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Abstract. This paper investigates the design of S-boxes used for com-
bining linear feedback shift register (LFSR) sequences in combination
generators. Such combination generators have higher throughput than
those using Boolean functions as the combining functions. However, S-
boxes tend to leak more information about the LFSR sequences than
Boolean functions. To study the information leakage, the notion of max-
imum correlation is introduced, which is based on the correlation between
linear functions of the input and all the Boolean functions (linear and
nonlinear) of the output of an S-box. Using Walsh transform, a spectral
characterization of the maximum correlation coefficients, together with
their upper and lower bounds, are established. For the perfect nonlinear
S-boxes designed for block ciphers, an upper bound on the maximum
correlation coefficients is presented.

1 Introduction

Stream ciphers have a long history and still play an important role in secure
communications. Typically, a stream cipher consists of a keystream generator
whose output sequence is added modulo-2 to the plaintext sequence. So far,
many kinds of keystream generators have been proposed, among which combi-
nation generators [15] and filter generators [14] are two of the most widely used.
A combination generator consists of several linear feedback shift registers whose
output sequences are combined by a nonlinear Boolean function (also called a
nonlinear combining function or combiner). A filter generator consists of a single
LFSR and uses a nonlinear Boolean function to filter the content of the shift
register. It is clear that a filter generator is a special case of the combination gen-
erator, where all the combined sequences are produced by the same LFSR. The
security of these keystream generators relies heavily on the nonlinear combining
functions. In [17] Siegenthaler has shown that if the nonlinear combining func-
tion of a combination generator leaks information about the individual LFSR
sequences into the output sequence, the LFSR sequences can be analyzed from
a known segment of the keystream sequence. This kind of attacks are referred
to as correlation attacks. To prevent correlation attacks, the nonlinear combin-
ing function should not leak information about its input. However, it has been
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shown in [9] that the output of a Boolean function is always correlated to some
linear functions of its input, in fact, the sum of the squares of the correlation
coefficients is always 1. Thus, zero correlation to some linear functions of the in-
put necessarily implies higher correlation to other linear functions of the input.
The best one can do is to make the correlation between the output and every
linear function of the input uniformly small.
In hardware, combination generators and filter generators have fast speed and

simple VLSI circuitry. With respect to software implementation, however, there
are two major problems for LFSR-base keystream generators. First, the speed
of a software implemented LFSR is much slower than that of a hardware imple-
mented one. Keystream generators consisting of several LFSRs make the speed
of the software implementation even slower. Second, combination generators and
filter generators only output one bit at every clock, which again makes the soft-
ware implementation inefficient. To increase the throughput, a direct approach is
to use nonlinear combining functions that output several bits at a time. Nonlin-
ear functions with multiple-bit input and multiple-bit output are referred to as
S-boxes in block ciphers and have been extensively studied [1,3,4,10,16]. In this
paper, we investigate the design of S-boxes for stream ciphers. Compared with a
combination generator using a Boolean function as the combiner, a combination
generator utilizing an S-box as the combiner might be much easier to attack since
every output bit of the S-box leaks information about the input. How to control
the information leakage is a crucial problem for the design of keystream gener-
ators that produce several bits at a time. To mitigate the information leakage,
we investigate the maximum correlation between linear functions of the input
and all Boolean functions, linear and nonlinear, of the output of an S-box and
introduce the notion of maximum correlation coefficient. It is shown that the
mutual information between the output of an S-box and linear functions of the
input is bounded by the maximum correlation coefficients. In terms of the Walsh
transform, a spectral characterization of the maximum correlation coefficients is
developed. Based on the spectral characterization bounds on the maximum cor-
relation coefficients are developed, as well as the relationship between maximum
correlation and nonlinearity [11] of S-boxes. For the perfect nonlinear S-boxes
[10] designed for block ciphers to defend against differential cryptanalysis, an
upper bound on the maximum correlation coefficient is presented.

