition, parties have unique identi-

ties.1 The adversary is adaptive in corrupting parties, and is active (or, Byzan-

tine) in its control over corrupted parties. Finally, the adversary and environment
are restricted to probabilistic polynomial time (or, “feasible”) computation.

Protocol execution in the real-life model. We sketch the “mechanics” of
executing a given protocol π (run by parties P1, ..., Pn) with some adversary
A and an environment machine Z with input z. All parties have a security pa-
rameter k ∈ N and are polynomial in k. The execution consists of a sequence
of activations, where in each activation a single participant (either Z, A, or
some Pi) is activated. The activated participant reads information from its in-
put and incoming communication tapes, executes its code, and possibly writes
information on its outgoing communication tapes and output tapes. In addi-
tion, the environment can write information on the input tapes of the parties,
and read their output tapes. The adversary can read messages off the outgoing
message tapes of the parties and deliver them by copying them to the incoming
message tapes of the recipient parties. The adversary can also corrupt parties,
with the usual consequences that it learns the internal information known to the
corrupted party and that from now on it controls that party.

The environment is activated first; once activated, it may choose to acti-
vate either one of the parties (with some input value) or to activate the adver-
sary. Whenever the adversary delivers a message to some party P , this party
is activated next. Once P ’s activation is complete, the environment is acti-
vated. Throughout, the environment and the adversary may exchange infor-
mation freely using their input and output tapes. The output of the protocol
execution is the output of Z. (Without loss of generality Z outputs a single bit.)

Let realπ,A,Z(k, z, r) denote the output of environment Z when interacting
with adversary A and parties running protocol π on security parameter k, input
z and random input r = rZ , rA, r1 . . . rn as described above (z and rZ for Z,
rA for A; ri for party Pi). Let realπ,A,Z(k, z) denote the random variable

1 Indeed, the communication in realistic networks is typically unauthenticated, in the
sense that messages may be adversarially modified en-route. In addition, there is no
guarantee that identities will be unique. Nonetheless, since authentication and the
guarantee of unique identities can be added independently of the rest of the protocol,
we allow ourselves to assume ideally authenticated channels and unique identities.
See [c00a] for further discussion.



describing realπ,A,Z(k, z, r) when r is uniformly chosen. Let realπ,A,Z denote
the ensemble {realπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

The ideal process. Security of protocols is defined via comparing the protocol
execution in the real-life model to an ideal process for carrying out the task
at hand. A key ingredient in the ideal process is the ideal functionality that
captures the desired functionality, or the specification, of that task. The ideal
functionality is modeled as another ITM that interacts with the environment and
the adversary via a process described below. More specifically, the ideal process
involves an ideal functionality F , an ideal process adversary S, an environment Z
on input z and a set of dummy parties P̃1, ..., P̃n. The dummy parties are fixed and
simple ITMS: Whenever a dummy party is activated with input x, it forwards
x to F , say by copying x to its outgoing communication tape; whenever it is
activated with incoming message from F it copies this message to its output. F
receives information from the (dummy) parties by reading it off their outgoing
communication tapes. It hands information back to the parties by sending this
information to them. The ideal-process adversary S proceeds as in the real-life
model, except that it has no access to the contents of the messages sent between
F and the parties. In particular, S is responsible for delivering messages, and it
can corrupt dummy parties, learn the information they know, and control their
future activities.

The order of events in the ideal process is as follows. As in the real-life model,
the environment is activated first. As there, parties are activated when they re-
ceive new information (here this information comes either from the environment
or from F). In addition, whenever a dummy party P sends information to F ,
then F is activated. Once F completes its activation, P is activated again. Also,
F may exchange messages directly with the adversary. It is stressed that in the
ideal process there is no communication among the parties. The only “commu-
nication” is in fact idealized transfer of information between the parties and the
ideal functionality. The output of the ideal process is the (one bit) output of Z.

Let idealF,S,Z(k, z, r) denote the output of environment Z after interact-
ing in the ideal process with adversary S and ideal functionality F , on security
parameter k, input z, and random input r = rZ , rS , rF as described above (z
and rZ for Z, rS for S; rF for F). Let idealF,S,Z(k, z) denote the random vari-
able describing idealF,S,Z(k, z, r) when r is uniformly chosen. Let idealF,S,Z

denote the ensemble {idealF,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Securely realizing an ideal functionality. We say that a protocol ρ securely
realizes an ideal functionality F if for any real-life adversary A there exists an
ideal-process adversary S such that no environment Z, on any input, can tell with
non-negligible probability whether it is interacting with A and parties running ρ
in the real-life process, or it is interaction with A and F in the ideal process. This
means that, from the point of view of the environment, running protocol ρ is
‘just as good’ as interacting with an ideal process for F . (In a way, Z serves as an
“interactive distinguisher” between the two processes. Here it is important that
Z can provide the process in question with adaptively chosen inputs throughout
the computation.)



Definition 1. Let X = {X(k, a)}k∈N,a∈{0,1}∗ and Y = {Y (k, a)}k∈N,a∈{0,1}∗ be

two distribution ensembles over {0, 1}. We say that X and Y are indistinguishable

(written X
c

≈ Y) if for any c ∈ N there exists k0 ∈ N such that |Pr(X(k, a) =
1)− Pr(Y (k, a) = 1)| < k−c for all k > k0 and all a.

