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Abstract. The best known constructions for arrays with low bias are
those from [1] and the exponential sum method based on the Weil-
Carlitz-Uchiyama bound. They all yield essentially the same parameters.
We present new efficient coding-theoretic constructions, which allow far-
reaching generalizations and improvements. The classical constructions
can be described as making use of Reed-Solomon codes. Our recursive
construction yields greatly improved parameters even when applied to
Reed-Solomon codes. Use of algebraic-geometric codes leads to even bet-
ter results, which are optimal in an asymptotic sense. The applications
comprise universal hashing, authentication, resilient functions and pseu-
dorandomness.
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1 Introduction

The concepts of limited dependence and low bias have manifold applications in
cryptography and complexity theory. We mention universal hashing, authentica-
tion, resiliency against correlation attacks, pseudorandomness, block ciphers, de-
randomization, two-point based sampling, zero-knowledge, span programs, test-
ing of combinatorial circuits, intersecting codes, oblivious transfer, interactive
proof systems, resiliency (see [19, 16, 18, 17, 1, 11, 25, 10, 6, 9, 7, 13, 16]). A basic
notion underlying these concepts are families of ε−biased random variables. The
Weil-Carlitz-Uchiyama bound and several constructions from the influential pa-
pers by Naor and Naor [18] and by Alon, Goldreich, H̊astad and Peralta [1]
provide families of ε−biased random variables. All these classical constructions
yield very similar parameters. In this paper we describe methods, which gener-
alize these constructions and yield far-reaching improvements. Essential ingre-
dients are linear codes and the Fourier transform.
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2 Bias and Dependency

We use neutral notation which is suited to describe all the applications (hashing,
authentication, derandomization, pseudorandomness, . . .).

Definition 1. Let p be a prime. An (n, k)p−array A is an array with n rows
and k columns, where the entries are taken from a set with p elements.

Definition 2. Let p be a prime, v = (v1, v2, . . . , vn) ∈ IFn
p . For every i ∈ IFp =

ZZ/pZZ let νi(v) be the frequency of i as an entry of v. Let ζ be a primitive
complex p−th root of unity. The bias of v is defined as

bias(v) =
1

n
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We have 0 ≤ bias(v) ≤ 1. As
∑

i∈IFp
ζi = 0 the bias is low if all elements of

IFp occur with approximately the same frequency as entries in v.

Definition 3. Let 0 ≤ ε < 1. An (n, k)p−array is ε−biased if every nontrivial
linear combination of its columns has bias ≤ ε.

The bias of an array is a property of the IFp−linear code generated by the
columns. The bias of the array is low if and only if every nonzero word of the
code has low bias.

While the bias of a vector depends on the choice of the root of unity, the bias
of an array is independent of this choice.

Definition 4. Let 0 ≤ ε < 1. An (n, k)p−array is t-wise ε−biased if every
nontrivial linear combination of at most t of its columns has bias ≤ ε.

Definition 5. Let 0 ≤ ε < 1. An (n, k)p−array A is t-wise ε -dependent if
for every set U of s ≤ t columns and every a ∈ IFs

p the frequency νU (a) of rows
of A, whose projection onto U equals a satisfies
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≤ ε.

The notion of a t-wise ε -dependent array generalizes the combinatorial notion
of an orthogonal array of strength t (equivalently: t−universal family of hash
functions in the sense of Carter/Wegman [11]). An array is t-wise independent
(=0-dependent) if and only if it is an orthogonal array of strength t.

The most important of these concepts from the point of view of applications
is t-wise ε -dependency. It captures the familiar theme of representing a family of
random variables (the columns of the array) on a small sample space (the rows
of the array, with uniform distribution) such that any t of the random variables
are almost statistically independent.

We want to point out in the sequel that the construction problem of t-wise
ε -dependent arrays can be efficiently reduced to the construction of ε−biased
arrays. This is the basic idea behind [18].

The following construction of t-wise ε−biased arrays is essentially from [18].
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Theorem 1. Let the following be given:

– An (n, k)p−array B, which is ε−biased.
– A linear code [N,N − k, t+ 1]p.