2 Maximum Correlation of S-boxes

An S-box of n-bit input and m-bit output can be described by a function
F from GF (2)n to GF (2)m. Let x = (x0, x1, . . . , xn−1) ∈ GF (2)n and z =
(z0, z1, . . . , zm−1) ∈ GF (2)m denote the input and output of the S-box, i.e.,
z = F (x). Then F can be represented by a vector, (f0, f1, . . . , fm−1), of m
Boolean functions, where zi = fi(x). Each Boolean function is called a compo-
nent function of F . When F is used to combine n LFSR-sequences, we have a
keystream generator that outputs m binary sequences simultaneously. The indi-
vidual binary sequence is produced by a combination generator in which a com-
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ponent function of F is used as the combiner. Obviously, each binary sequence
can be used to perform correlation attacks. As a consequence, the first design
rule for the S-box is that every component function of F has small correlation
to linear functions. In addition, the m binary sequences can also be combined
together to perform correlation attacks. In this case, larger correlation to the
LFSR-sequences may be exploited. To defend against this kind of attacks, the
second design rule for the S-box is that every combination (linear and nonlinear)
of the output has small correlation to linear functions of the input. It is clear
that the second design rule is a generalization of the first one. To investigate
the correlation properties of S-boxes, let’s first review the notion of correlation
coefficient of Boolean functions.

Definition 1. Let f, g : GF (2)n → GF (2) be Boolean functions and X be
a uniformly distributed random variable over GF (2)n. Then Z = f(X) and
Z ′ = g(X) are random variables over GF (2). The correlation coefficient of f
and g, denoted by c(f, g), is defined as follows:

c(f, g) = P (Z = Z ′)− P (Z 6= Z ′). (1)

The correlation with linear functions is of special interest in the analysis and
design of stream ciphers. A linear function of n variables can be expressed as an
inner product, w · x = w1x1⊕w2x2⊕ . . .⊕wnxn. Such a linear function is often
denoted by lw(x). The correlation coefficient c(f, lw) describes the statistical
dependency between f and lw, and is interpreted as the nonlinearity of f with
respect to lw.

Definition 2. Let F be a function from GF (2)n to GF (2)m and let G denote
the set of all Boolean functions defined on GF (2)m. For any w ∈ GF (2)n, the
maximum correlation coefficient between F and the linear function lw is defined
by

CF (w) = max
g∈G

c(g ◦ F, lw),

where g ◦ F is the composition of g and F , that is, g ◦ F (x) = g(F (x)). If g ∈ G
and c(g ◦ F, lw) is maximum, then g is called the maximum correlator of F to
lw.

Nyberg [11] has investigated a special case where the set G contains only
linear and affine functions. Based on Hamming distance, Nyberg defined the
nonlinearity of S-boxes. The Hamming distance between two Boolean functions
f, g : GF (2)n → GF (2) is defined by

d(f, g) = |{x ∈ GF (2)n : f(x) 6= g(x)}|.

It is easy to prove [15] that the Hamming distance d(f, g) is related to the
correlation coefficient c(f, g) by

c(f, g) = 1− 2−n+1d(f, g). (2)
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Definition 3. Let F be a function from GF (2)n to GF (2)m. The nonlinearity
of F is defined as

NF = min
v∈GF (2)m

v 6=0

min
w∈GF (2)n

a∈GF (2)

d(lv ◦ F, a⊕ lw). (3)

Assume that NF = d(lv ◦ F, a ⊕ lw) for some nonzero v ∈ GF (2)m and
some affine function a⊕ lw. It is clear that NF is also equal to d(a⊕ lv ◦ F, lw).
By (2) and (3), c(a ⊕ lv ◦ F, lw) is the maximum correlation between linear
and affine functions of the output and linear functions of the input of F . By
Definition 2, it is obvious that c(a ⊕ lv ◦ F, lw) ≤ CF (w), with strict inequality
if the maximum correlator of F to lw is not linear. Hence, the nonlinearity of F
does not necessarily imply maximum correlation between the output and linear
functions of the input.
In general, it is difficult to figure out the maximum correlation coefficients

since there are 22
m

functions in G. The following theorem provides a method to
compute the maximum correlation coefficients.

Theorem 1. Let F be a function fromGF (2)n toGF (2)m andX be a uniformly
distributed random variable over GF (2)n, Z = F (X). For w ∈ GF (2)n and
z ∈ GF (2)m, let ew(z) denote the conditional probability difference between
w ·X = 1 and w ·X = 0 under the condition Z = z, namely,

ew(z) = P (w ·X = 1|Z = z)− P (w ·X = 0|Z = z). (4)

Then
CF (w) =

∑

z∈GF (2)m

|ew(z)|P (Z = z).

Moreover, the function g(z) = sgn(ew(z)) is the maximum correlator of F to lw,
where

sgn(x) =







1, x > 0,
0 or 1, x = 0,
0, x < 0.