Definition 2 ([c00a]). Let n ∈ N. Let F be an ideal functionality and let π

be an n-party protocol. We say that π securely realizes F if for any adversary A
there exists an ideal-process adversary S such that for any environment Z we

have idealF,S,Z
c

≈ realπ,A,Z .

The common reference string (crs) model. In this model it is assumed
that all the participants have access to a common string that is drawn from
some specified distribution. (This string is chosen ahead of time and is made
available before any interaction starts.) It is stressed that the security of the
protocol depends on the fact that the reference string is generated using a pre-
specified randomized procedure, and no “trapdoor information” related to the
string exists in the system. This in turn implies full trust in the entity that
generates the reference string. More precisely, the crs model is formalized as
follows.

– The real-life model of computation is modified so that all participants have
access to a common string that is chosen in advance according to some
distribution (specified by the protocol run by the parties) and is written in
a special location on the input tape of each party.

– The ideal process is modified as follows. In a preliminary step, the ideal-
model adversary chooses a string in some arbitrary way and writes this
string on the input tape of the environment machine. After this initial step
the computation proceeds as before. It is stressed that the ideal functionality
has no access to the reference string.

Justification of the crs model. Allowing the ideal-process adversary (i.e.,
the simulator) to choose the reference string is justified by the fact that the
behavior of the ideal functionality does not depend on the reference string. This
means that the security guarantees provided by the ideal process hold regardless
of how the reference string is chosen and whether trapdoor information regarding
this string is known.

On the composition theorem: The hybrid model. In order to state the
composition theorem, and in particular in order to formalize the notion of a real-
life protocol with access to an ideal functionality, the hybrid model of computa-
tion with access to an ideal functionality F (or, in short, the F-hybrid model)
is formulated. This model is identical to the real-life model, with the following
exceptions. In addition to sending messages to each other, the parties may send
messages to and receive messages from an unbounded number of copies of F .
Each copy of F is identified via a unique session identifier (SID); all messages
addressed to this copy and all message sent by this copy carry the corresponding
SID. (The SIDs are chosen by the protocol run by the parties.)



The communication between the parties and each one of the copies of F
mimics the ideal process. That is, once a party sends a message to some copy
of F , that copy is immediately activated and reads that message off the party’s
tape. Furthermore, although the adversary in the hybrid model is responsible
for delivering the messages from the copies of F to the parties, it does not have
access to the contents of these messages.

Replacing a call to F with a protocol invocation. Let π be a protocol
in the F-hybrid model, and let ρ be a protocol that securely realizes F (with
respect to some class of adversaries). The composed protocol πρ is constructed
by modifying the code of each ITM in π so that the first message sent to each
copy of F is replaced with an invocation of a new copy of π with fresh random
input, and with the contents of that message as input. Each subsequent message
to that copy of F is replaced with an activation of the corresponding copy of ρ,
with the contents of that message given to ρ as new input. Each output value
generated by a copy of ρ is treated as a message received from the corresponding
copy of F .

Theorem statement. In its general form, the composition theorem basically
says that if ρ securely realizes F then an execution of the composed protocol πρ

“emulates” an execution of protocol π in the F-hybrid model. That is, for any
real-life adversary A there exists an adversary H in the F-hybrid model such
that no environment machine Z can tell with non-negligible probability whether
it is interacting with A and πρ in the real-life model or it is interacting with H
and π in the F-hybrid model..

A more specific corollary of the general theorem states that if π securely
realizes some functionality G in the F-hybrid model, and ρ securely realizes F in
the real-life model, then πρ securely realizes G in the real-life model. (Here one
has to define what it means to securely realize functionality G in the F-hybrid
model. This is done in the natural way.)

Theorem 1 ([c00a]). Let F ,G be ideal functionalities. Let π be an n-party

protocol that realizes G in the F-hybrid model and let ρ be an n-party protocol

that securely realizes F Then protocol πρ securely realizes G.

Protocol composition in the crs model. Some words of clarification are in order

with respect to the composition theorem in the crs model. Specifically, it is stressed

that each copy of protocol ρ within the composed protocol πρ should have its own

copy of the reference string, or equivalently uses a separate portion of a long string.

(If this is not the case then the theorem no longer holds in general.) As seen below,

the behavior of protocols where several copies of the protocol use the same instance of

the reference string can be captured using ideal functionalities that represent multiple

copies of the protocol within a single copy of the functionality.

2.2 The commitment functionalities

We propose ideal functionalities that represent the intuitive “envelope-like” prop-
erties of commitment, as sketched in the introduction. Two functionalities are



presented: functionality Fcom that handles a single commitment-decommitment
process, and functionality Fmcom that handles multiple such processes.. (Indeed,
in the plain model functionality Fmcom would be redundant, since one can use
the composition theorem to obtain protocols that securely realize Fmcom from
any protocol that securely realizes Fcom. However, in the crs model realizing
Fmcom is considerably more challenging than realizing Fcom.) Some further dis-
cussion on the functionalities and possible variants appears in [cf01].

Both functionalities are presented as bit commitments. Commitments to
strings can be obtained in a natural way using the composition theorem. It is
also possible, in principle, to generalize Fcom and Fmcom to allow commitment
to strings. Such extensions may be realized by string-commitment protocols that
are more efficient than straightforward composition of bit commitment protocols.
Finding such protocols is an interesting open problem.

Functionality Fcom

Fcom proceeds as follows, running with parties P1, ..., Pn and an adversary S.

