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Abstract. After carrying out a protocol for quantum key agreement
over a noisy quantum channel, the parties Alice and Bob must process
the raw key in order to end up with identical keys about which the
adversary has virtually no information. In principle, both classical and
quantum protocols can be used for this processing. It is a natural ques-
tion which type of protocols is more powerful. We show that the limits of
tolerable noise are identical for classical and quantum protocols in many
cases. More specifically, we prove that a quantum state between two par-
ties is entangled if and only if the classical random variables resulting
from optimal measurements provide some mutual classical information
between the parties. In addition, we present evidence which strongly sug-
gests that the potentials of classical and of quantum protocols are equal
in every situation. An important consequence, in the purely classical
regime, of such a correspondence would be the existence of a classical
counterpart of so-called bound entanglement, namely “bound informa-
tion” that cannot be used for generating a secret key by any protocol.
This stands in sharp contrast to what was previously believed.
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1 Introduction

In modern cryptography there are mainly two security paradigms, namely com-
putational and information-theoretic security. The latter is sometimes also called
unconditional security. Computational security is based on the assumed hard-
ness of certain computational problems (e.g., the integer-factoring or discrete-
logarithm problems). However, since a computationally sufficiently powerful ad-
versary can solve any computational problem, hence break any such system, and
because no useful general lower bounds are known in complexity theory, com-
putational security is always conditional and, in addition to this, in danger by
progress in the theory of efficient algorithms as well as in hardware engineering
(e.g., quantum computing). Information-theoretic security on the other hand is
based on probability theory and on the fact that an adversary’s information is
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limited. Such a limitation can for instance come from noise in communication
channels or from the laws of quantum mechanics.

Many different settings based on noisy channels have been described and
analyzed. Examples are Wyner’s wire-tap channel [30], Csiszár and Körner’s
broadcast channel [7], or Maurer’s model of key agreement from joint random-
ness [20], [22].

Quantum cryptography on the other hand lies in the intersection of two of the
major scientific achievements of the 20th century, namely quantum physics and
information theory. Various protocols for so-called quantum key agreement have
been proposed (e.g., [3], [10]), and the possibility and impossibility of purification
in different settings has been studied by many authors.

The goal of this paper is to derive parallels between classical and quantum
key agreement and thus to show that the two paradigms are more closely related
than previously recognized. These connections allow for investigating questions
and solving open problems of purely classical information theory with quantum-
mechanic methods. One of the possible consequences is that, in contrast to what
was previously believed, there exists a classical counterpart to so-called bound
entanglement (i.e., entanglement that cannot be purified by any quantum pro-
tocol), namely mutual information between Alice and Bob which they cannot
use for generating a secret key by any classical protocol.

The outline of this paper is as follows. In Section 2 we introduce the classi-
cal (Section 2.1) and quantum (Section 2.2) models of information-theoretic key
agreement and the crucial concepts and quantities, such as secret-key rate and
intrinsic information on one side, and measurements, entanglement, and quan-
tum privacy amplification on the other. In Section 3 we show the mentioned links
between these two models, more precisely, between entanglement and intrinsic
information (Section 3.1) as well as between quantum purification and the secret-
key rate (Section 3.4). We illustrate the statements and their consequences with
a number of examples (Sections 3.2 and 3.5). In Section 3.6 we define and char-
acterize the classical counterpart of bound entanglement, called bound intrinsic
information. Finally we show that not only problems in classical information
theory can be addressed by quantum-mechanical methods, but that the inverse
is also true: In Section 3.3 we propose a new measure for entanglement based on
the intrinsic information measure.

2 Models of Information-Theoretically Secure Key

Agreement

2.1 Key Agreement from Classical Information: Intrinsic

Information and Secret-Key Rate

In this section we describe Maurer’s general model of classical key agreement
by public discussion from common information [20]. Here, two parties Alice and
Bob who are willing to generate a secret key have access to repeated independent
realizations of (classical) random variables X and Y , respectively, whereas an
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adversary Eve learns the outcomes of a random variable Z. Let PXY Z be the
joint distribution of the three random variables. In addition, Alice and Bob
are connected by a noiseless and authentic but otherwise completely insecure
channel. In this situation, the secret-key rate S(X;Y ||Z) has been defined as
the maximal rate at which Alice and Bob can generate a secret key that is
equal for Alice and Bob with overwhelming probability and about which Eve
has only a negligible amount of (Shannon) information. For a detailed discussion
of the general scenario and the secret-key rate as well as for various bounds on
S(X;Y ||Z), see [20], [21], [22].

Bound (1) implies that if Bob’s random variable Y provides more information
about Alice’s X than Eve’s Z does (or vice versa), then this advantage can be
exploited for generating a secret key:

S(X;Y ||Z) ≥ max {I(X;Y )− I(X;Z) , I(Y ;X)− I(Y ;Z)} . (1)

This is a consequence of a result by Csiszár and Körner [7]. It is somewhat sur-
prising that this bound is not tight, in particular, that secret-key agreement can
even be possible when the right-hand side of (1) vanishes or is negative. How-
ever, the positivity of the expression on the right-hand side of (1) is a necessary
and sufficient condition for the possibility of secret-key agreement by one-way
communication: Whenever Alice and Bob start in a disadvantageous situation
with respect to Eve, feedback is necessary. The corresponding initial phase of the
key-agreement protocol is then often called advantage distillation [20], [29].

