
A note on the round-complexity

of Concurrent Zero-Knowledge

Alon Rosen

Department of Computer Science
Weizmann Institute of Science

Rehovot 76100, Israel
alon@wisdom.weizmann.ac.il

Abstract. We present a lower bound on the number of rounds re-
quired by Concurrent Zero-Knowledge proofs for languages in NP. It is
shown that in the context of Concurrent Zero-Knowledge, at least eight
rounds of interaction are essential for black-box simulation of non-trivial
proof systems (i.e., systems for languages that are not in BPP). This
improves previously known lower bounds, and rules out several candi-
dates for constant-round Concurrent Zero-Knowledge. In particular, we
investigate the Richardson-Kilian protocol [20] (which is the only proto-
col known to be Concurrent Zero-Knowledge in the vanilla model), and
show that for an apparently natural choice of its main parameter (which
yields a 9-round protocol), the protocol is not likely to be Concurrent
Zero-Knowledge.

1 Introduction

Zero-knowledge proof systems, introduced by Goldwasser, Micali and Rack-
off [14] are efficient interactive proofs which have the remarkable property of
yielding nothing beyond the validity of the assertion being proved. The gen-
erality of zero-knowledge proofs has been demonstrated by Goldreich, Micali
and Wigderson [12], who showed that every NP-statement can be proved in
zero-knowledge provided that one-way functions exist [16, 19]. Since then, zero-
knowledge protocols have turned out to be an extremely useful tool in the design
of various cryptographic tasks.
The original setting in which zero-knowledge proofs were investigated con-

sisted of a single prover and verifier which execute only one instance of the pro-
tocol at a time. A more realistic setting, especially in the time of the internet, is
one which allows the concurrent execution of zero-knowledge protocols. In the
concurrent setting (first considered by Dwork, Naor and Sahai [6]), many proto-
cols (sessions) are executed at the same time, involving many verifiers which may
be talking with the same (or many) provers simultaneously (the so-called paral-
lel composition considered in [11] is a special case). This presents the new risk
of an overall adversary which controls the verifiers, interleaving the executions
and choosing verifiers queries based on other partial executions of the protocol.
Since it seems unrealistic for the honest provers to coordinate their action so that

453

zero-knowledge is preserved, we must assume that in each prover-verifier pair the
prover acts independently. A zero-knowledge proof is said to be concurrent zero-
knowledge if it remains zero-knowledge even when executed in the concurrent
setting. Recall that in order to prove that a certain protocol is zero-knowledge
it is required to demonstrate that every probabilistic polynomial-time adversary
interacting with the prover can be simulated by a probabilistic polynomial-time
machine (a.k.a. the simulator) which is in solitude. In the concurrent setting, the
simulation task becomes even more complicated, as the adversary may have con-
trol over multiple sessions at the same time, and is thus able to determine their
scheduling (i.e., the order in which the interleaved execution of these sessions
should be conducted).

1.1 Previous Work

Coming up with an efficient concurrent zero-knowledge protocol for all languages
in NP seems to be a challenging task. Indications on the difficulty of this prob-
lem were already given in [6], where it was argued that for a specific recursive
scheduling of n sessions a particular (natural) simulation of a particular 4-round
protocol may require time which is exponential in n. Further evidence on the
difficulty was given by Kilian, Petrank and Rackoff [18]. Using the same recur-
sive scheduling as in [6], they were able to prove that for every language outside
BPP there is no 4-round protocol whose concurrent execution is simulatable in
polynomial-time (by a black-box simulator).

Recent works have (successfully) attempted to overcome the above difficul-
ties by augmenting the communication model with the so-called timing assump-
tion [6, 7] or, alternatively, by using various set-up assumptions (such as the
public-key model [4, 5]).1 For a while it was not clear whether it is even possi-
ble to come up with a concurrent zero-knowledge protocol (not to mention an
efficient one) without making any kind of timing or set-up assumptions. It was
therefore a remarkable achievement when Richardson and Kilian [20] proposed
a concurrent zero-knowledge protocol for all languages in NP (in the vanilla
model).2

Unfortunately, the simulator shown by Richardson-Kilian is polynomial-time
only when a non-constant round version of their protocol is considered. This
leaves a considerable gap between the currently known upper and lower bounds
on the number of rounds required by concurrent zero-knowledge [20, 18]. We
note that narrowing the above gap is not only of theoretical interest but has also
practical consequences. Since the number of rounds is an important resource for
protocols, establishing whether constant-round concurrent zero-knowledge exists
is a well motivated problem.

1 The lower bound of [18] (as well as our own work) applies only in a cleaner model,
in which no timing or set-up assumptions are allowed (the so-called vanilla model).

2 In fact, their solution is a family of protocols where the number of rounds is deter-
mined by a special parameter.

454

1.2 A closer look at the Richardson-Kilian Protocol

Being the only protocol known to be concurrent zero-knowledge in the vanilla
model, versions of the Richardson-Kilian protocol are natural candidates for
constant-round concurrent zero-knowledge. That is, it is still conceivable that
there exists a (different) polynomial-time simulator for one of the protocol’s
constant-round versions.

The Protocol: The Richardson-Kilian (RK for short) protocol [20] consists of
two stages. In the first stage, which is independent of the actual common input,
the verifier commits to k random bit sequences, v1, ..., vk ∈ {0, 1}n, where n
is the “security” parameter of the protocol and k is a special parameter which
determines the number of rounds. This is followed by k iterations so that in
each iteration the prover commits to a random bit sequence, pi, and the verifier
decommits to the corresponding vi. The result of the i

th iteration is defined as
vi⊕ pi and is known only to the prover. In the second stage, the prover provides
a witness indistinguishable (WI) proof [8] that either the common input is in
the language or that the result of one of the k iterations is the all-zero string
(i.e., vi = pi for some i). Intuitively, since the latter case is unlikely to happen
in an actual execution of the protocol, the protocol constitutes a proof system
for the language. However, the latter case is the key to the simulation of the
protocol in the concurrent zero-knowledge model: Whenever the simulator may
cause vi = pi to happen for some i (this is done by the means of rewinding
the verifier after the value vi has been revealed), it can simulate the rest of the
protocol (and specifically Stage 2) by merely running the WI proof system with
vi (and the prover’s coins) as a witness.