1. Upon receiving a value (Commit, sid , Pi, Pj , b) from Pi, where b ∈ {0, 1},
record the value b and send the message (Receipt, sid , Pi, Pj) to Pj and
S. Ignore any subsequent Commit messages.

2. Upon receiving a value (Open, sid , Pi, Pj) from Pi, proceed as fol-
lows: If some value b was previously recoded, then send the message
(Open, sid , Pi, Pj , b) to Pj and S and halt. Otherwise halt.

Fig. 1. The Ideal Commitment functionality for a single commitment

Functionality Fcom, described in Figure 1, proceeds as follows. The commit-
ment phase is modeled by having Fcom receive a value (Commit, sid , Pi, Pj , b),
from some party Pi (the committer). Here sid is a Session ID used to distinguish
among various copies of Fcom, Pj is the identity of another party (the receiver),
and b ∈ {0, 1} is the value committed to. In response, Fcom lets the receiver
Pj and the adversary S know that Pi has committed to some value, and that
this value is associated with session ID sid . This is done by sending the message
(Receipt, sid , Pi, Pj) to Pj and S. The opening phase is initiated by the com-
mitter sending a value (Open, sid , Pi, Pj) to Fcom. In response, Fcom hands the
value (Open, sid , Pi, Pj , b) to Pj and S.

Functionality Fmcom, presented in Figure 2, essentially mimics the operation
of Fcom for an unbounded number of times. In addition to the session ID sid ,
functionality Fmcom uses an additional identifier, a Commitment ID cid, that is
used to distinguish among the different commitments that take place within a
single run of Fmcom. The record for a committed value now includes the Commit-
ment ID, plus the identities of the committer and receiver. To avoid ambiguities,
no two commitments with the same committer and verifier are allowed to have
the same Commitment ID. It is stressed that the various Commit and Open re-
quests may be interleaved in an arbitrary way. Also, note that Fmcom allows a
committer to open a commitment several times (to the same receiver).



Functionality Fmcom

Fmcom proceeds as follows, running with parties P1, ..., Pn and an adversary S.

1. Upon receiving a value (Commit, sid , cid , Pi, Pj , b) from Pi, where
b ∈ {0, 1}, record the tuple (cid , Pi, Pj , b) and send the mes-
sage (Receipt, sid , cid , Pi, Pj) to Pj and S. Ignore subsequent
(Commit, sid , cid , Pi, Pj , ...) values.

2. Upon receiving a value (Open, sid , cid , Pi, Pj) from Pi, proceed as fol-
lows: If the tuple (cid , Pi, Pj , b) is recorded then send the message
(Open, sid , cid , Pi, Pj , b) to Pj and S. Otherwise, do nothing.

Fig. 2. The Ideal Commitment functionality for multiple commitments

Definition 3. A protocol is a universally composable (uc) commitment protocol

if it securely realizes functionality Fcom. If the protocol securely realizes Fmcom

then it is called a reusable-crs uc commitment protocol.

Remark: On duplicating commitments. Notice that functionalities Fcom
and Fmcom disallow “copying commitments”. That is, assume that party A com-
mits to some value x for party B, and that the commitment protocol in use allows
B to commit to the same value x for some party C, before A decommitted to x.
Once A decommits to x for B, B will decommit to x for C. Then this protocol
does not securely realize Fcom or Fmcom. This requirement may seem hard to
enforce at first, since B can always play “man in the middle” (i.e., forward A’s
messages to C and C’s messages to A.) We enforce it using the unique identities
of the parties. (Recall that unique identities are assumed to be provided via an
underlying lower-level protocol that also guarantees authenticated communica-
tion.)

3 Universally Composable Commitment Schemes

We present two constructions of uc commitment protocols in the common refer-
ence string model. The protocol presented in Section 3.1 securely realizes func-
tionality Fcom, i.e. each part of the public string can only be used for a single
commitment. It is based on any trapdoor permutation. The protocol presented
in Section 3.2 securely realizes Fmcom, i.e. it reuses the public string for multiple
commitments. This protocol requires potentially stronger assumptions (either
existence of claw-free pairs of trapdoor permutations or alternatively the hard-
ness of discrete log).

3.1 One-Time Common Reference String

The construction in this section works in the common random string model where
each part of the commitment can be used only once for a commitment. It is based
on the equivocable bit commitment scheme of Di Crescenzo et al. [dio98], which
in turn is a clever modification of Naor’s commitment scheme [n91].



Let G be a pseudorandom generator stretching n-bit inputs to 4n-bit outputs.
For security parameter n the receiver in [n91] sends a random 4n-bit string σ to
the sender, who picks a random r ∈ {0, 1}

n
, computes G(r) and returns G(r) or

G(r)⊕σ to commit to 0 and 1, respectively. To decommit, the sender transmits
b and r. By the pseudorandomness of G the receiver cannot distinguish both
cases, and with probability 2−2n over the choice of σ it is impossible to find
openings r0 and r1 such that G(r0) = G(r1)⊕ σ.

In [dio98] an equivocable version of Naor’s scheme has been proposed. Sup-
pose that σ is not chosen by the receiver, but rather is part of the common
random string. Then, if instead we set σ = G(r0)⊕G(r1) for random r0, r1, and
let the sender give G(r0) to the receiver, it is later easy to open this commitment
as 0 with r0 as well as 1 with r1 (because G(r0) ⊕ σ = G(r1)). On the other
hand, choosing σ in that way in indistinguishable from a truly random choice.