Then we can construct an (n,N)p−array, which is t-wise ε−biased.

Theorem 2. An array, which is t-wise ε−biased, is also t-wise ε′−dependent
for some ε′ < ε.

The fundamental Theorem 2 is proved in a nontrivial but standard way by
using the Fourier transform, see [5]. The following construction from the journal
version of [16] is obvious and useful:

Theorem 3. If there is an array (n, k′)p, which is t′−wise ε−dependent, and
t ≤ t′/l, k ≤ k′/l, then there is an array (n, k)pl , which is t−wise ε−dependent.

We see that indeed the central problem is to efficiently construct ε−biased
arrays. Linear codes are then used to construct t′−wise ε−biased arrays via
Theorem 1. The standard method is to use BCH codes. The resulting t′−wise
ε−biased arrays are also t′−wise ε−dependent by Theorem 2. Because of The-
orem 3 it is possible to concentrate entirely on binary arrays. We turn to the
basic problem of constructing weakly biased arrays.

Definition 6. Denote by fp(b, e) the minimum a such that there is an array
(pa, pb)p, which is p

−e−biased.

Clearly fp(b, e) is weakly monotonely increasing in both arguments. The con-
struction from [1] shows the following:

Theorem 4. There is an efficient construction showing

fp(b, e) ≤ 2(b+ e).

3 The Weil-Carlitz-Uchiyama Construction

The celebrated Weil-Carlitz-Uchiyama bound [8] may be understood as a limit
on the bias of dual BCH-codes. More precisely, let (aj) be a basis of IFpf |IFp and
Tr : IFpf −→ IFp the trace. Consider the array A whose rows are indexed by the
elements α ∈ IFpf and whose columns are indexed by ajX

i, where i ≤ n and i
is not a multiple of p. The corresponding entry is Tr(ajα

i). The WCU bound
asserts that this (pf , f(n− bn/pc))p−array has bias ≤ (n− 1)p−f/2.

Comparison reveals that the WCU construction (exponential sum method)
yields parameters which are very similar to (a little better than) Theorem 4. All
constructions based on one of these classical methods will produce about the
same parameters.
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4 The Zyablov Construction

As remarked earlier Theorem 3 makes it possible to base the construction on
binary ε−biased arrays. This has the advantage that a direct link to coding
theory can be used. An array (n, k)2 is ε−biased if and only if the code generated
by the columns has dimension k and the relative weights of all nonzero codewords
are in the interval of length ε centered at 1/2. This elementary observation yields
an immediate reduction of the construction problem of binary weakly biased
arrays to the construction of linear codes containing the all-1-vector.

Theorem 5. Let 0 ≤ ε < 1. The following are equivalent:

– An (n, k)2-array, which is ε−biased.
– A binary linear code of length n and dimension k+ 1, which contains 1 and
whose minimal distance d satisfies

d

n
≥

1− ε

2

Constructing families of ε−biased (n, k)2−arrays which are asymptotically
nontrivial (meaning that ε is fixed and k/n ≥ R > 0) is equivalent to constructing
asymptotically nontrivial families of binary linear codes containing the all-1-
vector.

The question of determining the asymptotics of binary codes is one of the
most famous and most well-studied problems in coding theory. The question is
how incisive the additional condition is. A famous simple result is the Gilbert-
Varshamov bound: for every prime-power q and δ < (q − 1)/q the rate R =
1−Hq(δ) can be asymptotically reached by families of q−ary linear codes. It can
be managed that the all-1-word is contained in all these codes. Unfortunately
this bound is not constructive.

The construction given in [15] does not yield linear codes. The Justesen-
method [14, 21] is constructive, but the all-1-word is not contained in the result-
ing codes. The Justesen method when applied to families of algebraic-geometric
codes yields precisely the Zyablov bound. However, for the same reason as
above this does not yield families of binary ε−biased arrays.

