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Abstract. We present efficient non-malleable commitment schemes
based on standard assumptions such as RSA and Discrete-Log, and un-
der the condition that the network provides publicly available RSA or
Discrete-Log parameters generated by a trusted party. Our protocols re-
quire only three rounds and a few modular exponentiations. We also
discuss the difference between the notion of non-malleable commitment
schemes used by Dolev, Dwork and Naor [DDN00] and the one given by
Di Crescenzo, Ishai and Ostrovsky [DIO98].

1 Introduction

Loosely speaking, a commitment scheme is non-malleable if one cannot trans-
form the commitment of another person’s secret into one of a related secret.
Such non-malleable schemes are for example important for auctions over the
Internet: it is necessary that one cannot generate a valid commitment of a bid
b+ 1 after seeing the commitment of an unknown bid b of another participant.
Unfortunately, this property is not achieved by commitment schemes in general,
because ordinary schemes are only designated to hide the secret. Even worse,
most known commitment schemes are in fact provably malleable.
The concept of non-malleability has been introduced by Dolev et al. [DDN00].

They present a non-malleable public-key encryption scheme (based on any trap-
door permutation) and a non-malleable commitment scheme with logarithmi-
cally many rounds based on any one-way function. Yet, their solutions involve
cumbersome non-interactive and interactive zero-knowledge proofs, respectively.
While efficient non-malleable encryption schemes under various assumptions
have appeared since then [BR93,BR94,CS98], as far as we know more effi-
cient non-malleable commitment protocols are still missing. Di Crescenzo et
al. [DIO98] present a non-interactive and non-malleable commitment scheme
based on any one-way function in the common random string model. Though
being non-interactive, their system is rather theoretical as it excessively applies
an ordinary commitment scheme to non-malleably commit to a single bit.
Here, we present efficient statistically-secret non-malleable schemes based

on standard assumptions, such as the RSA assumption and the hardness of
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computing discrete logarithms. Our schemes are designed in the public parameter
model (a.k.a. auxilary string model). That is, public parameters like a random
prime p and generators of some subgroup of ZZ∗p are generated and published
by a trusted party. We stress that, in contrast to public-key infrastructure, this
model does not require the participants to put any trapdoor information into the
parameters. The public parameter model relies on a slightly stronger assumption
than the common random string model. Yet, the difference is minor as modern
networks are likely to provide public parameters for standard crypto systems.
Moreover, as for the example of the discrete logarithm, the public parameter
model can be formally reduced to the common random string model if we let
the participants map the random string via standard procedures to a prime and
appropriate generators.

In our schemes the sender basically commits to his message using an or-
dinary, possibly malleable DLog- or RSA-based commitment scheme and per-
forms a three-round witness-independent proof of knowledge, both times using
the public parameters. While the straightforward solution of a standard proof
of knowledge fails (because the adversary may in addition to the commitment
also transform the proof of knowledge), we force the adversary to give his “own”
proof of knowledge without being able to adapt the one of the original sender.
Similar ideas have also been used in [DDN00,DIO98]. In our case, the proof
of knowledge guarantees that the adversary already knows the message he has
committed to. This means that he is aware of some information about the re-
lated message of the original sender, contradicting the secrecy property of the
ordinary commitment scheme.

We also address definitional issues. We show that the notion of non-malleabil-
ity used by Di Crescenzo et al. [DIO98] is weaker than the one presented in
[DDN00]. According to the definition of [DIO98], a scheme is non-malleable if
the adversary cannot construct a commitment from a given one, such that af-
ter having seen the opening of the original commitment, the adversary is able
to correctly open his commitment with a related message. But the definition
of Dolev et al. [DDN00] demands more: if there is a one-to-one correspondence
between the commitment and the message (say, if the commitment binds uncon-
ditionally), then they define that such a scheme is non-malleable if one cannot
even generate a commitment of a related message. We call schemes having the
latter property non-malleable with respect to commitment. For these schemes to
contradict non-malleability it suffices to come up with a commitment such that
there exists a related opening. Schemes satisfying the former definition are called
non-malleable with respect to decommitment or, for sake of distinctiveness, with
respect to opening. In this case, the adversary must also be able to open the mod-
ified commitment correctly given the decommitment of the original commitment.
The scheme in [DDN00] achieves the stronger notion, whereas we do not know
if the scheme in [DIO98] is also non-malleable with respect to commitment.

Clearly, a commitment scheme which is non-malleable in the strong sense is
non-malleable with respect to opening, too. We stress that the other direction
does not hold in general. That is, given a statistically-secret commitment scheme
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which is secure with respect to opening, we can devise a commitment scheme
satisfying the weak notion, but not the strong definition. Since our statistically-
secret schemes based on standard assumptions like RSA or Discrete-Log achieve
non-malleability with respect to opening, both notions are not equivalent under
these assumptions. The proof of this claim is deferred from this abstract.

We believe that non-malleability with respect to opening is the appropri-
ate notion for statistically-secret schemes like ours. The reason is that for such
schemes virtually any commitment can be opened with any message. Hence,
finding a commitment of a related message to a given commitment is easy: any
valid commitment works with very high probability. Recently, Yehuda Lindell
informed us about an application of non-malleable commitment schemes to au-
thenticated key-exchange where non-malleability with respect to commitment is
necessary [L00]. Yet, non-malleability with respect to opening still seems to be
adequate for most applications. For instance, recall the example of Internet auc-
tions. The commitments of the bids are collected and then, after a deadline has
passed, are requested to be opened. Any secret which is not correctly revealed
is banned. Therefore, security with respect to opening suffices in this setting.