We describe a uc bit commitment protocol UCCOneTime (for universally com-
posable commitment scheme in the one-time-usable common reference string
model). The idea is to use the [dio98] scheme with a special pseudorandom
generator, namely, the Blum-Micali-Yao generator based on any trapdoor per-
mutation [y82,bm84]. Let KGen denote an efficient algorithm that on input 1n

generates a random public key pk and the trapdoor td . The key pk describes
a trapdoor permutation fpk over {0, 1}

n
. Let B(·) be a hard core predicate for

fpk . Define a pseudorandom generator expanding n bits to 4n bits with public
description pk by

Gpk (r) =
(

f
(3n)
pk (r), B

(

f
(3n−1)
pk (r)

)

, . . . , B
(

fpk (r)
)

, B(r)
)

where f
(i)
pk (r) is the i-th fold application of fpk to r. An important feature of

this generator is that given the trapdoor td to pk it is easy to recognize images
y ∈ {0, 1}

4n
under Gpk .

The public random string in our scheme consists of a random 4n-bit string
σ, together with two public keys pk 0, pk1 describing trapdoor pseudorandom
generators Gpk

0
and Gpk

1
; both generators stretch n-bit inputs to 4n-bit output.

The public keys pk0, pk1 are generated by two independent executions of the key
generation algorithm KGen on input 1n. Denote the corresponding trapdoors by
td0 and td1, respectively.

In order to commit to a bit b ∈ {0, 1}, the sender picks a random string
r ∈ {0, 1}

n
, computes Gpk

b
(r), and sets y = Gpk

b
(r) if b = 0, or y = Gpk

b
(r)⊕σ

for b = 1. The sender passes y to the receiver. In the decommitment step the
sender gives (b, r) to the receiver, who verifies that y=Gpk

b
(r) for b = 0 or that

y = Gpk
b
(r)⊕ σ for b = 1. See also Figure 3.

Clearly, the scheme is computationally hiding and statistically binding. An
important observation is that our scheme inherits the equivocability property of
[dio98]. In a simulation we replace σ by Gpk

0
(r0) ⊕ Gpk

1
(r1) and therefore, if

we impersonate the sender and transmit y = Gpk (r0) to a receiver, then we can
later open this value with 0 by sending r0 and with 1 via r1.



Commitment scheme UCCOneTime

public string:

σ — random string in {0, 1}4n

pk0, pk1 — keys for generators Gpk0
, Gpk1

: {0, 1}n → {0, 1}4n

commitment for b ∈ {0, 1} with SID sid:

compute Gpkb
(r) for random r ∈ {0, 1}n

set y = Gpkb
(r) for b = 0, or y = Gpkb

(r)⊕ σ for b = 1
send (Com, sid , y) to receiver

decommitment for y:

send b, r to receiver

receiver checks y
?
= Gpkb

(r) for b = 0, or y
?
= Gpkb

(r)⊕ σ for b = 1

Fig. 3. Commitment Scheme in the One-Time-Usable Common Reference String Model

Moreover, if we are given a string y∗, e.g., produced by the adversary, and
we know the trapdoor td0 to pk0, then it is easy to check if y

∗ is an image under
Gpk

0
and therefore represents a 0-commitment. Unless y∗ belongs to Gpk

0
and,

simultaneously, y∗⊕σ belongs to Gpk
1
, the encapsulated bit is unique and we can

extract the correct value with td0. (We stress, however, that this property will
not be directly used in the proof. This is so since there the crs has a different
distribution, so a more sophisticated argument is needed.)

To summarize, our commitment scheme supports equivocability and extrac-
tion. The proof of the following theorem appears in [cf01].

Theorem 2. Protocol UCCOneTime securely realizes functionality Fcom in the

crs model.

3.2 Reusable Common Reference String

The drawback of the construction in the previous section is that a fresh part of
the random string must be reserved for each committed bit. In this section, we
overcome this disadvantage under a potentially stronger assumption, namely the
existence of claw-free trapdoor permutation pairs. We concentrate on a solution
that only works for erasing parties in general, i.e., security is based on the parties’
ability to irrevocably erase certain data as soon as they are supposed to. At the
end of this section we sketch a solution that does not require data erasures. This
solution is based on the Decisional Diffie-Hellman assumption.

Basically, a claw-free trapdoor permutation pair is a pair of trapdoor permu-
tations with a common range such that it is hard to find two elements that are
preimages of the same element under the two permutations. More formally, a key
generation KGenclaw outputs a random public key pk claw and a trapdoor td claw.
The public key defines permutations f0,pk

claw
, f1,pk

claw
: {0, 1}

n
→ {0, 1}

n
, whereas

the secret key describes the inverse functions f−1
0,pk

claw

, f−1
1,pk

claw

. It should be in-

feasible to find a claw x0, x1 with f0,pk
claw
(x0) = f1,pk

claw
(x1) given only pk claw.



For ease of notation we usually omit the keys and write f0, f1, f
−1
0 , f−1

1 instead.
Claw-free trapdoor permutation pairs exist for example under the assumption
that factoring is hard [gmri88]. For a more formal definition see [g95].