More interesting for our problem is the original semi-constructive proof of
the Zyablov bound [27]. In fact, apply concatenation to a Reed-Solomon code
[qm, rqm, (1 − r)qm]qm as outer code and a code [n,m, d]q as inner code, where
it is assumed that the inner code asymptotically meets the Gilbert-Varshamov
bound (d/n = µ,m/n = 1 − Hq(µ)). The concatenated code has parameters
[qmn, rqmm, (1 − r)qmd]q, with relative distance δ = (1 − r)µ and rate R =
r(1 −Hq(µ)). This construction shows that for every µ < (q − 1)/q and δ < µ
we can construct families of q−ary linear codes with relative distance δ and
rate R ≥ (1 − Hq(µ)(1 − δ/µ). The only drawback is that this is not really
constructive. However, for short inner codes this may be feasible. Let us explore
the situation in more detail.

We aim at a lower bound for f2(b, e). Choose r = 2−(e+1), µ = 1
2 − 2−(e+2).

As the relative distance of the concatenated code is (1 − r)µ we obtain as bias
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ε = 1−2(1−r)µ = 1−(1−2−(e+1))2 = 2−e−2−(2e+2). It follows that ε < 2−e.We
have b = m+log(m)−e−1 and a = m+log(n). What is the order of magnitude
of the rate S = 1−H2(µ) of the inner code guaranteed by Gilbert-Varshamov?

We have µ = 1
2 − 2−(e+2) = (2e+1 − 1)/2e+2, 1 − µ = (2e+1 + 1)/2e+2 and

S = 1−2−(e+2)((2e+1−1)(e+2−log(2e+1−1))+(2e+1+1)(e+2−log(2e+1+1)).
Collecting the terms without log yields S = 2−(e+2)((2e+1 − 1) log(2e+1 − 1) +
(2e+1 + 1) log(2e+1 + 1)) − (e + 1). Divide the arguments of the log−terms by
2e+1. The term obtained from compensating for that is e+1 and cancels against
the last summand. We obtain S = 2−(e+2)((2e+1 − 1) log(1− 2−(e+1)) + (2e+1 +
1) log(1 + 2−(e+1))). Using the series for ln(1± x) we obtain

S =
2−(e+2)

ln(2)
(((2e+1−1)(−2−(e+1)−2−2e−3−. . .)+(2e+1+1)(2−(e+1)−2−2e−3+)

= 2−(e+2) 1

ln(2)
(−1 + 2−(e+1) − 2−e−2 . . .+ 1 + 2−(e+1) − 2−e−2 . . .),

where terms involving −2e in the exponent and higher have been omitted. This
yields S ∼ 2−(2e+3)/ ln(2).

Theorem 6. The Zyablov method needs the construction of binary [n,m, d]2
codes, where n = ln(2)22e+3m and d/n = 1

2 − 2−(e+2). The output is a weakly
biased array showing

f2(m+ log(m)− e− 1, e) ≤ m+ log(m) + 2e+ 3.

Theorem 6 states f2(b, e) ≤ b + 3e + 4. It improves on the bound from
Theorem 4 when b > e.

5 A Coding-Theoretic Construction of Weakly Biased

Arrays

In Section 4 we used an equivalent coding-theoretic interpretation of binary
weakly biased arrays to obtain constructions. Observe however that this does
not seem to lead to explicit asymptotic constructions. The Zyablov method pre-
supposes exhaustive search for codes of moderate length attaining the Gilbert-
Varshamov bound.

When p > 2 an equivalent reduction to coding theory is not available. Our
next theorem provides a general link, which allows the use of linear codes in the
construction of p−ary weakly biased arrays. As this leads to efficient construc-
tions, it is interesting even in the binary case.

Theorem 7. Let C be a code [n, k, d]q, where q = pm and B an (n0,m)p-array
of bias ε0. We can construct an (nn0, km)p−array with bias ε = 1 − δ + δε0 <
1− δ + ε0, where δ = d/n is the relative distance of code C.
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A proof of Theorem 7 is in [5]. Application of Theorem 7 to Reed-Solomon
codes [pm, Rpm, (1−R)pm]pm and inner unbiased arrays (pm,m)p (consisting of
all m-tuples) yields the following:

Theorem 8. For every natural number m and every rational number 0 < ε0 < 1
with denominator pm we can construct an array (p2m,mε0p

m)p with bias ≤ ε0.