Our schemes as well as the one by [DDN00] use proof-of-knowledge tech-
niques. But since we are merely interested in non-malleability with respect to
opening, we do not need proofs of knowledge to the full extent. Namely, it suffices
that the proof of knowledge is verifiable by the receiver after the sender has de-
committed. Since the adversary must be able to open his commitment correctly,
we can presume in the commitment phase that the proof of knowledge is indeed
valid. This enables us to speed up our proofs of knowledge, i.e., we introduce
new techniques for such a-posteriori verifiable proofs of knowledge based on the
Chinese Remainder Theorem. As a side effect, this proof of knowledge allows to
hash longer messages before committing and the resulting scheme still achieves
non-malleability. In contrast to this, non-malleable schemes based on well-known
proofs of knowledge do not seem to support the hash-and-commit paradigm in
general.

The paper is organized as follows. In Section 2 we introduce basic notations
and definitions of commitment schemes as well as the notions of non-malleability.
In Section 3 we present efficient schemes in the public parameter model based
on the discrete-log assumption, and, finally, in Section 4 we show how to speed
up the proof of knowledge.

2 Preliminaries

Unless stated otherwise all parties and algorithms are probabilistic polynomial-
time. Throughout this paper, we use the notion of uniform algorithms; all results
transfer to the non-uniform model of computation. A function δ(n) is said to
be negligible if δ(n) < 1/p(n) for every polynomial p(n) and sufficiently large
n. A function δ(n) is called overwhelming if 1− δ(n) is negligible. A function is
noticeable if it is not negligible.
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Two sequences (Xn)n∈IN and (Yn)n∈IN of random variables are called com-
putationally indistinguishable if for any probabilistic polynomial-time algorithm
D the advantage

|Prob [D(1n, Xn) = 1]− Prob [D(1n, Yn) = 1]|
of D is negligible, where the probabilities are taken over the coin tosses of D
and the random choice of Xn and Yn, respectively. The sequences are called
statistically close or statistically indistinguishable if

1
2 ·

∑

s∈Sn

|Prob [Xn = s]− Prob [Yn = s]|

is negligible, where Sn is the union of the supports of Xn and Yn.

2.1 Commitment Schemes

We give a rather informal definition of commitment schemes. For a formalization
we refer the reader to [G98]. A commitment scheme is a two-phase interactive
protocol between two parties, the sender S holding a message m and a random
string r, and the receiver R.
In the first phase, called the commitment phase, S gives some information

derived from m, r to R such that, on one hand, R does not gain any information
about m, and on the other hand, S cannot later change his mind about m. We
call the whole communication in this phase the commitment of S. Of course,
both parties should check (if possible) that the values of the other party satisfy
structural properties, e.g., that a value belongs to a subgroup of ZZ∗p, and should
reject immediately if not. In the following, we do not mention such verification
steps explicitely. We say that a commitment, i.e., the communication, is valid if
the honest receiver does not reject during the commitment phase.
In the decommitment stage, the sender communicates the messagem and the

randomness r to the receiver, who verifies that m, r match the communication of
the first phase. If the sender obeys the protocol description, then the commitment
is valid and R always accepts the decommitment.
There are two fundamental kinds of commitment schemes:

– A scheme is statistically-binding (and computationally-secret) if any arbitrary
powerful malicious S∗ cannot open a valid commitment ambiguously except
with negligible probability (over the coin tosses of R), and two commitments
are computationally indistinguishable for every probabilistic polynomial-
time (possibly malicious) R∗. If the binding property holds unconditionally
and not only with high probability, then we call the scheme unconditionally-
binding.

– A scheme is (computationally-binding and) statistically-secret if it satisfies
the “dual” properties, that is, if the distribution of the commitments are
statistically close for any arbitrary powerful R∗, and yet opening a valid
commitment ambiguously contradicts the hardness of some cryptographic
assumption. If the distribution of the commitments of any messages are
identical, then a statistically-secret schemes is called perfectly-secret.
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2.2 Non-Malleability

As mentioned in the introduction, different notions of non-malleability have
been used implicitely in the literature. To highlight the difference we give a
formal definition of non-malleable commitment schemes, following the approach
of [DDN00]. For non-interactive commitment schemes, all the adversary can do
is modify a given commitment. In the interactive case, though, the adversary
might gain advantage from the interaction. We adopt this worst-case scenario
and assume that the adversary interacts with the original sender, while at the
same time he is trying to commit to a related message to the original receiver.
A pictorial description of a so-called person-in-the-middle attack (PIM at-

tack) on an interactive protocol is given in Figure 1. The adversary A intercepts
the messages of the sender S. Then A may modify the messages before passing
them to the receiver R and proceeds accordingly with the answers. In particu-
lar, A decides to whom he sends the next message, i.e., to the sender or to the
receiver. This is the setting where A has full control over the parties R1 and
S2 in two supposedly independent executions 〈S1,R1〉(m), 〈S2,R2〉(m∗) of the
same interactive protocol. Here and in the rest of this paper, we usually mark
values sent by the adversary with an asterisk.