We also utilize an encryption scheme E = (KGen,Enc,Dec) secure against
adaptive-chosen ciphertext attacks, i.e., in the notation of [bdpr98] the encryp-
tion system should be IND-CCA2. On input 1n the key generation algorithm
KGen returns a public key pkE and a secret key skE . An encryption of a message
m is given by c←EncpkE (m), and the decryption of a ciphertext c is DecskE (c).
It should always hold that DecskE (c) = m for c←EncpkE (m), i.e., the system
supports errorless decryption. Again, we abbreviate EncpkE (·) by Enc(·) and
DecskE (·) by Dec(·). IND-CCA2 encryption schemes exist for example under the
assumption that trapdoor permutations exist [ddn00]. A more efficient solution
is based on the decisional Diffie-Hellman assumption [cs98]. Both schemes have
errorless decryption.

Commitment scheme UCCReUse

public string:

pk
claw

— public key for claw-free trapdoor permutation pair f0, f1

pkE — public key for encryption algorithm Enc

commitment by party Pi to party Pj to b ∈ {0, 1} with identifier sid, cid:

compute y = fb(x) for random x ∈ {0, 1}n;
compute cb←Enc(x, Pi) with randomness rb;
compute c1−b←Enc(0n, Pi) with randomness r1−b;
erase r1−b;
send (Com, sid , cid , (y, c0, c1)), and record (sid , cid , b, x, rb).
Upon receiving (Com, sid , cid , (y, c0, c1)) from Pi,

Pj outputs (Receipt, sid , cid , Pi, Pj))

decommitment for (Pi, Pj , sid , cid , b, x, rb):

Send (Dec, sid , cid , b, x, rb) to Pj .

Upon receiving (Dec, sid , cid , b, x, rb), Pj verifies that y
?
= fb(x),

that cb is encryption of (x, Pi) under randomness rb
where Pi is the committer’s identity
and that cid has not been used with this committer before.

Fig. 4. Commitment Scheme with Reusable Reference String

The commitment scheme UCCReUse (for universally composable commitment
with reusable reference string) is displayed in Figure 4. The (reusable) public
string contains random public keys pk claw and pkE . For a commitment to a bit b
the sender Pi applies the trapdoor permutation fb to a random x ∈ {0, 1}

n
, com-

putes cb←EncpkE (x, Pi) and c1−b←EncpkE (0
n, Pi), and sends the tuple (y, c0, c1)

with y = fb(x) to the receiver. The sender is also instructed to erase the ran-



domness for the encryption of (0n, Pi) before the commitment message is sent.
This ciphertext is called a dummy ciphertext.

To open the commitment, the committer Pi sends b, x and the randomness
used for encrypting (x, Pi). The receiver Pj verifies that y = fb(x), that the
encryption randomness is consistent with cb, and that cid was never used before
in a commitment of Pi to Pj .

We remark that including the sender’s identity in the encrypted strings plays
an important role in the analysis. Essentially, this precaution prevents a cor-
rupted committer from “copying” a commitment generated by an uncorrupted
party.

The fact that the dummy ciphertext is never opened buys us equivocability.
Say that the ideal-model simulator knows the trapdoor of the claw-free permu-
tation pair. Then it can compute the pre-images x0, x1 of some y under both
functions f0, f1 and send y as well as encryptions of (x0, Pi) and (x1, Pi). To
open it as 0 hand 0, x0 and the randomness for ciphertext (x0, Pi) to the re-
ceiver and claim to have erased the randomness for the other encryption. For a
1-decommitment send 1, x1, the randomness for the encryption of (x1, Pi) and
deny to know the randomness for the other ciphertext. If the encryption scheme
is secure then it is intractable to distinguish dummy and such fake encryptions.
Hence, this procedure is indistinguishable from the actual steps of the honest
parties.

Analogously to the extraction procedure for the commitment scheme in the
previous section, here an ideal-process adversary can also deduce the bit from an
adversarial commitment (y∗, c∗0, c

∗
1) if it knows the secret key of the encryption

scheme. Specifically, decrypt c∗0 to obtain (x
∗
0, P

∗
i ); if x

∗
0 maps to y

∗ under f0

then let the guess be 0, else predict 1. This decision is only wrong if the adversary
has found a claw, which happens only with negligible probability. The proof of
the following theorem appears in [cf01].

Theorem 3. Protocol UCCReUse securely realizes functionality Fmcom in the crs
model.

A solution for non-erasing parties. The security of the above scheme depends
on the ability and good-will of parties to securely erase sensitive data (specifically, to
erase the randomness used to generate the dummy ciphertext). A careful look shows
that it is possible to avoid the need to erase: It is sufficient to be able to generate a
ciphertext without knowing the plaintext. Indeed, it would be enough to enable the
parties to obliviously generate a string that is indistinguishable from a ciphertext.
Then the honest parties can use this mechanism to produce the dummy ciphertext,
while the simulator is still able to place the fake encryption into the commitment. For
example, the Cramer-Shoup system in subgroup G of Z∗

p has this property under the
decisional Diffie-Hellman assumption: To generate a dummy ciphertext simply generate
four random elements in G.

Relaxing the need for claw-free pairs. The above scheme was presented and
proven using any claw-free pair of trapdoor permutations. However, it is easy to see
that the claw-free pair can be substituted by chameleon commitments a la [bcc88],
thus basing the security of the scheme on the hardness of the discrete logarithm or
factoring. Further relaxing the underlying hardness assumptions is an interesting task.