The Simulator: The RK protocol was designed to overcome the main diffi-
culty encountered whenever many sessions are to be simulated in the concurrent
setting. As observed by Dwork, Naor and Sahai [6], rewinding a specific session
in the concurrent setting may result in loss of work done for other sessions, and
cause the simulator to do the same amount of work again. In particular, all sim-
ulation work done for sessions starting after the point to which we rewind may
be lost. Considering a specific session of the RK protocol (out of m = poly(n)
concurrent sessions), there must be an iteration (i.e., an i ∈ {1, ..., k}) so that at
most (m − 1)/k sessions start in the interval corresponding to the ith iteration
(of this specific session). So if we try to rewind on the correct i, we will invest
(and so waste) only work proportional to (m−1)/k sessions. The idea is to abort
the rewinding attempt on the ith iteration if more than (m − 1)/k sessions are
initiated in the corresponding interval (this will rule out the incorrect i’s). The
same reasoning applies recursively (i.e., to the rewinding in these (m− 1)/k ses-
sions). Denoting by W (m) the amount of work invested in m sessions, we obtain
the recursion W (m) = poly(m) ·W (m−1

k
), which solves to W (m) = mΘ(logk m).

Thus, whenever k = n, we getW (m) = mO(1), whereas taking k to be a constant
will cause W (m) to be quasi-polynomial.

455

1.3 Our First Result

Given the above state of affairs, one may be tempted to think that a better simu-
lation method would improve the recursion into something of the form W (m) =
O(W (m−1

k
)). In such a case, taking k to be a constant (greater than 1) would

imply a constant-round protocol whose simulation in the concurrent setting re-
quires polynomial-time (i.e., W (m) = O(W (m−1

k
)) solves to W (m) = mO(1)).

This should hold in particular for k = 2 (which gives a 9-round version of the
RK protocol). However, as we show in the sequel, this is not likely to be the case.

Theorem 1 (informal) : If L is a language such that concurrent executions
of the 9-round version of the RK protocol (i.e., for k = 2) can be black-box
simulated in polynomial-time, then L ∈ BPP.
Thus, in general, the RK protocol is unlikely to be simulatable by a recursive
procedure (as above) that satisfies the work recursion W (m) = O(W (m−1

k
)).

1.4 Our Second Result

The proof of Theorem 1 is obtained by extending the proof of the following
general result.

Theorem 2 : Suppose that (P, V) is a 7-round proof system for a language L
(i.e., on input x, the number of messages exchanged is at most 7), and that
concurrent executions of P can be simulated in polynomial-time using black-
box simulation. Then L ∈ BPP. This holds even if the proof system is only
computationally-sound (with negligible soundness error) and the simulation is
only computationally-indistinguishable (from the actual executions).

In addition to shedding more light on the reasons that make the problem of
constant-round concurrent zero-knowledge so difficult to solve, Theorem 2 rules
out several constant-round protocols which may have been previously considered
as candidates. These include 5-round zero-knowledge proofs for NP [10], as well
as 6-round perfect zero-knowledge arguments for NP [3].

1.5 Techniques

The proof of Theorem 2 builds on the works of Goldreich and Krawczyk [11] and
Kilian, Petrank and Rackoff [18]. It utilizes a fixed scheduling of the concurrent
executions. This scheduling is defined recursively and is more sophisticated than
the one proposed by [6] and used by [18]. It also exploits a special property of
the first message sent by the verifier.
Note that since the scheduling considered here is fixed (rather than dynamic),

both Theorems 1 and 2 are actually stronger than stated. Furthermore, our argu-
ment refers to verifier strategies that never refuse to answer the prover’s queries.
Simulating a concurrent interaction in which the verifier may occasionally refuse
to answer (depending on its coin tosses and on the history of the current and/or
other conversations) seems even more challenging than the simulation task which
is treated in this work. Thus, it is conceivable that one may use the extra power
of the adversary verifier to prove stronger lower bounds.

456

1.6 Organization of the Paper

Theorem 2 is proved in Section 2. We then demonstrate (in Section 3) how to
modify the proof so it will work for the 9-round version of the Richardson-Kilian
protocol (i.e., with k = 2). We conclude with Section 4 by discussing additional
issues and recent work.

2 Proof of Theorem 2

In this section we prove that in the context of concurrent zero-knowledge, at least
eight rounds of interaction are essential for black-box simulation of non-trivial
proof systems (i.e., systems for languages that are not in BPP). We note that in
all known protocols, the zero-knowledge feature is demonstrated via a black-box
simulator, and that it is hard to conceive of an alternative (for demonstrating
zero-knowledge).3

Definitions: We use the standard definitions of interactive proofs [14] and argu-
ments (a.k.a computationally-sound proofs) [2], black-box simulation (allowing
non-uniform, deterministic verifier strategies, cf. [11, 18]) and concurrent zero-
knowledge (cf. [20, 18]). Furthermore, since we consider a fixed scheduling of ses-
sions, there is no need to use formalism for specifying to which session the next
message of the verifier belongs. Finally, by (computationally-sound) interactive
proof systems we mean systems in which the soundness error is negligible.4

Preliminary conventions: We consider protocols in which 8 messages are ex-
changed subject to the following conventions. The first message is an initiation
message by the prover5, denoted p1, which is answered by the verifier’s first
message denoted v1. The following prover and verifier messages are denoted
p2, v2, ..., p4, v4, where the last message (i.e., v4) is a single bit indicating whether
the verifier has accepted the input (and will not be counted as an actual mes-
sage). Clearly, any 7-round protocol can be modified to fit this form. Next, we
consider black-box simulators which are restricted in several ways (but claim

3 The interesting work of Hada and Tanaka [15] is supposedly an exception; but not
really: They show that such a non-black-box simulation can be conducted if one
makes an assumption of a similar nature (i.e., that for every machine which does
X there exists a machine which does X along with Y). In contrast, starting from a
more standard assumption (such as “it is infeasible to do X”), it is hard to conceive
how one may use non-black-box simulators in places where black-box ones fail.