The following upper bound on S(X;Y ||Z) is a generalization of Shannon’s
well-known impracticality theorem [28] and quantifies the intuitive fact that
no information-theoretically secure key agreement is possible when Bob’s infor-
mation is independent from Alice’s random variable, given Eve’s information:
S(X;Y ||Z) ≤ I(X;Y |Z). However, this bound is not tight. Because it is a pos-
sible strategy of the adversary Eve to process Z, i.e., to send Z over some
channel characterized by PZ|Z , we have for such a new random variable Z that

S(X;Y ||Z) ≤ I(X;Y |Z), and hence

S(X;Y ||Z) ≤ min PZ|Z
{I(X;Y |Z)} =: I(X;Y↓Z) (2)

holds. The quantity I(X;Y↓Z) has been called the intrinsic conditional informa-
tion between X and Y given Z [22]. It was conjectured, and evidence supporting
this belief was given, that S(X;Y ||Z) > 0 holds if I(X;Y ↓Z) > 0 does [22].
Some of the results below strongly suggest that this is true if one of the random
variables X and Y is binary and the other one at most ternary, but false in
general.

2.2 Quantum Key Agreement: Measurements, Entanglement,

Purification

We assume that the reader is familiar with the basic quantum-theoretic concepts
and notations. For an introduction, see for example [24].
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In the context of quantum key agreement, the classical scenario PXY Z is
replaced by a quantum state vector1 Ψ ∈ HA ⊗HB ⊗HE , where HA, HB , and
HE are Hilbert spaces describing the systems in Alice’s, Bob’s, and Eve’s hands,
respectively. Then, measuring this quantum state by the three parties leads to a
classical probability distribution. In the following, we assume that Eve is free to
carry out so-called generalized measurements (POVMs) [24]. In other words, the
set {|z〉} will not be assumed to be an orthonormal basis, but any set generating
the Hilbert space HE and satisfying the condition

∑

z |z〉〈z| = 11HE
. Then, if the

three parties carry out measurements in certain (orthonormal) bases {|x〉} and
{|y〉}, and in the set {|z〉}, respectively, they end up with the classical scenario
PXY Z = |〈x, y, z|Ψ〉|2. Since this distribution depends on the chosen bases and
set, a given quantum state Ψ does not uniquely determine a classical scenario:
some measurements may lead to scenarios useful for Alice and Bob, whereas for
Eve, some others may.

The analog of Alice and Bob’s marginal distribution PXY is the partial state
ρAB , obtained by tracing over Eve’s Hilbert space HE . More precisely, let Ψ =
∑

xyz cxyz|x, y, z〉, where |x, y, z〉 is short for |x〉 ⊗ |y〉 ⊗ |z〉. We can write Ψ =
∑

z

√

PZ(z)ψz ⊗ |z〉, where PZ denotes Eve’s marginal distribution of PXY Z .
Then ρAB = TrHE

(PΨ ) :=
∑

z PZ(z)Pψz
, where Pψz

is the projector to the
state vector ψz.

An important property is that ρAB is pure (i.e., ρ2AB = ρAB) if and only if
the global state Ψ factorizes, i.e., Ψ = ψAB ⊗ ψE , where ψAB ∈ HA ⊗HB and
ψE ∈ HE . In this case Alice and Bob are independent of Eve: Eve cannot obtain
any information on Alice’s and Bob’s states by measuring her system.

After a measurement, Alice and Bob obtain a classical distribution PXY . In
accordance with Landauer’s principle that all information is ultimately physical,
the classical scenario arises from a physical process, namely the measurements
performed. Thus the quantum state Ψ , and not the distribution PXY Z , is the
true primitive. Note that only if also Eve performs a measurement, PXY Z is at
all defined. It is clear however that it might be advantageous (if technologically
possible) for the adversary not to do any measurements before the public discus-
sion. Because of this, staying in the quantum regime can simplify the analysis.

When Alice and Bob share many independent systems2 ρAB , there are basi-
cally two possibilities for generating a secret key. Either they first measure their
systems and then run a classical protocol (process classical information) secure
against all measurements Eve could possibly perform (i.e., against all possible
distributions PXY Z that can result after Eve’s measurement). Or they first run
a quantum protocol (i.e., process the information in the quantum domain) and
then perform their measurements. The idea of quantum protocols is to process
the systems in state ρAB and to produce fewer systems in a pure state (i.e., to

1 We consider pure states, since it is natural to assume that Eve controls all the
environment outside Alice and Bob’s systems.

2 Here we do not consider the possibility that Eve coherently processes several of her
systems. This corresponds to the assumption in the classical scenario that repeated
realizations of X, Y , and Z are independent of each other.
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purify ρAB), thus to eliminate Eve from the scenario. Moreover, the pure state
Alice and Bob end up with should be maximally entangled (i.e., even for some
different and incompatible measurements, Alice’s and Bob’s results are perfectly
correlated). Finally, Alice and Bob measure their maximally entangled systems
and establish a secret key. This way of obtaining a key directly from a quantum
state Ψ , without any error correction nor classical privacy amplification, is called
quantum privacy amplification3 (QPA for short) [8], [2]. Note that the proce-
dure described in [8] and [2] guarantees that Eve’s relative information (relative
to the key length) is arbitrarily small, but not that her absolute information is
negligible. The analog of this problem in the classical case is discussed in [21].

The precise conditions under which a general state ρAB can be purified
are not known. However, the two following conditions are necessary. First, the
state must be entangled or, equivalently, not separable. A state ρAB is sep-
arable if and only if it can be written as a mixture of product states, i.e.,
ρAB =

∑

j pj ρAj ⊗ ρBj . Separable states can be generated by purely clas-
sical communication, hence it follows from bound (2) that entanglement is a
necessary condition. The second condition is more subtle: The matrix ρtAB ob-
tained from ρAB by partial transposition must have at least one negative eigen-
value [17], [16]. The partial transposition of the density matrix ρAB is defined
as (ρtAB)i,j;µ,ν := (ρAB)i,ν;µ,j , where the indices i and µ [j and ν] run through
a basis of HA [HB ]. Note that this definition is base-dependent. However, the
eigenvalues of ρtAB are not [25]. The second of these conditions implies the first
one: Negative partial transposition (i.e., at least one eigenvalue is negative) im-
plies entanglement.