4 Impossibility of UC Commitments in the Plain Model

This section demonstrates that in the plain model there cannot exist univer-
sally composable commitment protocols that do not involve third parties in the
interaction and allow for successful completion when both the sender and the
receiver are honest. This impossibility result holds even under the more liberal
requirement that for any real-life adversary and any environment there should be
an ideal-model adversary (i.e., under a relaxed definition where the ideal-model
simulator may depend on the environment).

We remark that universally composable commitment protocols exist in the
plain model if the protocol makes use of third parties, as long as a majority of the
parties remain uncorrupted. This follows from a general result in [c00a], where
it is shown that practically any functionality can be realized in this setting.

Say that a protocol π between n parties P1, . . . , Pn is bilateral if all except two
parties stay idle and do not transmit messages. A bilateral commitment protocol
π is called terminating if, with non-negligible probability, the receiver Pj accepts
a commitment of the honest sender Pi and outputs (Receipt, sid, Pi, Pj), and
moreover if the receiver, upon getting a valid decommitment for a message m
and sid from the honest sender, outputs (Open, sid, Pi, Pj ,m) with non-negligible
probability.

Theorem 4. There exists no bilateral, terminating protocol π that securely re-

alizes functionality Fcom in the plain model. This holds even if the ideal-model

adversary S is allowed to depend on the environment Z.

Proof. The idea of the proof is as follows. Consider a protocol execution between an
adversarially controlled committer Pi and an honest receiver Pj , and assume that
the adversary merely sends messages that are generated by the environment. The
environment secretly picks a random bit b at the beginning and generates the messages
for Pi by running the protocol of the honest committer for b and Pj ’s answers. In order
to simulate this behavior, the ideal-model adversary S must be able to provide the
ideal functionality with a value for the committed bit. For this purpose, the simulator
has to “extract” the committed bit from the messages generated by the environment,
without the ability to rewind the environment. However, as will be seen below, if the
commitment scheme allows the simulator to successfully extract the committed bit,
then the commitment is not secure in the first place (in the sense that a corrupted
receiver can obtain the value of the committed bit from interacting with an honest
committer).

More precisely, let the bilateral protocol π take place between the sender Pi and
the receiver Pj . Consider the following environment Z and real-life adversary A. At
the outset of the execution the adversary A corrupts the committer Pi. Then, in the
sequel, A has the corrupted committer send every message it receives from Z, and
reports any reply received by Pj to Z. The environment Z secretly picks a random
bit b and follows the program of the honest sender to commit to b, as specified by π.
Once the the honest receiver has acknowledged the receipt of a commitment, Z lets A
decommit to b by following protocol π. Once the receiver outputs (Open, sid, Pi, Pj , b

′),
Z outputs 1 if b = b′ and outputs 0 otherwise.



Formally, suppose that there is an ideal-model adversary S such that realπ,A,Z

≈idealFcom,S,Z . Then we construct a new environment Z ′ and a new real-life adversary
A′ for which there is no appropriate ideal-model adversary for π. This time, A′ corrupts
the receiver Pj at the beginning. During the execution A′ obtains messages form the
honest committer Pi and feeds these messages into a virtual copy of S. The answers of S,
made on behalf of an honest receiver, are forwarded to Pi in the name of the corrupted
party Pj . At some point, S creates a submission (Commit, sid, Pi, Pj , b

′) to Fcom; the
adversary A′ outputs b′ and halts. If S halts without creating such a submission then
A′ outputs a random bit and halts.

The environment Z ′ instructs the honest party Pi to commit to a randomly chosen
secret bit b. (No decommitment is ever carried out.) Conclusively, Z ′ outputs 1 iff the
adversary’s output b′ satisfies b = b′.

By the termination property, we obtain from the virtual simulator S a bit b′ with
non-negligible probability. This bit is a good approximation of the actual bit b, since
S simulates the real protocol π except with negligible error. Hence, the guess of A′ for
b is correct with 1/2 plus a non-negligible probability. But for a putative ideal-model
adversary S ′ predicting this bit b with more than non-negligible probability over 1/2
is impossible, since the view of S ′ in the ideal process is statistically independent from
the bit b. (Recall that the commitment to b is never opened).

5 Application to Zero-Knowledge

In order to exemplify the power of UC commitments we show how they can be
used to construct simple Zero-Knowledge (ZK) protocols with strong security
properties. Specifically, we formulate an ideal functionality, Fzk, that captures
the notion of Zero-Knowledge in a very strong sense. (In fact, Fzk implies con-
current and non-malleable Zero-Knowledge proofs of knowledge.) We then show
that in the Fcom-hybrid model (i.e., in a model with ideal access to Fcom) there
is a 3-round protocol that securely realizes Fzk with respect to any NP relation.
Using the composition theorem of [c00a], we can replace Fcom with any uc
commitment protocol. (This of course requires using the crs model, unless we
involve third parties in the interaction. Also, using functionality Fmcom instead
of Fcom is possible and results in a more efficient use of the common string.)

Functionality Fzk, described in Figure 5, is parameterized by a binary relation
R(x,w). It first waits to receive a message (verifier, id, Pi, Pj , x) from some
party Pi, interpreted as saying that Pi wants Pj to prove to Pi that it knows
a value w such that R(x,w) holds. Next, Fzk waits for Pj to explicitly provide
a value w, and notifies Pi whether R(x,w) holds. (Notice that the adversary
is notified whenever either the prover or the verifier starts an interaction. It is
also notified whether the verifier accepts. This represents the fact that ZK is not
traditionally meant to hide this information.)