Fig. 1. Person-In-The-Middle Attack on Interactive Protocols

S A R

s1−−−−−−−−−−−−−−−−→
s∗1−−−−−−−−−−−−−−−−→
r1←−−−−−−−−−−−−−−−−
s∗2−−−−−−−−−−−−−−−−→
r2←−−−−−−−−−−−−−−−−

r∗1←−−−−−−−−−−−−−−−−
s2−−−−−−−−−−−−−−−−→ . . .

Apparently, the adversary can always commit to the same message by for-
warding the communication. In many applications, this can be prevented by
letting the sender append his identity to the committed message. The messages
of the sender and the adversary are taken from a space M chosen by the adver-
sary. Abusing notations, we viewM also as a distribution, and write m ∈R M for
a randomly drawn message according to M. The adversary is deemed to be suc-
cessful if he commits to a related message, where related messages are identified
by so-called interesting relations: a relation R ⊆M×M is called interesting if it
is non-reflexive (to exclude copying) and efficiently computable. Let hist(·) be a
polynomial-time computable function, representing the a-priori information that
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the adversary has about the sender’s message. In the sequel, we view hist(·) as
a part of the adversary’s description, and usually omit mentioning it explicitely.
We describe the attack in detail. First, the adversary A generates a de-

scription of M. Then the public parameters are generated by a trusted party
according to a publicly known distribution (if a protocol does not need public
information then this step is skipped).1 The sender S is initialized withm ∈R M.
Now A, given hist(m), mounts a PIM attack with S(m) and R. Let πcom(A, R)
denote the probability that, at the end of the commitment phase, the protocol
execution between A and R constitutes a valid commitment for a message m∗

satisfying (m,m∗) ∈ R. Let πopen(A, R) denote the probability that A is also
able to successfully open the commitment after S has decommitted.
In a second experiment, a simulator A′ tries to commit to a related message

without the help of the sender. That is, A′ first generates a description of M ′

and the public parameters and then, given hist(m) for somem ∈R M ′, it outputs
a commitment communication without interacting with S(m). Let π′com(A′, R)
denote the probability that this communication is a valid commitment of a re-
lated messagem′. By π′open(A′, R) we denote the probability that A′ additionally
reveals a correct decommitment.
Note that all probabilities are implicit functions of a security parameter. For

the definition we assume that messages contain a description of the distributions
M and M ′, respectively, as prefix. This prevents A′ from taking a trivial set M ′,
since these sets can be ruled out by R. If the simulator A′ sets M ′ =M —which
is the case in all the schemes we know of— we can omit the description portion.

Definition 1. A commitment scheme is called

b) non-malleable with respect to commitment if for every adversary A there
exists a simulator A′ such that for all interesting relations R the difference
|πcom(A, R)− π′com(A′, R)| is negligible.

a) non-malleable with respect to opening if for every adversary A there ex-
ists a simulator A′ such that for all interesting relations R the difference
∣

∣πopen(A, R)− π′open(A′, R)
∣

∣ is negligible.

Slightly relaxing the definition, we admit an expected polynomial-time simu-
lator A′. In fact, we are only able to prove our schemes non-malleable with this
deviation. The reason for this is that we apply proofs of knowledge, so in order
to make the success probability of A′ negligibly close to the adversary’s success
probability, we run a knowledge extractor taking expected polynomial-time.2 Fol-
lowing the terminology in [DDN00], we call such schemes liberal non-malleable
with respect to commitment and opening, respectively.

1 In a stronger requirement the order of these steps is swapped, i.e., the adversary
chooses the message space in dependence of the public parameters. Although our
scheme achieves this stronger notion, we defer this from this abstract.

2 The same problem occurs in [DDN00]. Alternatively, the authors of [DDN00] also
propose a definition of ε-malleability, which basically says that for given ε there
is a strict polynomial-time simulator (polynomial in the security parameter n and
ε−1(n)) whose success probability is only ε-far from the adversary’s probability.
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Consider a computationally-binding and perfectly-secret commitment scheme.
There, every valid commitment is correctly openable with every message (it is,
however, infeasible to find different messages that work). Thus, we believe that
non-malleability with respect to opening is the interesting property in this case.
On the other hand, non-malleability with respect to commitment is also a con-
cern for statistically-binding commitment schemes: with overwhelming probabil-
ity there do not exist distinct messages that allow to decommit correctly. This
holds for any dishonest sender and, in particular, for the person-in-the-middle
adversary. We can therefore admit this negligible error and still demand non-
malleability with respect to commitment.

3 Efficient Non-Malleable Commitment Schemes

In this section we introduce our commitment schemes which are non-malleable
with respect to opening. For lack of space, we only present the discrete-log
scheme; the RSA-based protocol is omitted. In Section 3.1 we start with an
instructive attempt to achieve non-malleability by standard proof-of-knowledge
techniques. We show that this approach yields a scheme which is only non-
malleable with respect to opening against static adversaries, i.e., adversaries
that try to find a commitment after passively observing a commitment between
the original sender and receiver and such that the adversary can later correctly
open the commitment after learning the decommitment of the sender. In Section
3.2 we develop out of this our scheme which is non-malleable against the stronger
PIM adversaries.