In the binary case (HA and HB both have dimension two), the above two
conditions are equivalent and sufficient for the possibility of quantum key agree-
ment: all entangled binary states can be purified. The same even holds if one
Hilbert space is of dimension 2 and the other one of dimension 3. However,
for larger dimensions there are examples showing that these conditions are not
equivalent: There are entangled states whose partial transpose has no negative
eigenvalue, hence cannot be purified [17]. Such states are called bound entangled,
in contrast to free entangled states, which can be purified. Moreover, it is be-
lieved that there even exist entangled states which cannot be purified although
they have negative partial transposition [9].

3 Linking Classical and Quantum Key Agreement

In this section we derive a close connection between the possibilities offered by
classical and quantum protocols for key agreement. The intuition is as follows.
As described in Section 2.2, there is a very natural connection between quantum
states Ψ and classical distributions PXY Z which can be thought of as arising

3 The term “quantum privacy amplification” is somewhat unfortunate since it does
not correspond to classical privacy amplification, but includes advantage distillation
and error correction.
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from Ψ by measuring in a certain basis, e.g., the standard basis4. (Note however
that the connection is not unique even for fixed bases: For a given distribution
PXY Z , there are many states Ψ leading to PXY Z by carrying out measurements.)
When given a state Ψ between three parties Alice, Bob, and Eve, and if ρAB
denotes the resulting mixed state after Eve is traced out, then the corresponding
classical distribution PXY Z has positive intrinsic information if and only if ρAB
is entangled. However, this correspondence clearly depends on the measurement
bases used by Alice, Bob, and Eve. If for instance ρAB is entangled, but Alice and
Bob do very unclever measurements, then the intrinsic information may vanish.
If on the other hand ρAB is separable, Eve may do such bad measurements
that the intrinsic information becomes positive, despite the fact that ρAB could
have been established by public discussion without any prior correlation (see
Example 4). Consequently, the correspondence between intrinsic information and
entanglement must involve some optimization over all possible measurements on
all sides.

A similar correspondence on the protocol level is supported by many exam-
ples, but not rigorously proven: The distribution PXY Z allows for classical key
agreement if and only if quantum key agreement is possible starting from the
state ρAB .

We show how these parallels allow for addressing problems of purely classical
information-theoretic nature with the methods of quantum information theory,
and vice versa.

3.1 Entanglement and Intrinsic Information

Let us first establish the connection between intrinsic information and entan-
glement. Theorem 1 states that if ρAB is separable, then Eve can “force” the
information between Alice’s and Bob’s classical random variables (given Eve’s
classical random variable) to be zero (whatever strategy Alice and Bob use5). In
particular, Eve can prevent classical key agreement.

Theorem 1 Let Ψ ∈ HA⊗HB⊗HE and ρAB = TrHE
(PΨ ). If ρAB is separable,

then there exists a generating set {|z〉} of HE such that for all bases {|x〉} and
{|y〉} of HA and HB, respectively, I(X;Y |Z) = 0 holds for PXY Z(x, y, z) :=
|〈x, y, z|Ψ〉|2.

4 A priori, there is no privileged basis. However, physicists often write states like
ρAB in a basis which seems to be more natural than others. We refer to this as
the standard basis. Somewhat surprisingly, this basis is generally easy to identify,
though not precisely defined. One could characterize the standard basis as the basis
for which as many coefficients as possible of Ψ are real and positive. We usually
represent quantum states with respect to the standard basis.

5 The statement of Theorem 1 also holds when Alice and Bob are allowed to do
generalized measurements.
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Proof. If ρAB is separable, then there exist vectors |αz〉 and |βz〉 such that
ρAB =

∑nz

z=1 pzPαz
⊗ Pβz

, where Pαz
denotes the one-dimensional projector

onto the subspace spanned by |αz〉.
Let us first assume that nz ≤ dimHE . Then there exists a basis {|z〉} of HE

such that Ψ =
∑

z

√
pz |αz, βz, z〉 holds [23], [12], [19].

If nz > dimHE , then Eve can add an auxiliary system Haux to hers (usually
called an ancilla) and we have Ψ⊗|γ0〉 =

∑

z

√
pz |αz, βz, γz〉, where |γ0〉 ∈ Haux

is the state of Eve’s auxiliary system, and {|γz〉} is a basis of HE⊗Haux. We de-
fine the (not necessarily orthonormalized) vectors |z〉 by |z, γ0〉 = 11HE

⊗Pγ0 |γz〉.
These vectors determine a generalized measurement with positive operators
Oz = |z〉〈z|. Since

∑

z Oz⊗Pγ0 =
∑

z |z, γ0〉〈z, γ0| =
∑

z 11HE
⊗Pγ0 |γz〉〈γz|11HE

⊗
Pγ0 = 11HE

⊗ Pγ0 , the Oz satisfy
∑

z Oz = 11HE
, as they should in order to de-

fine a generalized measurement [24]. Note that the first case (nz ≤ dimHE) is
a special case of the second one, with |γz〉 = |z, γ0〉. If Eve now performs the
measurement, then we have PXY Z(x, y, z) = |〈x, y, z|Ψ〉|2 = |〈x, y, γz|Ψ, γ0〉|2,
and

PXY |Z(x, y, z) = |〈x, y|αz, βz〉|2 = |〈x|αz〉|2 |〈y|βz〉|2 = PX|Z(x, z)PY |Z(y, z)

holds for all |z〉 and for all |x, y〉 ∈ HA ⊗HB. Consequently, I(X;Y |Z) = 0. 2

Theorem 2 states that if ρAB is entangled, then Eve cannot force the intrinsic
information to be zero: Whatever she does (i.e., whatever generalized measure-
ments she carries out), there is something Alice and Bob can do such that the
intrinsic information is positive. Note that this does not, a priori, imply that
secret-key agreement is possible in every case. Indeed, we will provide evidence
for the fact that this implication does generally not hold.