Proof. For any w ∈ GF (2)n, and g ∈ G, where G denotes the set of all Boolean
functions on GF (2)m, by (1),

c(g ◦ F, lw) = P (w ·X = g(Z))− P (w ·X 6= g(Z)).

Since P (w ·X = g(Z)) + P (w ·X 6= g(Z)) = 1, c(g ◦ F, lw) can be represented
as follows

c(g ◦ F, lw) = 2P (w ·X = g(Z))− 1

=
∑

z∈GF (2)m

2P (w ·X = g(Z)|Z = z)P (Z = z)− 1

=
∑

z∈GF (2)m

(2P (w ·X = g(z)|Z = z)− 1)P (Z = z).
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Therefore,

max
g∈G

c(g ◦ F, lw) = max
g∈G

∑

z∈GF (2)n

(2P (w ·X = g(z)|Z=z)− 1)P (Z = z). (5)

Note that maximizing the sum in (5) is equivalent to maximizing every term in
the sum, i.e.,

max
g∈G

c(g ◦ F, lw) =
∑

z∈GF (2)n

max
g(z)∈GF (2)

(2P (w ·X = g(z)|Z = z)− 1)P (Z = z).

As g(z) ∈ GF (2) and P (w ·X = 1|Z = z) + P (w ·X = 0|Z = z) = 1, it can be
concluded that

max
g(z)∈GF (2)

(2P (w·X = g(z)|Z = z)−1) =

{

2P (w ·X = 1|Z = z)− 1, if ew(z) ≥ 0,
2P (w ·X = 0|Z = z)− 1, if ew(z) < 0.

On the other hand,

2P (w ·X = 1|Z = z)− 1 = P (w ·X = 1|Z = z)− P (w ·X = 0|Z = z),

while

2P (w ·X = 0|Z = z)− 1 = P (w ·X = 0|Z = z)− P (w ·X = 1|Z = z).

Hence,
max

g(z)∈GF (2)
(2P (w ·X = g(z)|Z = z)− 1) = |ew(z)|,

the maximum value is reached if g(z) = sgn(ew(z)). Therefore,

CF (w) = max
g∈G

c(g ◦ F, lw) =
∑

z∈GF (2)m

|ew(z)|P (Z = z),

and g(z) = sgn(ew(z)) is the maximum correlator of F to lw.
Based on Theorem 1, the maximum correlation of F to lw can be computed

when the conditional probability difference ew(z) is known for every z ∈ GF (2)
m.

The conditional probability difference can be calculated from the algebraic ex-
pression or from the truth table of F , with a complexity 2m+n, which is far below
2n22

m

as required by exhaustive search. Furthermore, if Z = F (X) is uniformly
distributed over GF (2)m, Theorem 1 implies the following bounds for CF (w),

min
z∈GF (2)m

|ew(z)| ≤ CF (w) ≤ max
z∈GF (2)m

|ew(z)|.

Theoretically, the correlation between Z = F (X) and w · X is measured
by the mutual information I(w · X;Z). If I(w · X;Z) is small, we can not get
much information about w · X from Z. In contrast, if I(w · X;Z) is large, we
should be able to get some information about w · X. However, the mutual in-
formation I(w ·X;Z) does not tell us how to get information about w ·X from
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Z. Using maximum correlation, we can approximate the random variable w ·X
by a Boolean function of Z. The successful rate of the approximation is mea-
sured by the maximum correlation coefficient. According to the Data Processing
Inequality [5] of information theory, we have

I(w ·X; g(Z)) ≤ I(w ·X;Z).

So we actually lose information about w ·X when we perform maximum correla-
tion. In the following, we investigate the relationship between mutual information
and maximum correlation.

Lemma 1. Let h(x) denote the binary entropy function, i.e.,

h(x) = −x log2 x− (1− x) log2(1− x), 0 ≤ x ≤ 1. (6)

Then, for −0.5 ≤ x ≤ 0.5, 1− 2|x| ≤ h(0.5 + x) ≤ 1− 2(log2 e)x
2.

Proof. Let ψ(x) = h(0.5 + x)− (1− 2|x|). Since h(0.5 + x) is a convex function,
ψ(x) is convex in both intervals (−0.5, 0) and (0, 0.5). Also, since ψ(−0.5) =
ψ(0) = ψ(0.5) = 0, it can be concluded that ψ(x) ≥ 0, for −0.5 ≤ x ≤ 0.5, i. e. ,
h(0.5 + x) ≥ 1− 2|x|.
Next, let ϕ(x) = 1− 2(log2 e)x

2 − h(0.5 + x). Then

ϕ′(x) = −4x log2 e+ (ln(0.5 + x)− ln(0.5− x)) log2 e

and

ϕ′′(x) = −4 log2 e+
4 log2 e

1− (2x)2
.