We demonstrate a protocol for securely realizing FR
zk for any NP relation R.

The protocol is a known one: It consists of n parallel repetitions of the 3-round
protocol of Blum for graph Hamiltonicity, where the provers commitments are
replaced by invocations of Fcom. The protocol (in the Fcom-hybrid model) is
presented in Figure 6.



Functionality Fzk

Fzk proceeds as follows, running with parties P1, ..., Pn and an adversary S.
The functionality is parameterized by a binary relation R.

1. Wait to receive a value (verifier, id, Pi, Pj , x) from some party Pi. Once
such a value is received, send (verifier, id, Pi, Pj , x) to S, and ignore all
subsequent (verifier...) values.

2. Upon receipt of a value (prover, id, Pj , Pi, x
′, w) from Pj , let v = 1 if

x = x′ and R(x,w) holds, and v = 0 otherwise. Send (id, v) to Pi and S,
and halt.

Fig. 5. The Zero-Knowledge functionality, Fzk

We remark that in the Fcom-hybrid model the protocol securely realizes Fzk
without any computational assumptions, and even if the adversary and the envi-
ronment are computationally unbounded. (Of course, in order to securely realize
Fcom the adversary and environment must be computationally bounded.) Also,
in the Fcom-hybrid model there is no need in a common reference string. That
is, the crs model is needed only for realizing Fcom.

Protocol Hamilton-Cycle (hc)

1. Given input (Prover, id, P, V,G, h), whereG is a graph over nodes 1, ..., n,
the prover P proceeds as follows. If h is not a Hamiltonian cycle in G,
then P sends a message reject to V . Otherwise, P proceeds as follows
for k = 1, ..., n:
(a) Choose a random permutation πk over [n].
(b) Using Fcom, commit to the edges of the permuted graph. That is, for

each (i, j) ∈ [n]2 send (Commit,(i, j, k), P, V, e) to Fcom, where e = 1
if there is an edge between πk(i) and πk(j) in G, and e = 0 otherwise.

(c) Using Fcom, commit to the permutation πk. That is, for l = 1, ..., L
send (Commit,(l, k), P, V, pl) to Fcom where p1, ..., pL is a representa-
tion of πk in some agreed format.

2. Given input (Verifier, id, V, P,G), the verifier V waits to receive either
reject from P , or (Receipt,(i, j, k), P, V ) and (Receipt,(l, k), P, V )

from Fcom, for i, j, k = 1, ..., n and l = 1, ..., L. If reject is received, then
V output 0 and halts. Otherwise, once all the (Receipt,...) messages
are received V randomly chooses n bits c1, ..., cn and sends to P .

3. Upon receiving c1, ..., cn from V , P proceeds as follows for k = 1, ..., n:
(a) If ck = 0 then send (Open,(i, j, k), P, V ) and (Open,(l, k), P, V ) to
Fcom for all i, j = 1, ..., n and l = 1, ..., L.

(b) If ck = 1 then send (Open,(i, j, k), P, V ) to Fcom for all i, j = 1, ..., n
such that the edge πk(i), πk(j) is in the cycle h.

4. Upon receiving the appropriate (Open,...) messages from Fcom, the ver-
ifier V verifies that for all k such that ck = 0 the opened edges agree with
the input graph G and the opened permutation πk, and for all k such
that ck = 1 the opened edges are all 1 and form a cycle. If verification
succeeds then output 1, otherwise output 0.

Fig. 6. The protocol for proving Hamiltonicity in the Fcom-hybrid model



Let FH
zk denote functionality Fzk parameterized by the Hamiltonicity relation

H. (I.e., H(G, h) = 1 iff h is a Hamiltonian cycle in graph G.) The following
theorem is proven in [cf01].

Theorem 5. Protocol hc securely realizes FH
zk in the Fcom-hybrid model.

Acknowledgements. We thank Yehuda Lindell for suggesting to use non-
malleable encryptions for achieving non-malleability of commitments in the com-
mon reference string model. This idea underlies our scheme that allows to reuse
the common string for multiple commitments. (The same idea was independently
suggested in [dkos01].)

References

[b91] D. Beaver, “Secure Multi-party Protocols and Zero-Knowledge Proof Systems
Tolerating a Faulty Minority”, J. Cryptology, Springer-Verlag, (1991) 4: 75-122.

[b99] D. Beaver, “Adaptive Zero-Knowledge and Computational Equivocation”, 28th
Symposium on Theory of Computing (STOC), ACM, 1996.

[bbm00] M. Bellare, A. Boldyreva and S. Micali, “Public-Key Encryption in a Multi-
user Setting: Security Proofs and Improvements,” Eurocrypt 2000, pp. 259–274,
Springer LNCS 1807, 2000.

[bdjr97] M Bellare, A. Desai, E. Jokipii and P. Rogaway, “A concrete security treat-
ment of symmetric encryption: Analysis of the DES modes of operations,” 38th
Annual Symp. on Foundations of Computer Science (FOCS), IEEE, 1997.

[bdpr98] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, “Relations among
notions of security for public-key encryption schemes”, CRYPTO ’98, 1998, pp.
26-40.

[bm84] M.Blum, S.Micali: How to Generate Cryptographically Strong Sequences of
Pseudorandom Bits, SIAM Journal on Computation, Vol. 13, pp. 850–864, 1984.