In particular Theorem 8 yields yet another proof for the parameters from
Theorem 4 and from the WCU construction.

Our Theorem 7 is much more general. In order to obtain essential improve-
ments on Theorem 4 let us consider a recursive application. Apply Theorem 7
with a Reed-Solomon code [pm, Rpm, (1 − R)pm]pm , where R = ε/2 and an
ε/2−biased (4m2/ε2,m)p−array. We obtain the following:

Theorem 9. We can construct arrays (4m2pm/ε2,mεpm/2)p, which are
ε−biased. The choice m = pj , ε = p−e yields fp(p

j+j−e−1, e) ≤ pj+2j+2e+2.

Theorem 9 states in particular fp(b, e) ≤ b+3e+ j+3, where j ∼ log(b+ e).
In the binary case this is very close to Theorem 6 and it yields an essential
improvement over Theorem 4 when b > e.

Example 1. Apply Theorem 7 to a p4−ary Reed-Solomon code of dimension
p3 (relative minimum distance > 1 − (1/p)) and an inner array (p2, 4)p, which
is (1/p)−biased. Such an array follows from the WCU construction. We can
describe it as follows: Its rows are (x, y, xy, x2 + cy2), where x, y ∈ IFp and c is
a non-square. The result is an

2

p
− biased (p6, 4p3)p − array,

which is better than what results from the WCU construction.

Example 2. In the same style apply Theorem 7 to a pm−ary Reed-Solomon code
of dimension pm−1 and an (1/p)−biased array (m2p2,m)p, whose existence is
guaranteed by Theorem 4. We obtain an

2

p
− biased (m2pm+2,mpm−1)p − array.

This is much better than a corresponding WCU-array. Theorem 4 with the same
bias and the same number of columns would use m2p2m/4 rows.

So far the only ingredients used in our constructions have been Reed-Solomon
codes. Next we want to show that algebraic-geometric codes can be used to great
advantage. Let us start by pointing out that many important classes of algebraic-
geometric codes can be just as efficiently implemented as Reed-Solomon codes.
In the next section this is exemplified in the case of the Hermitian codes.
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6 Hermitian Codes for the User

We describe how to obtain generator matrices for the Hermitian codes. Consider
the field extension IFq2 | IFq and the corresponding trace tr and norm N, where
tr(x) = x + xq, N(x) = xq+1. Our codes are defined over IFq2 and have length
q3 (see [24]).

The coordinates are parametrized by the pairs (α, β), where N(α) = tr(β).
So we need to calculate traces and norms of all elements in the field and to
list all these pairs in some order. There are q3 such pairs.

The general build-up: We construct a (q3 − g, q3)− matrix G with entries
from IFq2 . Here g =

(

q
2

)

. The first k rows of G generate the k−dimensional
Hermitian code. It has parameters

[q3, k, q3 − k + 1− g]q2 .

The pole-order test: For n = 0, 1, 2, . . . we have to decide if n is a pole-order
or not. If n is a pole-order we determine its coordinate vector (i, j). This
is done as follows: Let r be the remainder of n mod q, where 0 ≤ r ≤ q − 1
and −s the (negative) remainder of n mod q + 1, where 0 ≤ s ≤ q. Then n
is a pole-order if and only if

x =
n− r

q
≥

n+ s

q + 1
= y.

If n ≥ 2g, then the pole-order test does not need to be performed. Every
such number is a pole-order. If n is a pole-order, then n = (q + 1)i + qj,
where i = (x− y)q + r, j = s. The coordinate vector of n is (i, j).

Constructing the rows of G : Let u1 = 0, u2 = q, u3 = q + 1 . . . be the first
pole-orders. If uk has coordinate-vector (i, j), then the entry of row k of G
in coordinate (α, β) is βiαj .

We conclude that the use of Hermitian codes requires the usual field arith-
metic, just as Reed-Solomon codes.

7 Using Hermitian and Suzuki Codes

Use Theorem 7 with the Hermitian codes as ingredients, q = pm. The codes have
parameters

[p3m, k, p3m − (k + p2m/2)]p2m .