Since 0 ≤ 1− (2x)2 ≤ 1, ϕ′′(x) ≥ 0. Hence, ϕ(x) is a convex function. Moreover,
ϕ′(0) = 0, which implies that x = 0 is the stationary point of ϕ(x). Thus,
ϕ(x) ≥ ϕ(0) = 0.

Definition 4. Let F be a function from GF (2)n to GF (2)m and X be a uni-
formly distributed random variable over GF (2)n. If Z = F (X) is uniformly
distributed over GF (2)m, then F is called a balanced function.

Theorem 2. Let F be a balanced function from GF (2)n to GF (2)m and X
be a uniformly distributed random variable over GF (2)n, Z = F (X). For any
nonzero w ∈ GF (2)n,

I(w ·X;Z) ≤ CF (w) ≤
√

2(ln 2)I(w ·X;Z).

Proof. For any nonzero w, it is easy to prove that the random variable w ·X is
uniformly distributed over GF (2). Thus, H(w ·X) = 1, and

I(w ·X;Z) = H(w ·X)−H(w ·X|Z)

= 1 +
∑

y∈GF (2)
z∈GF (2)n

P (w ·X = y|Z = z)P (Z = z) log2 P (w ·X = y|Z = z).
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Using the binary entropy function h() defined in (6), the mutual information
I(w ·X;Z) can be expressed as

I(w ·X;Z) = 1−
1

2m

∑

z∈GF (2)m

h(P (w · x = 1|Z = z)). (7)

By (4), P (w ·X = 1|Z = z) can be replaced by 0.5 + ew(z)/2. Thus,

I(w ·X;Z) = 1−
1

2m

∑

z∈GF (2)m

h(0.5 + ew(z)/2).

By Lemma 1,

1− |ew(z)| ≤ h(0.5 + ew(z)/2) ≤ 1−
1

2
(ew(z))

2 log2 e.

Therefore,

1

2m

∑

z∈GF (2)m

log2 e

2
(ew(z))

2 ≤ I(w ·X;Z) ≤
1

2m

∑

z∈GF (2)m

|ew(z)|. (8)

By Theorem 1, it is clear that I(w ·X;Z) ≤ CF (w).
Next, by Cauchy’s inequality,

∑

z∈GF (2)m

(ew(z))
2 ≥

1

2m
(

∑

z∈GF (2)m

|ew(z)|)
2.

From (8), it follows that

(
1

2m

∑

z∈GF (2)m

|ew(z)|)
2 ≤ 2(ln 2)I(w ·X;Z).

Again, by Theorem 1, CF (w) ≤
√

2(ln 2)I(w ·X;Z).
Theorem 2 establishes a connection between the mutual information and the

maximum correlation. This connection provides us flexibility for the analysis
and design of S-boxes. Conceptually, mutual information provides us a tool to
analyze the information leakage from the output bits while maximum correlation
explicitly describes the correlation properties of S-boxes. For example, to design
a balanced function with I(w · X;Z) ≤ δ, we only need to design a balanced
function F with CF (w) < δ.

3 A Spectral Characterization of Maximum Correlation

Coefficients

In the analysis and design of Boolean functions, Walsh transform [6] has played
an important role. The merit of Walsh transform lies in that it provides illus-
trative description of Boolean functions having certain cryptographic properties
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[12,18]. The Walsh transform of a real-valued function f on GF (2)n is defined
as follows:

Sf (w) = 2
−n

∑

x∈GF (2)n

f(x)(−1)w·x.

The function f(x) can be recovered from the inverse Walsh transform,

f(x) =
∑

w∈GF (2)n

Sf (w)(−1)
w·x.

When f is a Boolean function, we often turn it into a function f̂(x) = (−1)f(x)

and define the Walsh transform of f as that of f̂ .
Let F be a function from GF (2)n to GF (2)m. For any v ∈ GF (2)m, lv ◦

F defines a Boolean function on GF (2)n. For x ∈ GF (2)n, lv ◦ F (x) can be
expressed by the inner product v ·F (x). The Walsh transform of lv ◦F , denoted
by SF (v, w), is called the Walsh transform of F and is given by

SF (v, w) =
1

2n

∑

x∈GF (2)n

(−1)v·F (x)+w·x.