4 We do not know whether this condition can be relaxed. Whereas we may consider
polynomially-many parallel interactions of a proof system in order to decrease sound-
ness error in interactive proofs (as such may occur anyhow in the concurrent model),
this is not necessarily sufficient in order to decrease the soundness error in the case
of arguments (cf. [1]).

5 Being in control of the schedule, it would be more natural to let the verifier initiate
each session. However, since the schedule is fixed, we choose to simplify the exposition
by letting the prover send the first message of the session.

457

that each of these restrictions can be easily satisfied): Firstly, we allow only
simulators running in strict polynomial-time, but allow them to produce output
that deviates from the actual execution by at most a gap of 1/6 (rather than
requiring the deviation to be negligible).6 (The latter relaxation enables a simple
transformation of any expected polynomial-time simulator into a simulator run-
ning in strict polynomial-time.) Secondly, we assume, without loss of generality
that the simulator never repeats the same query. As usual (cf. [11]), the queries
of the simulator are prefixes of possible execution transcripts (in the concurrent
setting7). Such a prefix is a sequence of alternating prover and verifier messages
(which may belong to different sessions as determined by the fixed schedule).
Thirdly, we assume that before making a query q = (a1, b1, ..., at, bt, at+1), where
the a’s are prover messages, the simulator makes queries to all relevant prefixes
(i.e., (a1, b1, ..., ai−1, bi−1, ai), for every i ≤ t), and indeed has obtained the bi’s
as answers. Lastly, we assume that before producing output (a1, b1, ..., aT , bT),
the simulator makes the query (a1, b1, ..., aT).

2.1 The schedule, aversary verifiers and decision procedure

The fixed schedule: For each x ∈ {0, 1}n, we consider the following con-
current scheduling of n sessions all run on common input x. The scheduling is
defined recursively, where the scheduling of m sessions (denoted Rm) proceeds
in 3 phases:

First phase: Each of the firstm/ logm sessions exchanges three messages (i.e.,
p1, v1, p2), this is followed by a recursive application of the scheduling on the
next m/ logm sessions.

Second phase: Each of the first m/ logm sessions exchanges two additional
messages (i.e., v2, p3), this is followed by a recursive application of the
scheduling on the last m− 2 · m

logm sessions.

Third phase: Each of the first m/ logm sessions exchanges the remaining
messages (i.e.,v3,p4,v4).

The schedule is depicted in Figure 1. We stress that the verifier typically post-

pones its answer (i.e., v
(i)
j) to the last prover’s message (i.e., p

(i)
j) till after a

recursive sub-schedule is executed, and that it is crucial that in the first phase
each session will finish exchanging its messages before the next sessions begins
(whereas the order in which the messages are exchanged in the second and third
phases is immaterial).

6 We refer to the deviation gap, as viewed by any polynomial-time distinguisher. Such
a distinguisher is required to decide whether its input consists of a conversation
corresponding to real ececutions of the protocol, or rather to a transcript that was
produced by the simulator. The computational deviation consists of the fraction of
inputs which are accpted by the distinguisher in one case but rejected in the other.

7 Indeed, for sake of clarity, we adopt a redundant representation. Alternatively, one
may consider the subsequence of all prover’s messages appearing in such transcripts.

458

1 2
m

log m
m

log m
+1 2·m

log m
+1 m

p1 →
v1
p2

←
→
→
←
→
· · ·
→
←
→

R m
log m

←
→

· · ·
←
→

v2
p3

←
→

Rm−2· m
log m

←
→
←

· · ·
←
→
←

v3
p4

←
→

v4 ←

Fig. 1. The fixed schedule – recursive structure for m sessions.

Definition 3 (identifiers of next message): The fixed schedule defines a mapping
from partial execution transcripts ending with a prover message to the identifiers
of the next verifier message; that is, the session and round number to which the
next verifier message belongs. (Recall that such partial execution transcripts
correspond to queries of a black-box simulator and so the mapping defines the
identifier of the answer:) For such a query q = (a1, b1, ..., at, bt, at+1), we let
πsn(q) ∈ {1, ..., n} denote the session to which the next verifier message belongs,
and by πmsg(q) ∈ {1, ..., 4} its index within the verifier’s messages in this session.

Definition 4 (initiation-prefix): The initiation-prefix ip of a query q is the prefix
of q ending with the prover’s initiation message of session πsn(q). More formally,
ip = a1, b1, ..., a`, b`, a`+1, is the initiation-prefix of q = (a1, b1, ..., at, bt, at+1) if

a`+1 is of the form p
(i)
1 for i = πsn(q). (Note that πmsg(q) may be any index in

{1, ..., 4}, and that at+1 need not belong to session i.)

Definition 5 (prover-sequence): The prover-sequence of a query q is the se-
quence of all prover’s messages in session πsn(q) that appear in the query q. The
length of such a sequence is πmsg(q) ∈ {1, . . . , 4}. In case the length of the prover-
sequence equals 4, both query q and its prover-sequence are said to be terminating
(otherwise, they are called non-terminating). The prover-sequence is said to cor-

459

respond to the initiation-prefix ip of the query q. (Note that all queries having
the same initiation-prefix agree on the first element of their prover-sequence,
since this message is part of the initiation-prefix.)

We consider what happens when a black-box simulator (for the above schedule)
is given oracle access to a verifier strategy Vh defined as follows (depending on
a hash function h and the input x).