Theorem 2 Let Ψ ∈ HA⊗HB⊗HE and ρAB = TrHE
(PΨ ). If ρAB is entangled,

then for all generating sets {|z〉} of HE , there are bases {|x〉} and {|y〉} of HA
and HB, respectively, such that I(X;Y ↓ Z) > 0 holds for PXY Z(x, y, z) :=
|〈x, y, z|Ψ〉|2.

Proof. We prove this by contradiction. Assume that there exists a generating
set {|z〉} of HE such that for all bases {|x〉} of HA and {|y〉} of HB , we have
I(X;Y ↓ Z) = 0 for the resulting distribution. For such a distribution, there
exists a channel, characterized by PZ|Z , such that I(X;Y |Z) = 0 holds, i.e.,

PXY |Z(x, y, z) = PX|Z(x, z)PY |Z(y, z) . (3)

Let ρz := (1/pz)
∑

z pzPZ|Z(z, z)Pψz
, pz = PZ(z), and pz =

∑

z PZ|Z(z, z)pz,
where ψz is the state of Alice’s and Bob’s system conditioned on Eve’s result z:
Ψ ⊗ |γ0〉 =

∑

z ψz ⊗ |γz〉 (see the proof of Theorem 1).
From (3) we can conclude Tr(Px⊗Pyρz) = Tr(Px⊗ 11ρz̄)Tr(11⊗Pyρz) for all

one-dimensional projectors Px and Py acting in HA and HB, respectively. Con-
sequently, the states ρz are products, i.e., ρz = ραz

⊗ ρβz
, and ρAB =

∑

z̄ pz̄ρz̄
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is separable. 2

Theorem 2 can be formulated in a more positive way. Let us first introduce
the concept of a set of bases ({|x〉}j , {|y〉}j), where the j label the different bases,
as they are used in the 4-state (2 bases) and the 6-state (3 bases) protocols [3],
[4], [1]. Then if ρAB is entangled there exists a set ({|x〉}j , {|y〉}j)j=1,...,N of
N bases such that for all generalized measurements {|z〉}, I(X;Y ↓ [Z, j]) > 0
holds. The idea is that Alice and Bob randomly choose a basis and, after the
transmission, publicly restrict to the (possibly few) cases where they happen to
have chosen the same basis. Hence Eve knows j, and one has

I(X;Y ↓ [Z, j]) = 1

N

N
∑

j=1

I(Xj ;Y j ↓ Z) .

If the set of bases is large enough, then for all {|z〉} there is a basis with posi-
tive intrinsic information, hence the mean is also positive. Clearly, this result is
stronger if the set of bases is small. Nothing is proven about the achievable size
of such sets of bases, but it is conceivable that max{dimHA,dimHB} bases are
always sufficient.

Corollary 3 Let Ψ ∈ HA⊗HB⊗HE and ρAB = TrHE
(PΨ ). Then the following

statements are equivalent:

(i) ρAB is entangled,

(ii) for all generating sets {|z〉} of HE, there exist bases {|x〉} of HA and
{|y〉} of HB such that the distribution PXY Z(x, y, z) := |〈x, y, z|Ψ〉|2 satisfies
I(X;Y↓Z) > 0,

(iii) for all generating sets {|z〉} of HE, there exist bases {|x〉} of HA and
{|y〉} of HB such that the distribution PXY Z(x, y, z) := |〈x, y, z|Ψ〉|2 satisfies
I(X;Y |Z) > 0.

A first consequence of the fact that Corollary 3 often holds with respect to
the standard bases (see below) is that it yields, at least in the binary case, a
criterion for I(X;Y ↓Z) > 0 that is efficiently verifiable since it is based on the
positivity of the eigenvalues of a 4×4 matrix. Previously, the quantity I(X;Y↓Z)
has been considered hard to handle.

3.2 Examples I

The following examples illustrate the correspondence established in Section 3.1.
They show in particular that very often (Examples 1, 2, and 3), but not always
(Example 4), the direct connection between entanglement and positive intrinsic
information holds with respect to the standard bases (i.e., the bases physicists
use by commodity and intuition). Example 1 was already analyzed in [15]. The
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examples of this section will be discussed further in Section 3.5 under the aspect
of the existence of key-agreement protocols in the classical and quantum regimes.

Example 1. Let us consider the so-called 4-state protocol of [3]. The analysis of
the 6-state protocol [1] is analogous and leads to similar results. We compare the
possibility of quantum and classical key agreement given the quantum state and
the corresponding classical distribution, respectively, arising from this protocol.
The conclusion is, under the assumption of incoherent eavesdropping, that key
agreement in one setting is possible if and only if this is true also for the other.