Theorem 3. Let F be a function from GF (2)n to GF (2)m. For any w ∈
GF (2)n,

CF (w) =
1

2m

∑

z∈GF (2)m

|
∑

v∈GF (2)m

SF (v, w)(−1)
v·z|.

Proof. Let X be a uniformly distributed random variable over GF (2)n and Z =
F (X). For any w ∈ GF (2)n and v ∈ GF (2)m,

P (w ·X = v · Z) = P (w ·X = 0, v · Z = 0) + P (w ·X = 1, v · Z = 1). (9)

Since P (v · Z = 0) = P (w ·X = 0, v · Z = 0) + P (w ·X = 1, v · Z = 0), we have

P (v ·Z = 0)−P (w ·X = v ·Z) = P (w ·X = 1, v ·Z = 0)−P (w ·X = 1, v ·Z = 1).
(10)

Note that the right-hand side of (10) is equal to the sum,
∑

z∈GF (2)m

P (w ·X = 1, Z = z)(−1)v·z,

which implies that P (v · Z = 0) − P (w · X = v · Z) is the Walsh transform of
2mP (w ·X = 1, Z = z). Taking the inverse Walsh transform,

P (w·X = 1, Z = z) =
1

2m

∑

v∈GF (2)m

(P (v·Z = 0)−P (w·X = v·Z))(−1)v·z. (11)

Next, the probability P (v · Z = 0) can also be expressed by the following sum,

P (v · Z = 0) =
∑

z∈GF (2)m

P (Z = z, v · z = 0)

=
∑

z∈GF (2)m

P (Z = z)(1 + (−1)v·z)/2.
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Thus,

2P (v · Z = 0)− 1 =
∑

z∈GF (2)m

P (Z = z)(−1)v·z,

which implies that 2−m(2P (v ·Z = 0)−1) is the Walsh transform of 2mP (Z = z).
Therefore,

P (Z = z) =
1

2m

∑

v∈GF (2)m

(2P (v · Z = 0)− 1)(−1)v·z. (12)

From (11) and (12), it follows that

2P (w ·X = 1, Z = z)−P (Z = z) =
1

2m

∑

v∈GF (2)m

(1− 2P (w ·X = v ·Z))(−1)v·z.

(13)
By Theorem 1,

CF (w) =
∑

z∈GF (2)m

|ew(z)|P (Z = z) =
∑

z∈GF (2)m

|2P (w·X = 1, Z = z)−P (Z = z)|.

Hence, by (13),

CF (w) =
1

2m

∑

z∈GF (2)m

|
∑

v∈GF2m

(1− 2P (w ·X = v · Z))(−1)v·z|. (14)

Since X is uniformly distributed over GF (2)n, P (w ·X = v ·Z)−P (w ·X 6= v ·Z)
equals to

2−n(|{x ∈ GF (2)n : w · x = v · F (x)}| − |{x ∈ GF (2)n : w · x 6= v · F (x)}|),

which can be represented as

1

2n

∑

x∈GF (2)n

(−1)v·F (x)+w·x.

Therefore,
P (w ·X = v · Z)− P (w ·X 6= v · Z) = SF (v, w).

As a consequence,

2P (w ·X = v · Z)− 1 = P (w ·X = v · Z)− P (w ·X 6= v · Z) = SF (v, w). (15)

Substituting (15) into (14),

CF (w) =
1

2m

∑

z∈GF (2)m

|
∑

v∈GF (2)m

SF (v, w)(−1)
v·z|,

Theorem 3 relates the maximum correlation coefficient to the Walsh trans-
forms of a set of Boolean functions. Since Boolean functions have been exten-
sively studied with respect to various cryptographic properties. Using Theorem
3, we can make use of the known results about Boolean functions to study the
correlation properties of S-boxes.
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Theorem 4. Let F be a function from GF (2)n to GF (2)m. For any w ∈
GF (2)n,

CF (w) ≤ 2
m/2 max

v∈GF (2)m
|SF (v, w)|.

Moreover,

1 ≤
∑

w∈GF (2)n

C2
F (w) ≤ 2

m.

Proof. By definition 2, it is obvious that CF (0) = 1. Hence,

∑

w∈GF (2)n

C2
F (w) ≥ 1.