The verifier strategy Vh: On query q = (a1, b1, ..., at, bt, at+1), where the a’s
are prover messages (and x is implicit in Vh), the verifier answers as follows:

1. First, Vh checks if the execution transcript given by the query is legal (i.e.,
consistent with Vh’s prior answers), and answers with an error message if the
query is not legal. (In fact this is not necessary since by our convention the
simulator only makes legal queries. From this point on we ignore this case.)

2. More importantly, Vh checks whether the query contains the transcript of a
session in which the last verifier message indicates rejecting the input. In case
such a session exists, Vh refuses to answer (i.e., answers with some special
“refuse” symbol).

3. Next, Vh determines the initiation-prefix, denoted a1, b1, ..., a`, b`, a`+1, of
query q. It also determines i = πsn(q), j = πmsg(q), and the prover-sequence

of query q, denoted p
(i)
1 , ..., p

(i)
j .

4. Finally, Vh determines ri = h(a1, b1, ..., a`, b`, a`+1) (as coins to be used by

V), and answers with the message V (x, ri; p
(i)
1 , ..., p

(i)
j) that would have been

sent by the honest verifier on common input x, random-pad ri, and prover’s

messages p
(i)
1 , ..., p

(i)
j .

Assuming towards the contradiction that a black-box simulator, denoted S, con-
tradicting Theorem 2 exists, we now descibe a probabilistic polynomial-time deci-
sion procedure for L, based on S. Recall that we may assume that S runs in strict
polynomial time: we denote such time bound by tS(·). On input x ∈ L∩ {0, 1}n
and oracle access to any (probabilistic polynomial-time) V ∗, the simulator S
must output transcipts with distribution having computational deviation of at
most 1/6 from the distribution of transcripts in the actual concurrent executions
of V ∗ with P .

A slight modification of the simulator: Before presenting the procedure, we
slightly modify the simulator so that it never makes a query that is refused
by a verifier Vh. Note that this condition can be easily checked by the simulator,
and that the modification does not effect the simulator’s output. From this point
on, when we talk of the simulator (which we continue to denote by S) we mean
the modified one.

460

Decision procedure for L: On input x ∈ {0, 1}n, proceed as follows:

1. Uniformly select a function h out of a small family of tS(n)-wise independent
hash functions mapping poly(n)-bit long sequences to ρV (n)-bit sequences,
where ρV (n) is the number of random bits used by V on an input x ∈ {0, 1}n.

2. Invoke S on input x providing it black-box access to Vh (as defined above).
That is, the procedure emulates the execution of the oracle machine S on
input x along with emulating the answers of Vh.

3. Accept if and only if all sessions in the transcript output by S are accepting.

By our hypothesis, the above procedure runs in probabilistic polynomial-time.
We next analyze its performance.

Lemma 6 (performance on yes-instances): For all but finitely many x ∈ L, the
above procedure acccepts x with probability at least 2/3.

Proof Sketch: The key observation is that for uniformly selected h, the behav-
ior of Vh in actual (concurrent) interactions with P is identical to the behavior of
V in such interactions. The reason is that, in such actual interactions, a randomly
selected h determines uniformly and independently distributed random-pads for
all n sessions. Since with high probability (say at least 5/6), V accepts in all n
concurrent sessions, the same must be true for Vh, when h is uniformly selected.
Since the simulation deviation of S is at most 1/6, it follows that for every h
the probability that SVh(x) is a transcript in which all sessions accept is lower
bounded by ph− 1/6, where ph denotes the probability that Vh accepts x (in all
sessions) when interacting with P . Taking expectation over all possible h’s, the
lemma follows.

Lemma 7 (performance on no-instances): For all but finitely many x 6∈ L, the
above procedure rejects x with probability at least 2/3.

We can actually prove that for every polynomial p and all but finitely many
x 6∈ L, the above procedure accepts x with probability at most 1/p(|x|). As-
suming towards the contradiction that this is not the case, we will construct a
(probabilistic polynomial-time) strategy for a cheating prover that fools the hon-
est verifier V with success probability at least 1/poly(n) (in contradiction to the
computational-soundness of the proof system). Loosely speaking, the argument
capitalizes on the fact that rewinding of a session requires the simulator to work
on a new simulation sub-problem (one level down in the recursive construction).
New work is required since each different message for the rewinded session forms
an unrelated instance of the simulation sub-problem (by virtue of definition of
Vh). The schedule causes work involved in such rewinding to accumulate to too
much, and so it must be the case that the simulator does not rewind some (full
instance of some) session. In this case the cheating prover may use such a session
in order to fool the verifier.

461

2.2 Proof of Lemma 7 (performance on no-instances)

Let us fix an x ∈ {0, 1}n \ L as above.8 Define by AC = ACx the set of pairs
(σ, h) so that on input x, coins σ and oracle access to Vh, the simulator outputs
a transcript, denoted SVh

σ (x), in which all n sessions accept. Recall that our
contradiction assumption is that Prσ,h[(σ, h) ∈ AC] > 1/p(n), for some fixed
polynomial p(·).

The cheating prover: The cheating prover starts by uniformly selecting a pair
(σ, h) and hoping that (σ, h) is in AC. It next selects uniformly two elements ξ
and ζ in {1, ..., qS(n)}, where qS(n) < tS(n) is a bound on the number of queries
made by S on input x ∈ {0, 1}n. The prover next emulates an execution of
S
Vh′

σ (x) (where h′, which is essentially equivalent to h, will be defined below),
while interacting with the honest verifier V . The prover handles the simulator’s
queries as well as the communication with the verifier as follows: Suppose that
the simulator makes query q = (a1, b1, ..., at, bt, at+1), where the a’s are prover
messages.

1. Operating as Vh, the cheating prover first determines the initiation-prefix,
ip = a1, b1, ..., a`, b`, a`+1, corresponding to the current query q. (Note that
by our convention and the modification of the simulator there is no need to
perform Steps 1 and 2 of Vh.)

2. If ip is the ξth distinct initiation-prefix resulting from the simulator’s queries
so far then the cheating prover operates as follows:

(a) The cheating prover determines i = πsn(q), j = πmsg(q), and the prover-

sequence of q, denoted p
(i)
1 , ..., p

(i)
j (as done by Vh in Step 3).