3.1 Non-Malleability with Respect to Static Adversaries

Consider Pedersen’s well-known discrete-log-based perfectly-secret scheme [P91].
Let Gq ⊆ ZZ∗p be a group of prime order q and g0, h0 two random generators
of Gq. Assume that computing the discrete logarithm logg0

h0 is intractable.
To commit to a message m ∈ ZZq, choose r ∈R ZZq and set M := gm0 hr

0.
To open this commitment, reveal m and r. Obviously, the scheme is perfectly-
secret as M is uniformly distributed in Gq, independently of the message. It is
computationally-binding because opening a commitment with distinct messages
requires computing logg0

h0.

Unfortunately, Pedersen’s scheme is malleable: given a commitment M of
some message m an adversary obtains a commitment for m+1 mod q by multi-
plying M with g. Later, the adversary reveals m+ 1 mod q and r after learning
the original decommitment m, r. This holds even for static adversaries. Such ad-
versaries do not try to inject messages in executions, but rather learn a protocol
execution of S and R —which they cannot influence— and afterwards try to
commit to a related message to R. As for non-malleability with respect to open-
ing, the adversary must also be able to open the commitment after the sender
has decommitted.



421

A possible fix that might come to one’s mind are proofs of knowledge showing
that the sender actually knows the message encapsulated in the commitment.
For the discrete-log case such a proof of knowledge consists of the following
steps [O92]: the sender transmits a commitment S := gs

0h
t
0 of a random value

s ∈R ZZq, the receiver replies with a random challenge c ∈R ZZq and the sender
answers with y := s + cm mod q and z := t + cr mod q. The receiver finally
checks that SM c = gy0h

z
0.

If we add a proof of knowledge to Pedersen’s scheme we obtain a protocol
which is non-malleable with respect to opening against static adversaries. This
follows from the fact that any static adversary merely sees a commitment of an
unknown message before trying to find an appropriate commitment of a related
message. Since the proof of knowledge between S and R is already finished at
this time, the static adversary cannot rely on the help of S and transfer the
proof of knowledge. We leave further details to the reader and focus instead on
the non-malleable protocol against PIM adversaries in the next section.

3.2 Non-Malleability with Respect to PIM Adversaries

The technique of assimilating a proof of knowledge as in the previous section
does not thwart PIM attacks. Consider again the PIM adversary committing
to m + 1 mod q by multiplying M with g. First, this adversary forwards the
sender’s commitment S for the proof of knowledge to the receiver and hands the
challenge c of the receiver to the sender. Conclusively, he modifies the answer
y, z of the sender to y∗ := y+ c mod q and z∗ := z. See Figure 2. Clearly, this is
a valid proof of knowledge for m+1 mod q and this PIM adversary successfully
commits and later decommits to a related message.

Coin-flipping comes to rescue. In a coin flipping protocol one party commits
to a random value a, then the other party publishes a random value b, and finally
the first party decommits to a. The result of this coin flipping protocol is set
to c := a ⊕ b or, in our case, to c := a + b mod q for a, b ∈ ZZq. If at least one
party is honest, then the outcome c is uniformly distributed (if the commitment
scheme is “secure”).

The idea is now to let the challenge in our proof of knowledge be determined
by such a coin-flipping protocol. But if we too use Pedersen’s commitment scheme
with the public generators g0, h0 to commit to value a in this coin-flipping proto-
col, we do not achieve any progress: the adversary might be able to commit to a
related a∗ and thus bias the outcome of the coin-flipping to a suitable challenge
c∗. The solution is to apply Pedersen’s scheme in this sub protocol with the com-
mitment M as one of the generators, together with an independent generator h1

instead of g0, h0; for technical reasons we rather use (g1M) and h1 for another
generator g1. As we will show, since the coin-flipping in the proof of knowledge
between A and R is based on generators g1M

∗ and h1 instead of g1M,h1 as in
the sender’s proof of knowledge, this prevents the adversary from adopting the
sender’s and receiver’s values and therefore to transfer the proof of knowledge.
Details follow.
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Fig. 2. PIM Attack on Pedersen’s Commitment Scheme with Proof of Knowledge

sender S adversary A receiver R

message m ∈ ZZq public: p, q, g0, h0

a) commitment phase:

choose r, s, t ∈R ZZq

set M := gm
0 hr

0

set S := gs
0h

t
0

M,S
−−−−−−→ S∗ := S

M∗ := gM
M∗, S∗

−−−−−−→ choose c ∈R ZZq
c

←−−−−−−
c∗ := c

c∗
←−−−−−−

y := s+ c∗m (q)
z := t+ c∗r (q)

y, z
−−−−−−→ z∗ := z

y∗ := y + c (q)
y∗, z∗
−−−−−−→ verify that

S∗(M∗)c
!
= gy∗

0 hz∗

0

b) decommitment phase:
m, r

−−−−−−→ r∗ := r
m∗ := m+ 1 (q)

m∗, r∗
−−−−−−→ verify that

M∗ !
= gm∗

0 hr∗

0

We describe the protocol given in Figure 3 which combines the aforemen-
tioned ideas. The public parameters are primes p, q with q|(p− 1) together with
four random generators g0, g1, h0, h1 of a subgroup Gq ⊆ ZZ∗p of prime order
q. Our protocol also works for other cyclic groups of prime order q like elliptic
curves, but we explain for the case Gq ⊆ ZZ∗p only. Basically, the sender S com-
mits to his message m ∈ ZZ∗q with Pedersen’s scheme

3 by computing M = gm0 hr
0

and proves by a proof of knowledge (values S, c, y, z in Figure 3) that he is aware
of a valid opening of the commitment. The challenge c in this proof of knowledge
is determined by a coin-flipping protocol with values A, a, u, b.