By Theorem 3, the maximum correlation coefficient CF (w) can be expressed as

CF (w) =
1

2m

∑

z∈GF (2)m

|bz(w)|,

where
bz(w) =

∑

v∈GF (2)m

SF (v, w)(−1)
v·z.

The sum of the squares of bz(w) over z ∈ GF (2)m is described by

∑

z∈GF (2)m

b2z(w) =
∑

z∈GF (2)m

(
∑

u∈GF (2)m

SF (u,w)(−1)
u·z)(

∑

v∈GF (2)m

SF (v, w)(−1)
v·z)

=
∑

u∈GF (2)m

v∈GF (2)m

SF (u,w)SF (v, w)
∑

z∈GF (2)m

(−1)(u⊕v)·z.

According to the orthogonal property of Walsh function [7],

∑

z∈GF (2)m

(−1)(u⊕v)·z =

{

2m, if u = v,
0, otherwise.

Hence,
∑

z∈GF (2)m

b2z(w) = 2
m

∑

v∈GF (2)m

S2
F (v, w). (16)

By Cauchy inequality,

C2
F (w) =

1

22m
(

∑

z∈GF (2)m

|bz(w)|)
2 ≤

1

2m

∑

z∈GF (2)m

b2z(w).

By (16), it follows that

C2
F (w) ≤

∑

v∈GF (2)m

S2
F (v, w).
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Hence,
CF (w) ≤ 2

m/2 max
v∈GF (2)m

|SF (v, w)|,

and
∑

w∈GF (2)n

C2
F (w) ≤

∑

v∈GF (2)m

∑

w∈GF (2)n

S2
F (v, w).

By Parsevals’s Theorem [7],

∑

w∈GF (2)m

S2
F (v, w) = 1.

Therefore,
∑

w∈GF (2)n

C2
F (w) ≤ 2

m,

For Booleans functions, it is well known [9] that the sum of the squares of
the correlation coefficients is always 1. For S-boxes, however, the sum of the
squares of the maximum correlation coefficients might be greater than 1. To
defend against correlation attacks, the maximum correlation coefficients should
be uniformly small for all nonzero w. Theorem 4 indicates that the maximum
correlation coefficients can be controlled through the Walsh spectral coefficients.
It has been shown [9] that for any nonzero w, the maximum value of |SF (v, w)|
is at least 2−n/2. As a consequence, the tightest upper bound deduced from
Theorem 4 is 2(m−n)/2, which means that the number of output bits m can not
be too large compared with the number of input bits n. Obviously, increasing the
value of m will introduce extra source that leaks information about the input.
In the extreme case when m = n and F is a one-to-one function, CF (w) = 1.
Hence, nonlinear permutations are weak combining functions.

Theorem 5. Let F be a function from GF (2)n to GF (2)m. For any w ∈
GF (2)n, w 6= 0,

CF (w) ≤ 2
m/2(1− 2−n+1NF ),

where NF is the nonlinearity of F defined by (3).

Proof. As has been shown in [9], the nonlinearity NF can be expressed in terms
of the Walsh transform of F ,

NF = min
v∈GF (2)m

v 6=0

min
w∈GF (2)n

a∈GF (2)

d(lv ◦ F, a⊕ lw)

= min
06=v∈GF (2)m

2n−1(1− max
w∈GF (2)n

|SF (v, w)|).

Thus,
max

w∈GF (2)n
max

06=v∈GF (2)m
|SF (v, w)| = 1− 2

−n+1NF .

For any nonzero w ∈ GF (2)n, SF (0, w) = 0. Hence,

max
v∈GF (2)m

|SF (v, w)| = max
06=v∈GF (2)m

|SF (v, w)|.
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By Theorem 4,

CF (w) ≤ 2
m/2 max

06=v∈GF (2)m
|SF (v, w)|

≤ 2m/2 max
w∈GF (2)n

max
06=v∈GF (2)m

|SF (v, w)|

= 2m/2(1− 2−n+1NF ),

Theorem 5 demonstrates that the maximum correlation coefficients are small
if the nonlinearity is large. Based on Theorem 5, we can control the maximum
correlation coefficients by controlling the nonlinearity of S-boxes.