(b) If the query q is non-terminating (i.e., j ≤ 3), and the cheating prover
has only sent j − 1 messages to the actual verifier then it forwards p(i)

j

to the verifier, and feeds the simulator with the verifier’s response (i.e.,

which is of the form v
(i)
j).

9

(c) If the query q is non-terminating (i.e., j ≤ 3), and the cheating prover
has already sent j messages to the actual verifier, the prover retrieves
the jth message it has received and feeds it to the simulator.10

8 In a formal proof we need to consider infinitely many such x’s.
9 We comment that by our conventions regarding the simulator, it cannot be the case
that the cheating prover has sent less than j− 1 messages to the actual verifier: The
prefixes of the current query dictate j − 1 such messages.

10 We comment that the cheating prover may fail to conduct Step 2c. This will happen
whenever the simulator makes two queries with the same initiation-prefix and the
same number of prover messages in the corresponding session, but with a different
sequence of such messages. Whereas this will never happen when j = 1 (as once the

initiation-prefix is fixed then so is the value of p
(i)
1), it may very well be the case

that for j ∈ {2, 3} a previous query regarding initiation-prefix ip had a different p
(i)
j

message. In such a case the cheating prover will indeed fail. The punchline of the
analysis is that with noticeable probability this will not happen.

462

(d) Whenever the query q is terminating (i.e., j = 4), the cheating prover
operates as follows:

i. As long as the ζth terminating query corresponding to the above
initiation-prefix has not been made, the cheating prover feeds the

simulator with v
(i)
4 = 0 (i.e., session rejected).

ii. Otherwise, the cheating prover operates as in Step 2b (i.e., it for-

wards p
(i)
4 to the verifier, and feeds the simulator with the verifier’s

response – some v
(i)
4 message).11

3. If ip is NOT the ξth distinct initiation-prefix resulting from the queries so
far then the prover emulates Vh in the obvious manner (i.e., as in Step 4 of
Vh): It first determines ri = h(a1, b1, ..., a`, b`, a`+1), and then answers with

V (x, ri; p
(i)
1 , ..., p

(i)
j), where all notations are as above.

Defining h′ (mentioned above): Let (σ, h) and ξ be the initial choices made by
the cheating prover, and suppose that the honest verifier uses coins r. Then, the
function h′ is defined to be uniformly distributed among the functions h′′ which
satisfy the following conditions: The value of h′′ on the ξth initiation-prefix equals
r, whereas for every ξ′ 6= ξ, the value of h′′ on the ξ′

th
initiation-prefix equals

the value of h on this prefix. (Here we use the hypothesis that the functions
are selected in a family of tS(n)-wise independent hash functions. We note that
replacing h by h′ does not effect Step 3 of the cheating prover, and that the
prover does not know h′.)

The probability that the cheating prover makes the honest verifier accept
is lower bounded by the probability that both (σ, h′) ∈ AC and the messages
forwarded by the cheating prover in Step 2 are consistent with an accepting
conversation with Vh′ . For the latter event to occur, it is necessary that the ξth

distinct initiation-prefix will be useful (in the sense hinted above and defined
now). It is also necessary that ζ was “successfully” chosen (i.e., the ζ th termi-
nating query which corresponds to the ξth initiation-prefix is accepted by Vh′).

Definition 8 (accepting query): A terminating query q = (a1, b1, ..., at, bt, at+1)
(i.e., for which πmsg(q) = 4) is said to be accepting if Vh′(a1, b1, ..., at, bt, at+1)
equals 1 (i.e., session πsn(q) is accepted by Vh′).

Definition 9 (useful initiation-prefix): A specific initiation-prefix ip in an exe-

cution of S
Vh′

σ (x) is called useful if the following conditions hold:

1. During its execution, S
Vh′

σ (x) made at least one accepting query which cor-
responds to the initiation-prefix ip.

11 We note that once the cheating prover arrives to this point, then it either succeds
in the cheating task or completely fails (depending on the verifier’s response). As a
consequence, it is not essential to define the cheating prover’s actions from this point
on (as in both cases the algorithm will be terminated).

463

2. As long as no accepting query corresponding to the initiation-prefix ip was

made during the execution of S
Vh′

σ (x), the number of (non-terminating) dif-
ferent prover-sequences that correspond to ip is at most 3, and these prover-
sequences are prefixes of one another.12

Otherwise, the prefix is called unuseful.

The success probability: Define a Boolean indicator χ(σ, h′, ξ) to be true if

and only if the ξth distinct initiation-prefix in an execution of S
Vh′

σ (x) is useful.
Define an additional Boolean indicator ψ(σ, h′, ξ, ζ) to be true if and only if
the ζth terminating query among all terminating queries that correspond to the

ξth distinct initiation-prefix (in an execution of S
Vh′

σ (x)) is the first one to be
accepting. It follows that if the cheating prover happens to select (σ, h, ξ, ζ) so
that both χ(σ, h′, ξ) and ψ(σ, h′, ξ, ζ) hold then it convinces V (x, r); the first
reason being that the ζth such query is answered by an accept message13, and
the second reason being that the emulation does not get into trouble (in Steps 2c
and 2d). To see this, notice that all first (ζ − 1) queries having the ξth distinct
initiation-prefix satisfy exactly one of the following conditions:

1. They have non-terminating prover-sequences that are prefixes of one another
(which implies that the cheating prover never has to forward such queries to
the verifier twice).

2. They have terminating prover-sequences which should be rejected (recall

that as long as the ζth terminating query has not been asked by S
Vh′

σ (x), the
cheating prover automatically rejects any terminating query).