It is clear that our protocol is computationally-binding under the discrete-log
assumption, and perfectly-secret as the additional proof of knowledge for m is
witness-independent (a.k.a. perfectly witness-indistinguishable) [FS90], i.e., for
any challenge c the transmitted values S, y, z are distributed independently of
the actual message [O92].

3 Note that as opposed to Pedersen’s scheme we require that m 6= 0; the technical
reason is that in the security proof we need to invert the message modulo q.
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Fig. 3. DLog-Based Non-Malleable Commitment Scheme

Sender S p, q, g0, g1, h0, h1 Receiver R

message m ∈ ZZ∗
q

a) commitment phase:

choose a, r, s, t, u ∈R ZZq

set M := gm
0 hr

0

set A := (g1M)ahu
1

set S := gs
0h

t
0

M,A, S
−−−−−−−−−−−−−−→ choose b ∈R ZZq

b
←−−−−−−−−−−−−−−−

set c := a+ b mod q
set y := s+ cm mod q
set z := t+ cr mod q

a, u, y, z
−−−−−−−−−−−−−−→ set c := a+ b mod q

check A
!
= (g1M)ahu

1

check SM c !
= gy

0h
z
0

b) decommitment phase:
m, r

−−−−−−−−−−−−−−→ check M
!
= gm

0 hr
0

Proposition 1. The commitment scheme in Figure 3 is perfectly-secret and,
under the discrete-log assumption, computationally-binding.

It remains to show that our scheme is non-malleable. We present the proof
from a bird’s eye view and fill in more details in Appendix A, yet remain sketchily
in this version. By now, we already remark that the non-malleability property
of our scheme also relies on the hardness of computing discrete logarithms. This
dependency is not surprising: after all, any adversary being able to compute
discrete logarithms with noticeable probability also refutes the binding property
of Pedersen’s scheme and can thus decommit for any related message with this
probability.
The idea of the proof is as follows. Given a commitmentM of some unknown

message m (together with a witness-independent proof of knowledge described
by S, c, y, z) with respect to parameters p, q, g0, h0 we show how to employ the
PIM adversary A to derive some information about m. Namely, if we are able
to learn the related message m∗ of the adversary, then we know that m satisfies
(m,m∗) ∈ R for the relation R. This, of course, contradicts the perfect secrecy
of the commitment scheme.
In this discussion here, we make two simplifications concerning the adversary:

first, we assume that the PIM adversary always catches up concerning the order
of the transmissions, i.e., sends his first message after learning the first message of
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S and answers to S after having seen R’s response etc. Second, let the adversary
always successfully commit and decommit to a related message, rather than with
small probability. Both restrictions can be removed.

The fact that we learn the adversary’s message m∗ follows from the proof of
knowledge. Intuitively, a proof of knowledge guarantees that the prover knows
the message, i.e., one can extract the message by running experiments with
the prover. Specifically, we inject values p, q, g0, h0,M, S, c, y, z into a simulated
PIM attack with A and impersonate S and R. Additionally, we choose g1 at
random and set h1 := (g1M)

w for a random w ∈R ZZq. We also compute random
a0, u0 ∈R ZZq and insert g1, h1 and A := (g1M)

a0hu0

1 into the experiment with
A. We start with the extraction procedure by committing to m, s, a0 viaM,S,A
on behalf of the sender. Then, by the predetermination about the order of the
transmissions, the adversary sendsM ∗, S∗, A∗ (possibly by changingM,S,A and
without knowing explicitely the corresponding values m∗, r∗ etc.). See Figure 5
on page 431 for a pictorial description.

We play the rest of the commitment phase twice by rewinding it to the step
where the receiver chooses b and sends it to the adversary A. To distinguish the
values in both repetitions we add the number of the loop as subscript and write
a1, a

∗
1, a2, a

∗
2 etc. The first time, the adversary, upon receiving b1, passes some

b∗1 to the (simulated) sender S, and expects S to open the commitment for a
and supplement the proof of knowledge forM with respect to the challenge a1+
b∗1 mod q. By the trapdoor property of Pedersen’s commitment scheme [BCC88]
we are able to open A with any value for a1 since we know log(g1M) h1. That is, to
decommit A with some a1 reveal a1 and u1 = u0+(a0− a1)/ log(g1M) h1 mod q;
it is easy to verify that indeed A = (g1M)

a1hu1

1 . In particular, we choose a1 such
that a1 + b∗1 mod q equals the given value c. Hence, y and z are proper values
to complement the proof of knowledge for M . Finally, the adversary answers
with the decommitment a∗1, u

∗
1 for A

∗ and the rest of the proof of knowledge for
M∗ with respect to challenge a∗1 + b1 mod q. Now we rewind the execution and
select another random challenge b2. The adversary then decides upon his value b

∗
2

(possibly different from his previous choice b∗1) and hands it to S. Again, we open
A with a2 such that c = a2 + b∗2 mod q. The adversary finishes his commitment
with a∗2, u

∗
2 as opening for A

∗ and the missing values for the proof of knowledge.