Use as inner arrays the unbiased arrays (p2m, 2m)p. Choose e ≤ m and k ∼
p3m−e − p2m/2. With this choice the resulting array has bias ε ≤ p−e. As we
have an array (p5m, 2km)p and logp(2km) ∼ 3m−e+logp(m) it follows fp(3m−
e+ logp(m), e) ≤ 5i, where m ≥ e.

Let now e and b be given, where b ≥ 2e. Determine m ≥ e such that
b + e = 3m (provided b + e is a multiple of 3). We have seen that fp(b, e) ≤
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5m = 5
3 (b+ e), which clearly represents an improvent on Theorem 4 and on the

WCU−construction. If b < 2e, then fp(b, e) ≤ fp(2e, e) ≤ 5e, still an improve-
ment upon Theorem 4 when b ≥ 3

2e.
The Suzuki codes in characteric 2 (see [12]) have parameters

[24f+2, 2j , 24f+2 − (2j + 23f+1)]22f+1 .

Use Theorem 7 with an unbiased array as inner array. If f ≥ e and j = 4f−e+1
we obtain ε ≤ 2−e, and hence f2(4f − e + 1, e) ≤ 6f + 3. This presupposes
b+ e = 4f + 1 > 4e, hence b > 3e.

Theorem 10. The Hermitian codes show

fp(b, e) ≤
5

3
(b+ e) if b ≥ 2e.

The Suzuki codes show

f2(b, e) ≤
3

2
(b+ e) + 2 if b > 3e.

The results of Theorem 10 are superior to all the constructions discussed
earlier, for the parameter range when Theorem 10 applies. The strength of The-
orem 4 is its universality and simplicity. For b < e it seems to be hard to obtain
improvements upon the WCU-construction. Another construction principle for
weakly biased arrays, first introduced in [18], uses expander graphs and asymp-
totically nontrivial families of codes as ingredients. However, this construction
seems to work best when k is large with respect to 1/ε (b large with respect to
e) and it cannot improve upon the results presented above in that parameter
range.

We conclude this section with an application of Theorem 7 to Hermitian
codes. The p2−ary Hermitian code of dimension k ∼ p2/2 has relative mini-
mum weight δ = 1 − 1/p. The unbiased (p2, 2)p−array yields an (1/p)−biased
(p5, p2)p−array.

Example 3. For every odd prime p we can produce an (1/p)−biased
(p5, p2)p−array by applying Theorem 7 to a Hermitian code and an unbiased
array.

Observe that the WCU construction when applied in the case of p5 rows and
ε = 1/p produces a number of columns of the order of magnitude p3/2.

8 Construction of Authentication Schemes

Unconditional authentication was originally introduced by Simmons [22, 23]. An
(n, k)q−array is ε−almost strongly universal2 (ASU2) if each column has
bias 0 and for any two different columns c, c′ and any entries e, e′ the conditional
probability Pr(ci = e | c′i = e′) is bounded by ε, where the probability refers to a
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choice of a row i according to the uniform distribution of rows. In the application
rows are keys, columns are source states and entries are authentication tags. A
composition construction based on codes is used in [4, 2, 3]. In [13] a direct link is
established between the WCU construction of weakly biased arrays and ASU2-
arrays. We generalize this construction as follows:

Theorem 11. If there is an ε0−biased (n, k)p−array then for every t ≤ k there
is an ε−ASU2 array (p

tn, pk)pt , where ε = p−t + ε0.

Proof. Let C be the linear [n, k]p-code generated by the columns of the ε0-biased
array. The columns of the ASU2−array A are indexed by f ∈ C, the rows are in-
dexed by tuples (i, α1, . . . , αt), where i is a coordinate of C and αr ∈ IFp. It is easy
to see that we can find linear mappings Mr : C −→ C, r = 1, 2 . . . , t such that ev-
ery nontrivial IFp−linear combination of the Mr is non-singular. Define the entry
of A in row (i, α1, . . . , αt) and column f as (M1(f)(i) + α1, . . . ,Mt(f)(i) + αr).