Thus, the probability that when selecting (σ, h, ξ, ζ) the cheating prover con-
vinces V (x, r) is at least

Pr [ψ(σ, h′, ξ, ζ) & χ(σ, h′, ξ)]

= Pr [ψ(σ, h′, ξ, ζ) | χ(σ, h′, ξ)] · Pr [χ(σ, h′, ξ)]
≥ Pr [ψ(σ, h′, ξ, ζ) | χ(σ, h′, ξ)] · Pr [(σ, h′) ∈ AC & χ(σ, h′, ξ)] (1)

Note that if the ξth distinct initiation-prefix is useful, and ζ is uniformly (and
independently) selected in {1, ..., qS(n)}, the probability that the ζth query cor-
responding to the ξth distinct initiation–prefix is the first to be accepting is at
least 1/qS(n). Thus, Eq. (1) is lower bounded by

Pr [(σ, h′) ∈ AC & χ(σ, h′, ξ)]

qS(n)
(2)

12 In other words, we allow for many different terminating queries to occur (as long as
they are not accepting). On the other hand, for j ∈ {1, 2, 3} only a single query that
has a prover sequence of length j is allowed. This requirement will enable us to avoid
situations in which the cheating prover will fail (as described in Footnote 10).

13 We use the fact that V (x, r) behaves exactly as Vh′(x) behaves on queries for the
ξth distinct initiation-prefix.

464

Using the fact that, for every value of ξ and σ, when h and r are uniformly
selected the function h′ is uniformly distributed, we infer that ξ is distributed
independently of (σ, h′). Thus, Eq. (2) is lower bounded by

Pr[(σ, h′) ∈ AC] · Pr[∃i s.t. χ(σ, h
′, i) | (σ, h′) ∈ AC]

qS(n)2
(3)

Thus, Eq. (3) is noticeable (i.e., at least 1/poly(n)) provided that so is the
value of Pr[∃i s.t. χ(σ, h′, i) | (σ, h′) ∈ AC]. The rest of the proof is devoted to
establishing the last hypothesis. In fact we prove a much stronger statement:

Lemma 10 For every (σ, h′) ∈ AC, the execution of S
Vh′

σ (x) contains a useful
initiation-prefix (that is, there exists an i s.t. χ(σ, h′, i) holds).

2.3 Proof of Lemma 10 (existence of useful initiation prefixes)

The proof of Lemma 10 is by contradiction. We assume the existence of a pair

(σ, h′) ∈ AC so that all initiation-prefixes in the execution of S
Vh′

σ (x) are unuseful

and show that this implies that S
Vh′

σ (x) made at least nΩ(
log n

log log n) À poly(n)
queries which contradicts the assumption that it runs in polynomial-time.

The query–and–answer tree: Throughout the rest of the proof, we fix an

arbitrary (σ, h′) ∈ AC so that all initiation-prefixes in the execution of S
Vh′

σ (x) are
unuseful, and study this execution. A key vehicle in this study is the notion of a
query–and–answer tree introduced in [18]. This is a rooted tree in which vertices
are labeled with verifier messages and edges are labeled by prover’s messages.
The root is labeled by the empty string, and it has outgoing edges corresponding
to the possible prover’s messages initializing the first session. In general, paths
down the tree (i.e., from the root to some vertices) correspond to queries. The
query associated with such a path is obtained by concatenating the labeling of
the vertices and edges in the order traversed. We stress that each vertex in the
tree corresponds to a query actually made by the simulator.

Satisfied sub-path: A sub-path from one node in the tree to some of its descen-
dants is said to satisfy session i if the sub-path contains edges (resp., vertices)
for each of the messages sent by the prover (resp., verifier) in session i, and if

the last such message (i.e., v
(i)
4) indicates that the verifier accepts session i. A

sub-path is called satisfied if it satisfies all sessions for which the first prover’s
message appears on the sub-path.

Forking sub-tree: For any i and j ∈ {2, 3, 4}, we say that a sub-tree (i, j)-forks
if it contains two sub-paths, p and r, having the same initiation-prefix, so that

1. Sub-paths p and r differ in the edge representing the jth prover message for

session i (i.e., a p
(i)
j message).

2. Each of the sub-paths p and r reaches a vertex representing the jth verifier

message (i.e., some v
(i)
j).

In such a case, we may also say that the sub-tree (i, j)-forks on p (or on r).

465

Good sub-tree: Consider an arbitrary sub-tree rooted at a vertex corresponding
to the first message in some session so that this session is the first at some level
of the recursive construction of the schedule. The full tree is indeed such a tree,
but we will need to consider sub-trees which correspond to m sessions in the
recursive schedule construction. We call such a sub-tree m-good if it contains a
sub-path satisfying all m sessions for which the prover’s first message appears in
the sub-tree (all these first messages are in particular contained in the sub-path).
Since (σ, h′) ∈ AC it follows that the full tree contains a path from the root to
a leaf representing an accepting transcript. The path from the root to this leaf
thus satisfies all sessions (i.e., 1 through n) which implies that the full tree is
n-good. The crux of the entire proof is given in the following lemma.

Lemma 11 Let T be an m-good sub-tree, then at least one of the following holds:

1. T contains at least two different
(

m− 2 · m
logm

)

-good sub-trees.

2. T contains at least m
logm different

(

m
logm

)

-good sub-trees.

Denote by W (m) the size of an m-good sub-tree (where W (m) stands for the
work actually performed by the simulator on m concurrent sessions in our fixed
scheduling). It follows (from Lemma 11) that any m-good sub-tree must satisfy

W (m) ≥ min
{

m

logm
·W

(

m

logm

)

, 2 ·W
(

m− 2 · m

logm

)}

(4)

Since Eq. (4) solves to nΩ(
log n

log log n) (proof omitted), and since every vertex in the
query–and–answer tree corresponds to a query actually made by the simulator,
then the assumption that the simulator runs in poly(n)-time (and hence the tree
is of poly(n) size) is contradicted. Thus, Lemma 10 follows from Lemma 11.

2.4 Proof of Lemma 11 (the structure of good sub-trees)

Considering the m sessions corresponding to an m-good sub-tree, we focus on
the m/ logm sessions dealt explicitly at this level of the recursive construction

(i.e., the first m/ logm sessions, which we denote by F def
= {1, ...,m/ logm}).