The fundamental proof-of-knowledge paradigm [FFS88] says that we can ex-
tract the message m∗ if we learn two valid executions between A and R with
the same commitment M∗, S∗, A∗ but different challenges. Hence, if the adver-
sary’s decommitments satisfy a∗1 = a∗2 and we have b1 6= b2 (which happens
with probability 1 − 1/q), then this yields different challenges a∗1 + b1, a

∗
2 + b2

in the executions between A and R and we get to know the message m∗. We
are therefore interested in the event that the adversary is able to “cheat” by
presenting different openings a∗1 6= a∗2. In Appendix A we prove that if the ad-
versary finds different openings for commitment A∗ with noticeable probability,
then we derive a contradiction to the intractability of the discrete-log problem.
Hence, under the discrete-log assumption the probability that this event occurs
is negligible and we extract m∗ with overwhelming probability.
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Note that that in the repetitions we force the coin-flipping protocol between
S and A to result in the same challenge both times. The latter is necessary
because if we were able to answer a different challenge than c then we could
extract the unknown message m and would thus know m (which is of course not
the case).
In conclusion, if the adversary is able to commit and decommit to a related

message m∗, then we can extract m∗ and learn something about m. For details
and further discussion we refer to Appendix A. Altogether,

Theorem 1. Under the discrete-logarithm assumption, the scheme in Figure 3
is a perfectly-secret commitment scheme which is liberal non-malleable with re-
spect to opening.

It is worthwhile to point out that we cannot hash longer messages to ZZ∗q
before applying our non-malleable commitment scheme. Because then we extract
the hash value and not the message m∗ itself. But this could be insufficient, since
it might be impossible to deduce anything about m via R(m,m∗) given solely
the hash value of m∗. We stress that the schemes in Section 4 with the faster a-
posteriori verifiable proofs of knowledge do not suffer from this problem. There,
one can first hash the message as the proof of knowledge operates on the original
message instead of the hash value.

4 Speeding Up the Proof of Knowledge

The DLog-based scheme in the previous section (as well as the RSA-based one)
uses Okamoto’s witness-independent proof of knowledge. But since we are in-
terested in non-malleability with respect to opening, the proof of knowledge
need not be verifiable immediately in the commitment phase. It suffices that the
sender convinces the receiver of the proof’s validitiy in the decommitment stage.
To refute non-malleability, the adversary must open his commitment correctly,
and particularly, the proof must be shown to be right then. Therefore, the sim-
ulator can already in the commitment phase assume that the proof is indeed
valid. We call such a proof of knowledge a-posteriori verifiable.
Using the Chinese Remainder Theorem, we present a very fast a-posteriori

verifiable proof of knowledge and thus a faster variant of the non-malleable com-
mitment scheme given in Section 3. Assume that we hash messages of polynomial
length to ZZ∗q with a collision-intractable hash function H (whose description is
part of the public parameters). Given the DLog commitment M = g

H(m)
0 hr

0 of
the hash value H(m), the proof of knowledge consists of two steps: the receiver
selects a small random prime P as challenge and the sender answers with (m, r)
—viewed as a natural number— reduced modP . If we repeat this for several
primes, then we reconstruct the number (m, r) using the Chinese Remainder
Theorem. This corresponds to the case of RSA or DLog proofs of knowledge,
where distinct challenges yield a representation. Yet, our proof reveals some
information about (m, r). To prevent this, we add a sufficiently large random
prefix s À P to the message m and use H(s,m) instead of H(m) in M . Then
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(s,m, r) mod P hides m, r statistically. Note that the receiver cannot check im-
mediately that the answer to the challenge is right. But a simulator, repeating
the proof of knowledge with different primes, is able to verify that it has recon-

structed the correct value (s,m, r) by comparing g
H(s′,m′)
0 hr′

0 for the extracted
values s′,m′, r′ to M .

We introduce some notations. Let x · y denote the concatenation of two
binary strings x,y ∈ {0, 1}∗ and val(x) := ∑

i≥1 xi2
i−1 the value of string

x = x1x2 . . . xn. Conversely, denote by bin(r) the standard binary representation
of number r. Suppose that we are given an efficiently computable function IPK,k/2

mapping K-bit strings to k/2-bit primes such that for x ∈R {0, 1}K the prime
IPK,k/2(x) is uniformly distributed in a superpolynomial subset of all k/2-bit
primes. See [CS99,M95] for fast algorithms to generate primes from random
strings. We will later present an alternative proof technique based on polynomials
instead of primes.

Fig. 4. Non-Malleable Commitment Scheme with fast a-posteriori verifiable POK

Sender S p, q, g0, g1, h0, h1,H Receiver R

message m ∈ {0, 1}`

a) commitment phase:

choose a ∈R {0, 1}
K

choose s ∈R {0, 1}
k

choose r, u ∈R ZZq

set M := g
H(s·m)
0 hr

0

set A := (g1M)H(a)hu
1

M,A
−−−−−−−−−−−→ choose b ∈R {0, 1}

K

b
←−−−−−−−−−−−

set P := IPK,k/2(a⊕ b)
set y := val(s ·m · bin(r)) mod P

a, u, y
−−−−−−−−−−−→ check A

!
= (g1M)H(a)hu

1

b) decommitment phase:
s,m, r

−−−−−−−−−−−→ check M
!
= g

H(s·m)
1 hr

0

set P := IPK,k/2(a⊕ b)