4 Maximum Correlation Analysis of Perfect Nonlinear

S-boxes

Originally S-boxes were used in the American Data Encryption Standard (DES).
The security analysis of DES has resulted in a series of design criteria [1,3] for
S-boxes. These design criteria reflect the capability of DES-like block ciphers to
defend against the known attacks. So far, the most successful attacks on DES-
like block ciphers are differential cryptanalysis developed by Biham and Shamir
[2] and linear cryptanalysis developed by Matsui [8]. Differential cryptanalysis
makes uses of the property that with certain changes in the input of an S-box
the change in the output is known with high probability. To immune against
differential cryptanalysis, S-boxes should have evenly distributed output changes
corresponding to any input changes. Nyberg [10] defines this type of S-boxes as
perfect nonlinear S-boxes.

Definition 5. A function F from GF (2)n to GF (2)m is called a perfect non-
linear S-box if for every fixed w ∈ GF (2)n, the difference F (x+w)−F (x) takes
on each value z ∈ GF (2)n for 2n−m values of x.

When m = 1, the perfect nonlinear S-box F is also called a perfect nonlin-
ear Boolean function. In [9] Meier and Staffelbach proved that perfect nonlinear
Boolean functions are actually a class of previously known bent functions intro-
duced by Rothaus [13] in combinatorial theory.

Definition 6. A Boolean function f defined on GF (2)n is called a bent function
if for every w ∈ GF (2)n, |Sf (w)| = 2−n/2.

Nyberg [10] has shown that an S-box is perfect nonlinear if and only if every
nonzero linear function of the output variables is a bent functions.

Lemma 2. A function F from GF (2)n to GF (2)m is perfect nonlinear if and
only if for every nonzero v ∈ GF (2)m the function lv ◦ F is a perfect nonlinear
Boolean function or bent function.

Based on Lemma 2, two construction methods of perfect nonlinear S-boxes
were given by Nyberg. In the following we will study the maximum correlation
properties of these S-boxes.
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Theorem 6. Let F be a perfect nonlinear S-box from GF (2)n to GF (2)m. Then
for any non-zero w ∈ GF (2)n,

CF (w) ≤ 2
(m−n)/2.

Proof. By Lemma 2, v · F (x) is a bent function for every nonzero v ∈ GF (2)m,
thus, for every w ∈ GF (2)n,

|SF (v, w)| = 2
−n/2.

When v = 0, SF (v, w) = 0 for nonzero w. Hence, for every nonzero w ∈ GF (2)
n,

max
v∈GF (2)m

|SF (v, w)| = max
06=v∈GF (2)m

|SF (v, w)| = 2
−n/2.

By Theorem 4, it is clear that

CF (w) ≤ 2
m/2 max

v∈GF (2)m
|SF (v, w)| = 2

(m−n)/2.

For a perfect nonlinear S-box of n-bit input and m-bit output, it is known [9]
that the correlation coefficient between each output bit and every nonzero linear
function of the input bits is 2−n/2, which is very small when n is large. Lemma
2 implies that linear functions of the output bits do not help increasing the
correlation coefficients. However, Theorem 6 demonstrates that the correlation
coefficients may be increased by a factor as large as 2m/2 if nonlinear functions
of the output bits are used. Hence, when used in stream ciphers, we need to
consider the number of bits a perfect nonlinear S-box should output. Nyberg
[10] has shown that perfect nonlinear S-boxes only exist if m ≤ n/2. With
respect to correlation attacks, we also want to make sure that 2(m−n)/2 is a very
small number. On the other hand, large value of m means large throughput of
the data streams generated by keystream generators. Hence, there is a trade-off
between the capability to defend against correlation attacks and the throughput
of the keystream sequences. In the design of stream ciphers, we choose n and m
according to the expected security strength and the throughput requirement.

5 Conclusion

This paper is devoted to the design of S-boxes for stream ciphers. When used
to combine several LFSR sequences in a combination generator, S-boxes leak
more information about the LFSR sequences than Boolean functions. To control
the information leakage, the notion of maximum correlation is introduced. It is
a generalization of Nyberg’s nonlinearity of S-boxes. The merit with maximum
correlation is that more information about linear functions of the input may
be obtained when all Boolean functions, instead of just linear functions, of the
output of the S-box are exploited. In terms of Walsh transform, a spectral char-
acterization of the maximum correlation coefficients is presented, which can be
used to investigate upper and lower bounds on the maximum correlation coeffi-
cients as well as the relationship between maximum correlation and nonlinearity.
For a perfect nonlinear S-box with n-bit input and m-bit output, it is shown that
the maximum correlation coefficients are upper bounded by 2(m−n)/2.
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