After carrying out the 4-state protocol, and under the assumption of optimal
eavesdropping (in terms of Shannon information), the resulting quantum state
is [11]

Ψ =
√

F/2 |0, 0〉 ⊗ ξ00 +
√

D/2 |0, 1〉 ⊗ ξ01 +
√

D/2 |1, 0〉 ⊗ ξ10 +
√

F/2 |1, 1〉 ⊗ ξ11 ,

whereD (the disturbance) is the probability thatX 6= Y holds ifX and Y are the
classical random variables of Alice and Bob, respectively, where F = 1−D (the
fidelity), and where the ξij satisfy 〈ξ00|ξ11〉 = 〈ξ01|ξ10〉 = 1−2D and 〈ξii|ξij〉 = 0
for all i 6= j. Then the state ρAB is (in the basis {| 00 〉, | 01 〉, | 10 〉, | 11 〉})

ρAB =
1

2









D 0 0 −D(1− 2D)
0 1−D −(1−D)(1− 2D) 0
0 −(1−D)(1− 2D) 1−D 0

−D(1− 2D) 0 0 D









,

and its partial transpose

ρtAB =
1

2









D 0 0 −(1−D)(1− 2D)
0 1−D −D(1− 2D) 0
0 −D(1− 2D) 1−D 0

−(1−D)(1− 2D) 0 0 D









has the eigenvalues (1/2)(D± (1−D)(1−2D)) and (1/2)((1−D)±D(1−2D)),
which are all non-negative (i.e., ρAB is separable) if

D ≥ 1− 1√
2
. (4)

From the classical viewpoint, the corresponding distributions (arising from
measuring the above quantum system in the standard bases) are as follows. First,
X and Y are both symmetric bits with Prob [X 6= Y ] = D. Eve’s random variable
Z = [Z1, Z2] is composed of 2 bits Z1 and Z2, where Z1 = X ⊕ Y , i.e., Z1 tells
Eve whether Bob received the qubit disturbed (Z1 = 1) or not (Z1 = 0) (this is a
consequence of the fact that the ξii and ξij (i 6= j) states generate orthogonal sub-
spaces), and where the probability that Eve’s second bit indicates the correct
value of Bob’s bit is Prob[Z2 = Y ] = δ = (1 +

√

1− 〈ξ00|ξ11〉2)/2 = 1/2 +
√

D(1−D). We now prove that for this distribution, the intrinsic information
is zero if and only if

D

1−D ≥ 2
√

(1− δ)δ = 1− 2D (5)
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holds. We show that if the condition (5) is satisfied, then I(X;Y↓Z) = 0 holds.
The inverse implication follows from the existence of a key-agreement protocol
in all other cases (see Example 1 (cont’d) in Section 3.5). If (5) holds, we can
construct a random variable Z, that is generated by sending Z over a channel
characterized by PZ|Z , for which I(X;Y |Z) = 0 holds. We can restrict ourselves

to the case of equality in (5) because Eve can always increase δ by adding noise.

Consider now the channel characterized by the following conditional distri-
bution PZ|Z (where Z = {u, v}):

PZ|Z(u, [0, 0]) = PZ|Z(v, [0, 1]) = 1 ,

PZ|Z(l, [1, 0]) = PZ|Z(l, [1, 1]) = 1/2

for l ∈ {u, v}. We show I(X;Y |Z) = EZ [I(X;Y |Z = z)] = 0, i.e., that

I(X;Y |Z = u) = 0 and I(X;Y |Z = v) = 0 hold. By symmetry it is sufficient to
show the first equality. For aij := PXY Z(i, j, u), we get

a00 = (1−D)(1−δ)/2 , a11 = (1−D)δ/2 , a01 = a10 = (D(1−δ)/2+Dδ/2)/2 = D/4 .

From equality in (5) we conclude a00a11 = a01a10, which is equivalent to the
fact that X and Y are independent, given Z = u.

Finally, note that the conditions (4) and (5) are equivalent for D ∈ [0, 1/2].
This shows that the bounds of tolerable noise are indeed the same for the quan-
tum and classical scenarios. ♦

Example 2. We consider the bound entangled state presented in [17]. This exam-
ple received quite a lot of attention by the quantum-information community be-
cause it was the first known example of bound entanglement (i.e., entanglement
without the possibility of quantum key agreement). We show that its classical
counterpart seems to have similarly surprising properties. Let 0 < a < 1 and

Ψ =

√

3a

8a+ 1
ψ⊗|0〉+

√

1

8a+ 1
φa⊗|1〉+

√

a

8a+ 1
(|122〉+|133〉+|214〉+|235〉+|326〉) ,

where ψ = (|11〉+ |22〉+ |33〉)/
√
3 and φa =

√

(1 + a)/2 |31〉+
√

(1− a)/2 |33〉.
It has been shown in [17] that the resulting state ρAB is entangled.

The corresponding classical distribution is as follows. The ranges are X =
Y = {1, 2, 3} and Z = {0, 1, 2, 3, 4, 5, 6}. We write (ijk) = PXY Z(i, j, k). Then
we have (110) = (220) = (330) = (122) = (133) = (214) = (235) = (326) =
2a/(16a+2), (311) = (1+a)/(16a+2), and (331) = (1−a)/(16a+2). We study
the special case a = 1/2. Consider the following representation of the resulting
distribution (to be normalized). For instance, the entry “(0) 1 , (1) 1/2” for
X = Y = 3 means PXY Z(3, 3, 0) = 1/10 (normalized), PXY Z(3, 3, 1) = 1/20,
and PXY Z(3, 3, z) = 0 for all z 6∈ {0, 1}.



493

X 1 2 3
Y (Z)

1 (0) 1 (4) 1 (1) 3/2
2 (2) 1 (0) 1 (6) 1
3 (3) 1 (5) 1 (0) 1

(1) 1/2

As we would expect, the intrinsic information is positive in this scenario. This
can be seen by contradiction as follows. Assume I(X;Y↓Z) = 0. Hence there ex-
ists a discrete channel, characterized by the conditional distribution PZ|Z , such

that I(X;Y |Z) = 0 holds. Let Z ⊆ N be the range of Z, and let PZ|Z (i, 0) =: ai,

PZ|Z(i, 1) =: xi, PZ|Z(i, 6) =: si. Then we must have ai, xi, si ∈ [0, 1] and
∑

i ai =
∑

i xi =
∑

i si = 1. Using I(X;Y |Z) = 0, we obtain the following dis-
tributions PXY |Z=i (to be normalized):

X 1 2 3
Y

1 ai
3aixi

2si

3xi

2

2 2aisi

3xi
ai si

3 2ai(ai+xi/2)
3xi

ai(ai+xi/2)
si

ai +
xi

2

By comparing the (2, 3)-entries of the two tables above, we obtain

1 ≥
∑

i

ai(ai + xi/2)

si
. (6)

We prove that (6) implies si ≡ ai (i.e., si = ai for all i) and xi ≡ 0.
Clearly, this does not lead to a solution and is hence a contradiction. For in-
stance, PXY |Z=i(1, 2) = 2aisi/3xi is not even defined in this case if ai > 0.