check y
!
= val(s ·m · bin(r)) mod P

The modified commitment scheme is given in Figure 4. We replace the com-

mitment M = gm0 hr
0 by M = g

H(s·m)
0 hr

0. Additionally, the proof of the DLog-
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based scheme shows that we can also hash the value a for the coin flips before
computing the commitment A. This enables us to generate longer random strings
from a single commitment. Moreover, we now use the Chinese-Remainder-based
proof of knowledge instead of the one by Okamoto. To commit to m ∈ {0, 1}`
the sender S prepends k random bits s ∈R {0, 1}k to the message. To prove
knowledge of val(s ·m · bin(r)) the sender reveals the residue

val(s ·m · bin(r)) ≡ 2k val(m · bin(r)) + val(s) (mod P )

modulo a k/2-bit prime P . The value val(s) ∈ [0, 2k) acts as a one-time pad
since its distribution modulo P is statistically close to the uniform distribution
on [0, P ).
We omit the formal proof that the scheme is liberal non-malleable with re-

spect to opening under the discrete-logarithm assumption and given that H is
collision-intractable (or, more precisely, given that H is a family of collision-
intractable hash functions). As for the proof of knowledge, the extractor rewinds
the adversary A which mounts a PIM attack, and forces A to answer different
primes while the original sender always has to answer to the same prime. Suppose
that k = ` = log q. Thus, if A correctly reveals the residues of val(s ·m · bin(r))
modulo seven different primes P1, . . . , P7, then using the Chinese Remainder
Theorem we retrieve val(s·m·bin(r)), because val(s·m·bin(r)) ≤ 23k < P1 · · ·P7.
If A has only a noticeable success probability, then the extractor creates a list
of residues modulo a polynomial number of primes and applies the Chinese Re-
mainder Theorem to all subsets of seven residues finding the right values with
overwhelming probability. Using the more sophisticated algorithm by Goldreich,
Ron and Sudan [GRS99] or the improved one by Boneh [B00], we derive:

Theorem 2. Under the discrete-logarithm assumption and if H is a (family
of) collision-intractable hash function(s), then for all polynomials K, k, ` with
K, ` = poly(k) and k ≥ (log q)1−ε for a constant ε > 0 the scheme in Figure 4
is a statistically-secret commitment scheme which is liberal non-malleable with
respect to opening.

The bottleneck of this scheme is the generation of primes. An even faster

approach is based on polynomials over the finite Field IF with 2
√
k elements.

Let K = k and Π : {0, 1}∗ → IF[τ ] denote the mapping which maps a bit
string of length d

√
k to a monic polynomial of degree d over IF by taking every

block of
√
k bits as a coefficient of the polynomial. In Figure 4, we replace the

prime P by the polynomial P (τ) := Π(a ⊕ b) of degree
√
k and set y(τ) :=

Π(s ·m · bin(r)) mod P (τ). To retrieve s,m, r from the proof of knowledge, we
apply the Chinese Remainder Theorem for polynomials [K98, 4.6.2, Ex. 3]. Two
randomly chosen monic polynomials of same degree over IF are co-prime with

probability 1 − 2−
√
k [K98, 4.6.5, Ex. 5]. For instance, if log q = ` = k = K,

then given Π(s ·m · bin(r)) modulo four randomly chosen monic polynomials
P1, P2, P3, P4 ∈ IF[τ ] of degree

√
k, we retrieve with overwhelming probability

the polynomial Π(s ·m · bin(r)) modulo (P1P2P3P4). This yields s,m and r,
because degΠ(s ·m · bin(r)) ≤ 3

√
k < deg(P1P2P3P4).
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A Sketch of Proof of Theorem 1

We address a more formal proof that our protocol constitutes a non-malleable
commitment scheme. Our aim is to extract the adversary’s message within a
negligibly close bound to the adversary’s success probability πopen(A, R) to derive
some information about the unknown message for a given commitment. We omit
a proof that this implies non-malleability of the commitment scheme because
this proof already appears in [DDN00]. Instead, we show how to extract the
adversary’s message in our scheme. To this end, we repeat some basic facts about
proofs of knowledge and knowledge extractors [FFS88,BG92]; we discuss them
for the example of Okamoto’s discrete-log-based proof of knowledge [O92] for a
given M = gm0 hr

0. The knowledge extractor interacting with the prover works in
two phases. Namely, it first generates a random conversation S, c, y, z by running
the prover to obtain S, by selecting c and by letting the prover answer with
y, z to S, c. If this communication is invalid, then the extractor aborts. Else the
extractor also stops with probability 1/q. Otherwise it extracts at all costs. That
is, the extractor fixes this communication up to the challenge, and then loops (till
success) to seek another accepting conversation with the same communication
prefix S and different c. This is done by rewinding the execution to the choice
of the challenge and re-selecting other random challenges. The extractor runs
in expected polynomial time and outputs a representation of M with respect to
g0, h0 with probability π − 1/q. Here, π denotes the probability that the prover
makes the verifier accept, and 1/q is called the error of the protocol.
Next, we transfer the proof-of-knowledge technique to our setting. As in Sec-

tion 3.2 we, too, adopt the convention that the adversary A does not “mix” the
order of messages but rather catches up. We show how to remove this restriction
in the final version of the paper.
Assume that we communicate with some party C which is going to commit to

an unknown messagem ∈R M. We choose random primes p, q and two generators
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g0, h0 and send them to C. Party C selects r, s, t ∈R ZZq and sends M := gm0 hr
0,

S := gs0h
t
0. We answer with a random challenge c ∈R ZZq and C returns y :=

s+ cm, z := t+ cr mod q. Finally, we check the correctness. Put differently, we
perform all the steps of the sender in our protocol except for the coin flipping.