Claim 12 Let T be an m-good sub-tree. Then for any session i ∈ F , there exists
j ∈ {2, 3} such that the sub-tree (i, j)-forks.

Proof: Consider some i ∈ F , and let pi be the first sub-path reached during the
execution of S

Vh′

σ (x) which satisfies session i (since the sub-tree is m-good such
a sub-path must exist, and since i ∈ F every such sub-path must be contained
in the sub-tree). Recall that by the contradiction assumption for the proof of

Lemma 10, all initiation-prefixes in the execution of S
Vh′

σ (x) are unuseful. In
particular, the initiation-prefix corresponding to sub-path pi is unuseful. Still,
path pi contains vertices for each prover message in session i and contains an

466

accepting message by the verifier. So the only thing which may prevent the above
initiation-prefix from being useful is having two (non-terminating) queries with
the very same initiation-prefix (non-terminating) prover-sequences of the same
length. Say that these sequences first differ at their jth element, and note that j ∈
{2, 3} (as the prover-sequences are non-terminating and the first prover message,
p
(i)
1 , is constant once the initiation-prefix is fixed). Also note that the two (non-
terminating) queries were answered by the verifier (rather than refused), since
the (modified) simulator avoids queries which will be refused. By associating
a sub-path to each one of the above queries we obtain two different sub-paths

(having the same initiation-prefix), that differ in some p
(i)
j edge and eventually

reach a v
(i)
j vertex (for j ∈ {2, 3}). The required (i, j)-forking follows.

Claim 13 If there exists a session i ∈ F such that the sub-tree (i, 3)-forks, then
the sub-tree contains two different (m−2· m

log m)-good sub-trees.

Proof: Let i ∈ F such that the sub-tree (i, 3)-forks. That is, there exist two
sub-paths, pi and ri, that differ in the edge representing a p

(i)
3 message, and that

eventually reach some v
(i)
3 vertex. In particular, paths pi and ri split from each

other before the edge which corresponds to the p
(i)
3 message occurs along these

paths (as otherwise the p
(i)
3 edge would have been identical in both paths). By

nature of the fixed scheduling, the vertex in which the above splitting occurs
precedes the first message of all (nested) sessions in the second recursive con-
struction (that is, sessions 2· m

log m
+1,...,m). It follows that both pi and ri contain

the first and last messages of each of these (nested) sessions (as they both reach

a v
(i)
3 vertex). Therefore, by definition of Vh, all these sessions must be satisfied

by both these paths (or else Vh would have not answered with a v
(i)
3 message

but rather with a “refuse” symbol). Consider now the corresponding sub-paths

of pi and ri which begin at edge p
(k)
1 where k = 2 · m

logm +1 (i.e., p
(k)
1 is the edge

which represents the first message of the first session in the second recursive
construction). Each of these new sub-paths is contained in a disjoint sub-tree
corresponding to the recursive construction, and satisfies all of its (m−2· m

log m)
sessions. It follows that the (original) sub-tree contains two different (m−2· m

log m)-
good sub-trees and the claim follows.

Claim 14 If for every session i ∈ F the sub-tree (i, 2)-forks, then the sub-tree
contains at least |F| = m

log m
different (m

log m)-good sub-trees.

In the proof of Claim 14 we use a special property of (i, 2)-forking: The only
location in which the splitting of path ri from path pi may occur, is a vertex

which represents a v
(i)
1 message. Any splitting which has occured at a vertex

which precedes the v
(i)
1 vertex would have caused the initiation-prefixes of (ses-

sion i along) paths pi and ri to be different (by virtue of the definition of Vh,

and since all vertices preceding v
(i)
1 are part of the initiation-prefix of session i).

467

Proof: Since for all sessions i ∈ F the sub-tree (i, 2)-forks, then for every
such i there exist two sub-paths, pi and ri, that split from each other in a

v
(i)
1 vertex and that eventually reach some v

(i)
2 vertex. Similarly to the proof of

Claim 13, we can claim that each one of the above paths contains a “special”

sub-path (denoted pi and ri respectively), that starts at a v
(i)
1 vertex, ends at a

v
(i)
2 vertex, and satisfies all m

log m
sessions in the first recursive construction (that

is, sessions m
log m

+1,...,2· m
log m

). Note that paths pi and ri are completely disjoint.
Let i1, i2 be two different sesions in F (without loss of generality i1 < i2), and
let pi1 , ri1 , pi2 , ri2 be their corresponding “special” sub-paths. The key point is
that for every i1, i2 as above, it cannot be the case that both “special” sub-
paths corresponding to session i2 are contained in the sub-paths corresponding
to session i1 (to justify this, we use the fact that pi2 and ri2 split from each other

in a v
(i2)
1 vertex and that for every i ∈ {i1, i2}, paths pi and ri are disjoint).

This enables us to associate a distinct (m
log m)-good sub-tree to every i ∈ F

(i.e., which either corresponds to path pi, or to path ri). Which in particular
means that the tree contains at least |F| different (m

log m)-good sub-trees.

We are finally ready to analyze the structure of the sub-tree T . Since for every
i ∈ F there must exist j ∈ {2, 3} such that the sub-tree (i, j)-forks (Claim 12),
then it must be the case that either T contains two distinct (m−2· m

log m)-good sub-
trees (Claim 13), or T contains at least m

log m
distinct (m

log m)-good sub-trees (Claim
14). This completes the proof of Lemma 11 which in turn implies Lemmata 10
and 7. The proof of Theorem 2 is complete.