It remains to show that (6) implies ai ≡ si and xi ≡ 0. We show that
whenever

∑

i ai =
∑

i si = 1 and ai 6≡ si, then
∑

i a
2
i /si > 1 . First, note

that
∑

i a
2
i /si =

∑

i ai = 1 for ai ≡ si. Let now si1 ≤ ai1 and si2 ≥ ai2 .
We show that a2i1/si1 + a2i2/si2 < a2i1/(si1 − ε) + a2i2/(si2 + ε) holds for every
ε > 0, which obviously implies the above statement. It is straightforward to see
that this is equivalent to a2i1si2(si2 + ε) > a2i2si1(si1 − ε), and holds because of
a2i1si2(si2 + ε) > a2i1a

2
i2

and a2i2si1(si1 − ε) < a2i1a
2
i2
. This concludes the proof of

I(X;Y↓Z) > 0. ♦

As mentioned, the interesting point about Example 2 is that the quantum
state is bound entangled, and that also classical key agreement seems impossible
despite the fact that I(X;Y↓Z) > 0 holds. This is a contradiction to a conjecture
stated in [22]. The classical translation of the bound entangled state leads to
a classical distribution with very strange properties as well! (See Example 2
(cont’d) in Section 3.5).

In Example 3, another bound entangled state (first proposed in [18]) is dis-
cussed. The example is particularly nice because, depending on the choice of a



494

parameter α, the quantum state can be made separable, bound entangled, and
free entangled.

Example 3. We consider the following distribution (to be normalized). Let 2 ≤
α ≤ 5.

X 1 2 3
Y (Z)

1 (0) 2 (4) 5− α (3) α
2 (1) α (0) 2 (5) 5− α
3 (6) 5− α (2) α (0) 2

This distribution arises when measuring the following quantum state. Let ψ :=
(1/
√
3) (|11〉+ |22〉+ |33〉). Then

Ψ =

√

2

7
ψ ⊗ |0〉+

√

a

21
(|12〉 ⊗ |1〉+ |23〉 ⊗ |2〉+ |31〉 ⊗ |3〉)

+

√

5− a
21

(|21〉 ⊗ |4〉+ |32〉 ⊗ |5〉+ |13〉 ⊗ |6〉), and

ρAB =
2

7
Pψ +

a

21
(P12 + P23 + P31) +

5− a
21

(P21 + P32 + P13)

is separable if and only if α ∈ [2, 3], bound entangled for α ∈ (3, 4], and free
entangled if α ∈ (4, 5] [18] (see Figure 1).

Let us consider the quantity I(X;Y↓Z). First of all, it is clear that I(X;Y↓
Z) = 0 holds for α ∈ [2, 3]. The reason is that α ≥ 2 and 5 − α ≥ 2 together
imply that Eve can “mix” her symbol Z = 0 with the remaining symbols in such
a way that when given that Z takes the “mixed value,” then XY is uniformly
distributed; in particular, X and Y are independent. Moreover, it can be shown
in analogy to Example 2 that I(X;Y↓Z) > 0 holds for α > 3. ♦

Examples 1, 2, and 3 suggest that the correspondence between separability
and entanglement on one side and vanishing and non-vanishing intrinsic infor-
mation on the other always holds with respect to the standard bases or even
arbitrary bases. This is however not true in general: Alice and Bob as well as
Eve can perform bad measurements and give away an initial advantage. The
following is a simple example where measuring in the standard basis is a bad
choice for Eve.

Example 4. Let us consider the quantum states

Ψ =
1√
5
(|00+01+10〉⊗|0〉+|00+11〉⊗|1〉) , ρAB =

3

5
P|00+01+10〉+

2

5
P|00+11〉 .

If Alice, Bob, and Eve measure in the standard bases, we get the classical dis-
tribution (to be normalized)
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X 0 1
Y (Z)

0 (0) 1 (0) 1
(1) 1 (1) 0

1 (0) 1 (0) 0
(1) 0 (1) 1

For this distribution, I(X;Y↓Z) > 0 holds. Indeed, even S(X;Y ||Z) > 0 holds.
This is not surprising since both X and Y are binary, and since the described
parallels suggest that in this case, positive intrinsic information implies that a
secret-key agreement protocol exists.

The proof of S(X;Y ||Z) > 0 in this situation is analogous to the proof of
this fact in Example 3. The protocol consists of Alice and Bob independently
making their bits symmetric. Then the repeat-code protocol can be applied.

However, the partial-transpose condition shows that ρAB is separable. This
means that measuring in the standard basis is bad for Eve. Indeed, let us rewrite
Ψ and ρAB as

Ψ =
√
Λ |m,m〉 ⊗ |0̃〉+

√
1− Λ | −m,−m〉 ⊗ |1̃〉 ,

ρAB =
5 +

√
5

10
P|m,m〉 +

5−
√
5

10
P|−m,−m〉 ,

where Λ = (5 +
√
5)/10, |m,m〉 = |m〉 ⊗ |m〉, | ± m〉 =

√

(1± η)/2 |0〉 ±
√

(1∓ η)/2 |1〉, and η = 1/
√
5.