It is obvious that each column of A is unbiased. Let f, g be different columns
and (βr), (γr) be two entries. Let ν be the number of rows i of the original array
such that Mr(f − g)(i) = βr−γr for all r. We have to show that ν/n ≤ p−t + ε0.
This follows from Theorem 2 and the linear independence of the Mr(f − g).

We see that via Theorem 11 essential improvements upon the parameters of
weakly biased arrays yield improved authentication2 codes.

Example 4. Continuing from Example 3 we obtain (p6, pp2

)p arrays, which are
(2/p)−ASU2. Not surprisingly this is better than the constructions from [4, 13]
based on Reed-Solomon codes and it reproduces the parameters of the construc-
tion from [2] based on Hermitian codes.

Example 5. An application of Theorem 11 to the arrays from Example 2 pro-
duces arrays (m2pm+3, pmpm−1

)p, which are (3/p)−ASU2.

A refinement of the theory of unconditional authentication is introduced in
[16]. An (N,m)p−array is (δ, t)−almost strongly universal (short (δ, t)−ASU)
if for every set U = U0 ∪ {u} of t columns and every a′ ∈ IFt−1

p , x ∈ IFp the
frequencies νU0

(a′) and νU (a
′, x) satisfy

| νU (a
′, x)/νU0

(a′) |≤ δ.

The idea is to use the same key for t subsequent messages while still bounding the
opponent’s probability of success. The link between almost independent arrays
and (δ, t)−ASU codes has been established in [16] (and is almost obvious):

Theorem 12. A t-wise ε− dependent array is (δ, t)−ASU, where δ = (p−t +
ε)/(p−(t−1) − ε).

The following theorem generalizes the method used in [16].

Theorem 13. Let f2(b, lt) ≤ a. Then there is an (2−(l−1), t)−ASU with 2l en-

tries, 2b/(lt)− log2(l) source bits and a key bits.
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Proof. A BCH-code [2j , 2j − ljt, lt + 1]2, where jlt = 2b, yields an lt−wise

2−e−biased array (2a, 2j). By Theorem 3 this yields an array (2a,
1

l
2j)2l , which

is t−wise 2−lt−biased. Apply Theorem 12. We obtain δ < 2/(2l − 1) ∼ 2−(l−1).
The number of rows is still 2a.

9 Resiliency

A number of interesting applications of the WCU construction are in [16]. They
can all be generalized to admit the use of arbitrary weakly biased arrays. We
consider the case of almost resilient functions. The construction from [16] is an
application of Theorem 1 to check matrices of binary BCH codes. A straightfor-
ward generalization is as follows:

Theorem 14. Assume the following exist:

– A systematic ε−biased (2t, s)2−array, and
– a linear code [m,m− s, k + 1]2.

Then there exists a systematic k−wise ε−dependent (2t,m)2−array

The proof is similar to the proof for the special case used in [16]. The end
product of Theorem 14 allows the construction of a function : IFm

2 −→ IFm−t
2 such

that whenever k of the input parameters are fixed the output is close to being
unbiased (for details see [16]). Note that the study of almost resilient functions
can be motivated from an analysis of the wire-tap channel of type II [20]. A
discussion of that aspect is in [26], where the close link to the coding-theoretic
and geometric notion of generalized Hamming weights is pointed out.

10 Conclusion

The concepts of sample spaces which are statistically close to being unbiased or
independent is fundamental for large areas of computer science and cryptology.
The best known constructions all yield very similar parameters. The various con-
structions from [1] excel by their simplicity and universality, whereas the Weil-
Carlitz-Uchiyama construction yields slightly better parameters. In this paper
we used several new coding-theoretic construction procedures to obtain essen-
tial improvements for vast parameter ranges. These improvements can already
be obtained by restricting the ingredients to Reed-Solomon codes. Algebraic-
geometric codes produce further improvements in suitable parameter ranges.
We pointed out that Hermitian codes, a particularly useful class of AG codes,
are just as efficiently computable as Reed-Solomon codes.

In the applications we concentrated on universal hashing, unconditional au-
thentication and almost resilient functions. A large number of applications are
documented in the literature. It is expected that more applications will be dis-
covered.
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