[bcc88] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of
Knowledge. JCSS, Vol. 37, No. 2, pages 156–189, 1988.

[c00] R. Canetti, “Security and composition of multi-party cryptographic protocols”,
Journal of Cryptology, Vol. 13, No. 1, winter 2000.

[c00a] R. Canetti, “A unified framework for analyzing security of Protocols”,
manuscript, 2000. Available at http://eprint.iacr.org/2000/067.

[cf01] R. Canetti and M. Fischlin, “Universally Composable Commitments”. Avail-
able at http://eprint.iacr.org/2001.

[cs98] R. Cramer and V. Shoup, “A paractical public-key cryptosystem provably se-
cure against adaptive chosen ciphertext attack”, CRYPTO ’98, 1998.

[d89] I. Damgard, On the existence of bit commitment schemes and zero-knowledge
proofs, Advances in Cryptology - Crypto ’89, pp. 17–29, 1989.

[d00] I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
Eurocrypt 00, LNCS, 2000.

[dio98] G. Di Crescenzo, Y. Ishai and R. Ostrovsky, Non-interactive and non-malleable
commitment, 30th STOC, 1998, pp. 141-150.

[dkos01] G. Di Crecenzo, J. Katz, R. Ostrovsky and A. Smith. Efficient and Perfectly-
Hiding Non-Interactive, Non-Malleable Commitment. Eurocrypt ’01, 2001.

[dm00] Y. Dodis and S. Micali, “Secure Computation”, CRYPTO ’00, 2000.



[ddn00] D. Dolev, C. Dwork and M. Naor, Non-malleable cryptography, SIAM.. J.
Computing, Vol. 30, No. 2, 2000, pp. 391-437. Preliminary version in 23rd Sym-
posium on Theory of Computing (STOC), ACM, 1991.

[dnrs99] C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functions. In
40th Annual Symposium on Foundations of Computer Science, pages 523–534.
IEEE, 1999.

[fs90] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Pro-
tocols. In 22nd STOC, pages 416–426, 1990.

[ff00] M. Fischlin and R. Fischlin, “Efficient non-malleable commitment schemes”,
CRYPTO ’00, LNCS 1880, 2000, pp. 413-428.

[ghy88] Z. Galil, S. Haber and M. Yung, Cryptographic computation: Secure faut-
tolerant protocols and the public-key model, CRYPTO ’87, LNCS 293, Springer-
Verlag, 1988, pp. 135-155.

[g95] O. Goldreich, “Foundations of Cryptography (Fragments of a book)”, Weizmann
Inst. of Science, 1995. (Avaliable at http://philby.ucsd.edu)

[g98] O. Goldreich. “Secure Multi-Party Computation”, 1998. (Avaliable at
http://philby.ucsd.edu)

[gmw91] O. Goldreich, S. Micali and A. Wigderson, “Proofs that yield nothing but
their validity or All Languages in NP Have Zero-Knowledge Proof Systems”,
Journal of the ACM, Vol 38, No. 1, ACM, 1991, pp. 691–729. Preliminary version
in 27th Symp. on Foundations of Computer Science (FOCS), IEEE, 1986, pp.
174-187.

[gmw87] O. Goldreich, S. Micali and A. Wigderson, “How to Play any Mental Game”,
19th Symposium on Theory of Computing (STOC), ACM, 1987, pp. 218-229.

[gl90] S. Goldwasser, and L. Levin, “Fair Computation of General Functions in Pres-
ence of Immoral Majority”, CRYPTO ’90, LNCS 537, Springer-Verlag, 1990.

[gmra89] S. Goldwasser, S. Micali and C. Rackoff, “The Knowledge Complexity of
Interactive Proof Systems”, SIAM Journal on Comput., Vol. 18, No. 1, 1989,
pp. 186-208.

[gmri88] S.Goldwasser, S.Micali, R.Rivest: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks, SIAM Journal on Computing, Vol. 17, No. 2,
pp. 281–308, 1988.

[l00] Y. Lindell, private communication, 2000.
[mr91] S. Micali and P. Rogaway, “Secure Computation”, unpublished manuscript,

1992. Preliminary version in CRYPTO ’91, LNCS 576, Springer-Verlag, 1991.
[n91] M.Naor: Bit Commitment Using Pseudo-Randomness, Journal of Cryptology,

vol. 4, pp. 151–158, 1991.
[novy92] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung, Perfect zero-knowledge

arguments for NP can be based on general complexity assumptions, Advances
in Cryptology - Crypto ’92, pp. 196–214, 1992.

[pw94] B. Pfitzmann and M. Waidner, “A general framework for formal notions of se-
cure systems”, Hildesheimer Informatik-Berichte 11/94, Universität Hildesheim,
1994. Available at http://www.semper.org/sirene/lit.

[pw01] B. Pfitzmann and M. Waidner, “A model for asynchronous reactive systems
and its application to secure message transmission”, IEEE Symposium on Secu-
rity and Privacy, 2001. See also IBM Research Report RZ 3304 (#93350), IBM
Research, Zurich, December 2000.

[rs91] C. Rackoff and D. Simon, “Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack”, CRYPTO ’91, 1991.

[y82] A. Yao, Theory and applications of trapdoor functions, In Proc. 23rd Annual
Symp. on Foundations of Computer Science (FOCS), pages 80–91. IEEE, 1982.