In this representation, ρAB is obviously separable. It also means that Eve’s
optimal measurement basis is

|0̃〉 =
√
Λ |0〉 − 1√

5Λ
|1〉 , |1̃〉 = −

√
1− Λ |0〉 − 1

√

5(1− Λ)
|1〉 .

Then, I(X;Y↓Z) = 0 holds for the resulting classical distribution. ♦

3.3 A Classical Measure for Quantum Entanglement

It is a challenging problem of theoretical quantum physics to find good measures
for entanglement [26]. Corollary 3 above suggests the following measure, which
is based on classical information theory.

Definition 1 Let for a quantum state ρAB

µ(ρAB) := min
{|z〉}

( max
{|x〉},{|y〉}

(I(X;Y↓Z))) ,

where the minimum is taken over all Ψ =
∑

z

√
pzψz ⊗ |z〉 such that ρAB =

TrHE
(PΨ ) holds and over all generating sets {|z〉} of HE , the maximum is over

all bases {|x〉} of HA and {|y〉} of HB , and where PXY Z(x, y, z) := |〈x, y, z|Ψ〉|2.
f
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The function µ has all the properties required from such a measure. If
ρAB is pure, i.e., ρAB = |ψAB〉〈ψAB |, then we have in the Schmidt basis (see
for example [24]) ψAB =

∑

j cj |xj , yj〉, and µ(ρAB) = −Tr(ρA log ρA) (where
ρA = TrB(ρAB)) as it should [26]. It is obvious that µ is convex, i.e., µ(λρ1 +
(1− λ)ρ2) ≤ λµ(ρ1) + (1− λ)µ(ρ2).

Example 5. This example is based on Werner’s states. Let Ψ =
√
λψ(−) ⊗ |0〉+

√

(1− λ)/4 |001 + 012 + 103 + 114〉, where ψ(−) = |10 − 01〉/
√
2, and ρAB =

λPψ(−) + ((1 − λ)/4)11. It is well-known that ρAB is separable if and only if
λ ≤ 1/3. Then the classical distribution is P (010) = P (100) = λ/2 and P (001) =
P (012) = P (103) = P (114) = (1− λ)/4.

If λ ≤ 1/3, then consider the channel PZ|Z(0, 0) = PZ|Z(2, 2) = PZ|Z(3, 3) =

1 , PZ|Z(0, 1) = PZ|Z(0, 4) = ξ , PZ|Z(1, 1) = PZ|Z(4, 4) = 1 − ξ , where ξ =

2λ/(1−λ) ≤ 1. Then µ(ρAB) = I(X;Y↓Z) = I(X;Y |Z) = 0 holds, as it should.
If λ > 1/3, then consider the (obviously optimal) channel PZ|Z (0, 0) =

PZ|Z(2, 2) = PZ|Z(3, 3) = PZ|Z(0, 1) = PZ|Z(0, 4) = 1. Then

µ(ρAB) = I(X;Y↓Z) = I(X;Y |Z) = PZ(0) · I(X;Y |Z = 0)

=
1 + λ

2
· (1− q log2 q − (1− q) log2(1− q)) ,

where q = 2λ/(1 + λ). ♦

3.4 Classical Protocols and Quantum Privacy Amplification

It is a natural question whether the analogy between entanglement and intrinsic
information (see Section 3.1) carries over to the protocol level. The examples
given in Section 3.5 support this belief. A quite interesting and surprising conse-
quence would be that there exists a classical counterpart to bound entanglement,
namely intrinsic information that cannot be distilled into a secret key by any
classical protocol, if |X | + |Y| > 5, where X and Y are the ranges of X and
Y , respectively. In other words, the conjecture in [22] that such information can
always be distilled would be proved for |X |+ |Y| ≤ 5, but disproved otherwise.

Conjecture 1 Let Ψ ∈ HA⊗HB ⊗HE and ρAB = TrHE
(PΨ ). Assume that for

all generating sets {|z〉} of HE there are bases {|x〉} and {|y〉} of HA and HB,
respectively, such that S(X;Y ||Z) > 0 holds for the distribution PXY Z(x, y, z) :=
|〈x, y, z|Ψ〉|2. Then quantum privacy amplification is possible with the state ρAB,
i.e., ρAB is free entangled.

Conjecture 2 Let Ψ ∈ HA⊗HB⊗HE and ρAB = TrHE
(PΨ ). Assume that there

exists a generating set {|z〉} of HE such that for all bases {|x〉} and {|y〉} of HA

and HB, respectively, S(X;Y ||Z) = 0 holds for the distribution PXY Z(x, y, z) :=
|〈x, y, z|Ψ〉|2. Then quantum privacy amplification is impossible with the state
ρAB, i.e., ρAB is bound entangled or separable.
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3.5 Examples II

The following examples support Conjectures 1 and 2 and illustrate their conse-
quences. We consider mainly the same distributions as in Section 3.2, but this
time under the aspect of the existence of classical and quantum key-agreement
protocols.

Example 1 (cont’d). We have shown in Section 3.2 that the resulting quantum
state is entangled if and only if the intrinsic information of the corresponding
classical situation (with respect to the standard bases) is non-zero. Such a corre-
spondence also holds on the protocol level. First of all, it is clear for the quantum
state that QPA is possible whenever the state is entangled because both HA and
HB have dimension two. On the other hand, the same is also true for the cor-
responding classical situation, i.e., secret-key agreement is possible whenever
D/(1−D) < 2

√

(1− δ)δ holds, i.e., if the intrinsic information is positive. The
necessary protocol includes an interactive phase, called advantage distillation,
based on a repeat code or on parity checks (see [20] or [29]). ♦