3 Extending the proof for the Richardson-Kilian protocol

Recall that the Richardson-Kilian protocol [20] consists of two stages. We will
treat the first stage of the RK protocol (which consists of 6 rounds) as if it were
the first 6 rounds of any 7-round protocol, and the second stage (which consists
of a 3-round WI proof) as if it were the remaining 7th message. An important
property which is satisfied by the RK protocol is that the coin tosses used by the
verifier in the second stage are independent of the coins used by the verifier in the
first stage. We can therefore define and take advantage of two (different) types
of initiation-prefixes. A first-stage initiation prefix and a second-stage initiation

prefix (which is well defined only given the first one). These initiation-prefixes
will determine the coin tosses to be used by Vh in each corresponding stage of
the protocol (analogously to the proof of Theorem 2).
The cheating prover will pick a random index for each of the above types of

initiation-prefixes (corresponding to ξ and ζ in the proof of Theorem 2). The
first index (i.e., ξ) is treated exactly as in the proof of Theorem 2, whereas the
second index (i.e., ζ) will determine which of the WI session corresponding to
the second-phase initiation-prefix (and which also correspond to the very same
ξth first-phase initiation-prefix) will be actually executed between the cheating
prover and the verifier. As long as the ζth second-stage initiation prefix will not
be encountered, the cheating prover will be able to impersonate Vh while always

468

deciding correctly whether to reject or to accept the corresponding “dummy” WI
session (as the second-stage initiation-prefix completely determines the coins to
be used by Vh in the second stage of the protocol). As in the proof of Theorem 2,
the probability that the ζth second-stage initiation prefix (that correponds to the
ξth first-phase initiation-prefix) will make the verifier accept is non-negligible.
The existence of a useful pair of initiation-prefixes (i.e., ξ and ζ) is proved es-
sentially in the same way as in the proof of Theorem 2.

4 Concluding Remarks

Summary: In this work we have pointed out the impossibility of black-box simu-
lation of non-trivial 7-round protocols in the concurrent setting. The result which
is proved is actually stronger than stated. Not only because we consider a fixed
scheduling in which the adversarial verifier never refuses to answer (and thus
should have been easier to simulate, as argued in Section 1.5), but also because
we are considering simulators which may have as much as a constant devia-
tion from actual executions of the protocol (rather than negligible deviation, as
typically required in the definition of Zero-Knowledge).

On the applicability of the RK protocol: We note that the above discussion does
not imply that the k = 2 version of the RK protocol is completely useless. As
noted by Richardson and Kilian, for security parameter n, the simulation of
m = poly(n) concurrent sessions may be performed in quasi-polynomial time
(recall that the simulation work required for m sessions is mΘ(logk m)). Thus, the
advantage that a polynomial-time adversary verifier may gain from executing
m concurrent sessions is not significant. As a matter of fact, if one is willing
to settle for less than polynomially-many (in n) concurrent sessions, then the
RK protocol may be secure in an even stronger sense. Specifically, as long as

the number of sessions is m = 2O(
√

log2 n), then simulation of the RK protocol
can be performed in polynomial-time even if k = 2. This is considerably larger
than the logarithmic number of concurrent sessions enabled by straightforward
simulation of previously known constant-round protocols.

Improved simulation of the RK protocol: Recently, Kilian and Petrank [17]
have proved that the Richardson-Kilian protocol will remain concurrent zero-
knowledge even if k = O(g(n) · log2 n), where g(·) is any non-constant function
(e.g., g(n) = log n). Thus, the huge gap between the known upper and lower
bounds on the number of rounds required by concurrent zero-knowledge has
been considerably narrowed.

5 Acknowledgements

I would like to thank Oded Goldreich for introducing me to the subject, and for
the generous assistance in writing this manuscript. I would also like to thank
Yoav Rodeh for significant discussions, and Yehuda Lindell (as well as the anony-
mous referees) for commenting on the earlier version of this paper.

469

References

1. M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the
Error in Computationally Sound Protocols? In 38th FOCS, pages 374–383,
1997.

2. G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of
Knowledge. JCSS, Vol. 37, No. 2, pages 156–189, 1988.

3. G. Brassard, C. Crépeau and M. Yung. Constant-Round Perfect Zero-
Knowledge Computationally Convincing Protocols. Theoret. Comput. Sci. ,
Vol. 84, pp. 23-52, 1991.

4. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-
Knowledge. In 32nd STOC, 2000.

5. I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String
Model. In EuroCrypt2000.

6. C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th

STOC, pages 409–418, 1998.
7. C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for

Timing Constraints. In Crypto98, Springer LNCS 1462 , pages 442–457, 1998.
8. U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding

Protocols. In 22nd STOC, pages 416–426, 1990.
9. O. Goldreich. Foundations of Cryptography – Fragments of a Book. Available

from http://theory.lcs.mit.edu/∼oded/frag.html.
10. O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-

Knowledge Proof Systems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages
167–189, 1996.

11. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM J. Computing, Vol. 25, No. 1, pages 169–192, 1996.

12. O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But
Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems.
JACM, Vol. 38, No. 1, pp. 691–729, 1991.

13. O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge
Proof Systems. Jour. of Cryptology, Vol. 7, No. 1, pages 1–32, 1994.

14. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Inter-
active Proof Systems. SIAM J. Comput., Vol. 18, No. 1, pp. 186–208, 1989.

15. S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Pro-
tocols. In Crypto98, Springer LNCS 1462, pages 408–423, 1998.

16. J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudo-
random Generator from any One-Way Function. SIAM Jour. on Computing,
Vol. 28 (4), pages 1364–1396, 1999.

17. J. Kilian and E. Petrank. Concurrent Zero-Knowledge in Poly-logarithmic
Rounds. In Cryptology ePrint Archive: Report 2000/013. Available from
http://eprint.iacr.org/2000/013

18. J. Kilian, E. Petrank, and C. Rackoff. Lower Bounds for Zero-Knowledge on
the Internet. In 39th FOCS, pages 484–492, 1998.

19. M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology,
Vol. 4, pages 151–158, 1991.

20. R. Richardson and J. Kilian. On the Concurrent Composition of Zero-
Knowledge Proofs. In EuroCrypt99, Springer LNCS 1592, pages 415–431,
1999.