Example 2 (cont’d). The quantum state ρAB in this example is bound entangled,
meaning that the entanglement cannot be used for QPA. Interestingly, but not
surprisingly given the discussion above, the corresponding classical distribution
has the property that I(X;Y ↓Z) > 0, but nevertheless, all the known classical
advantage-distillation protocols [20], [22] fail for this distribution! It seems that
S(X;Y ||Z) = 0 holds (although it is not clear how this fact could be rigorously
proven). ♦

Example 3 (cont’d). We have seen already that for 2 ≤ α ≤ 3, the quantum state
is separable and the corresponding classical distribution (with respect to the
standard bases) has vanishing intrinsic information. Moreover, it has been shown
that for the quantum situation, 3 < α ≤ 4 corresponds to bound entanglement,
whereas for α > 4, QPA is possible and allows for generating a secret key [18].
We describe a classical protocol here which suggests that the situation for the
classical translation of the scenario is totally analogous: The protocol allows
classical key agreement exactly for α > 4. However, this does not imply (although
it appears very plausible) that no classical protocol exists at all for the case
α ≤ 4.

Let α > 4. We consider the following protocol for classical key agreement.
First of all, Alice and Bob both restrict their ranges to {1, 2} (i.e., publicly reject
a realization unless X ∈ {1, 2} and Y ∈ {1, 2}). The resulting distribution is as
follows (to be normalized):

X 1 2
Y (Z)

1 (0) 2 (4) 5− α
2 (2) α (0) 2
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Then, Alice and Bob both send their bits locally over channels PX|X and PY |Y ,

respectively, such that the resulting bits X and Y are symmetric. The channel
PX|X [PY |Y ] sends X = 0 [Y = 1] to X = 1 [Y = 0] with probability (2α −
5)/(2α + 4), and leaves X [Y ] unchanged otherwise. The distribution PXY Z is
then

X 1 2

Y (Z)

(0) 2 · 9
2α+4

(1) 5− α

1 (2) α · 9
2α+4

· 2α−5
2α+4

(2) α
(

2α−5
2α+4

)2

(0) 2 · 2 · 2α−5
2α+4

2 (2) α
(

9
2α+4

)2

(0) 2 · 9
2α+4

(2) α · 9
2α+4

· 2α−5
2α+4

It is not difficult to see that for α > 4, we have Prob [X = Y ] > 1/2 and
that, given that X = Y holds, Eve has no information at all about what this
bit is. This means that the repeat-code protocol mentioned in Example 1 allows
for classical key agreement in this situation [20], [29]. For α ≤ 4, classical key
agreement, like quantum key agreement, seems impossible however. The results
of Example 3 are illustrated in Figure 1. ♦

Fig. 1. The Results of Example 3

3.6 Bound Intrinsic Information

Examples 2 and 3 suggest that, in analogy to bound entanglement of a quantum
state, bound classical information exists, i.e., conditional intrinsic information
which cannot be used to generate a secret key in the classical scenario. We give
a formal definition of bound intrinsic information.
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Definition 2 Let PXY Z be a distribution with I(X;Y↓Z) > 0. If S(X;Y ||Z) >
0 holds for this distribution, the intrinsic information between X and Y , given
Z, is called free. Otherwise, if S(X;Y ||Z) = 0, the intrinsic information is called
bound. f

Note that the existence of bound intrinsic information could not be proven
so far. However, all known examples of bound entanglement, combined with all
known advantage-distillation protocols, do not lead to a contradiction to Con-
jecture 1! Clearly, it would be very interesting to rigorously prove this conjecture
because then, all pessimistic results known for the quantum scenario would im-
mediately carry over to the classical setting (where such results appear to be
much harder to prove).

Examples 2 and 3 also illustrate nicely what the nature of bound information
is. Of course, I(X;Y ↓Z) > 0 implies both I(X;Y ) > 0 and I(X;Y |Z) > 0.
However, if |X |+|Y| > 5, it is possible that the dependence betweenX and Y and
the dependence between X and Y , given Z, are “orthogonal.” By the latter we
mean that for all fixed (deterministic or probabilistic) functions f : X → {0, 1}
and g : Y → {0, 1} for which the correlation of f(X) and g(Y ) is positive, i.e.,

Pf(X)g(Y )(0, 0) · Pf(X)g(Y )(1, 1) > Pf(X)g(Y )(0, 1) · Pf(X)g(Y )(1, 0) ,

the correlation between the same binary random variables, given Z = z, is
negative (or “zero”) for all z ∈ Z, where Z is the random variable generated by
sending Z over Eve’s optimal channel PZ|Z .

A complete understanding of bound intrinsic information is of interest also
because it automatically leads to a better understanding of bound entanglement
in quantum information theory.

4 Concluding Remarks

We have considered the model of information-theoretic key agreement by public
discussion from correlated information. More precisely, we have compared sce-
narios where the joint information is given by classical random variables and by
quantum states (e.g., after execution of a quantum protocol). We proved a close
connection between such classical and quantum information, namely between
intrinsic information and entanglement. As an application, the derived parallels
lead to an efficiently verifiable criterion for the fact that the intrinsic information
vanishes. Previously, this quantity was considered to be quite hard to handle.

Furthermore, we have presented examples providing evidence for the fact
that the close connections between classical and quantum information extend
to the level of the protocols. A consequence would be that the powerful tools
and statements on the existence or rather non-existence of quantum-privacy-
amplification protocols immediately carry over to the classical scenario, where it
is often unclear how to show that no protocol exists. Many examples (only some
of which are presented above due to space limitations) coming from measuring
bound entangled states, and for which none of the known classical secret-key
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agreement protocols is successful, strongly suggest that bound entanglement has
a classical counterpart: intrinsic information which cannot be distilled to a secret
key. This stands in sharp contrast to what was previously believed about classical
key agreement. We state as an open problem to rigorously prove Conjectures 1
and 2.

Finally, we have proposed a measure for entanglement, based on classical
information theory, with all the properties required for such a measure.
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