We want to use the PIM adversary to learn some information about C’s
message m. To this end, we incorporate the values of C’s commitment in a
knowledge extraction procedure for M . The extractor chooses additional gener-
ators g1, h1 by setting g1 := gv0 and h1 := (g1M)

w for random v, w ∈R ZZ∗q , and
computes A := (g1M)

a0hu0

1 according to the protocol description for random
a0, u0 ∈R ZZq. Then it starts to emulate the PIM attack by pretending to be
S and R and with values p, q, g0, g1, h0, h1,M, S,A. Because of the assumption
about the order of messages, the adversary commits then toM ∗, S∗, A∗. Next, we
use the same stop-or-extract technique as in [O92]. In our case, the rewind point
(if we do rewind) is the step where the receiver sends b. In each repetition, we
send a random value bi ∈R ZZq —the subscript denotes the number i = 1, 2, . . .
of the loop— on behalf of the receiver and the adversary hands some value b∗i
to the simulated sender. Knowing the trapdoor w = log(g1M) h1 we open A with
ai, ui = u0 + (a0 − ai)/w mod q such that ai + b∗i equals the given value c, and
send the valid answer y, z to the challenge c in the proof of knowledge for M .
The adversary replies with a∗i , u

∗
i , y

∗
i , z

∗
i to the receiver. A description is shown

in Figure 5.

An important modification of the knowledge extractor in comparison to the
one in [FFS88,O92] is that, once having entered the loop phase, not only does
our extractor stop in case of success; it also aborts with no output if in some
repetitions i, j the adversary both times successfully finishes the commitment
phase —which includes a correct decommitment of A∗— but opens A∗ with
distinct values a∗i 6= a∗j . We say that A wins if this happens. In this case, the
extractor fails to extract a message.

Our first observation is that our knowledge extractor stops (either with suc-
cess or aborting prematurely) in expected polynomial-time. This follows as in
[FFS88,O92]. Let us analyze the success probability of our extractor. We assert
that the extractor succeeds in outputting a message with probability at least
πopen(A, R) − 1/q − δ(n), where δ(n) denotes the probability that A wins (for
security parameter n). The reason for this is that, given A does not win, the
adversary’s openings a∗i1 = a∗i2 = . . . in the valid commitment conversations
are all equal. But then the values bij + a∗ij mod q for j = 1, 2, . . . of challenges
in the proof of knowledge between A and R are uniformly and independently
distributed. Analogously to [FFS88,O92] it follows that the extractor finds a
message with probability πopen(A, R)− 1/q in this case.
It remains to bound the probability δ(n) that A wins. We will prove that

δ(n) is negligible under the discrete-log assumption. For this, we first remark
that we are only interested in the case that A sends distinct openings of A∗ in
accepting executions, because the extractor only relies on these executions. In
order to derive a contradiction to the intractability of the discrete-log problem
we observe that the notion of non-malleability with respect to opening requires



431

Fig. 5. Knowledge Extraction

simulation of S adversary A simulation of R

given parameters:

p, q, g0, h0

M,S, c, y, z

additional parameters:

choose a0, u0, v, w ∈R ZZq

set g1 := gv
0

set h1 := (g1M)w

set A := (g1M)a0hu0
1

frozen simulation: p, q, g0, g1, h0, h1

M,A, S
−−−−−−−−−→

M∗, A∗, S∗

−−−−−−−−−→

rewind point (loop i = 1, 2, . . . ): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

choose bi ∈R ZZq

bi←−−−−−−−−−
b∗i←−−−−−−−−−

set ai := c− b∗i mod q
set ui := u0 + (a0 − ai)/w mod q

ai, ui, y, z−−−−−−−−−→
a∗i , u

∗
i , y

∗
i , z

∗
i−−−−−−−−−→

that A also reveals a valid decommitment. Hence, we view the decommitment
phase as an additional step of the proof of knowledge. In other words, a correct
decommitment is part of an accepting conversation of the proof of knowledge.
Yet, this step has an extra property: the adversary must finish his commitment
before he is allowed to ask S to open the original commitment. This corresponds
to the fact that the decommitment phase of both parties S and A is delayed
until both commitment phases are complete.

Lemma 1. The probability that A wins is negligible.

Proof. We show that if the claim of Lemma 1 does not hold this contradicts
the intractability of the discrete-log problem. We are given randomly generated
primes p, q, a generator g, and a value X ∈ Gq for which we are supposed to
compute logg X. We show how to use A to do so.
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The first observation is that if A wins with noticeable probability within the
(expected) polynomial number of loops, then by standard techniques it follows
that A does so with noticeable probability in the first p(n) repetitions for an
appropriate polynomial p(n). Thus, we simply truncate any loop beyond this,
and the running time of our derived discrete-log algorithm is strictly polynomial.
Instead of using the commitment M of the third party C, this time we run the
knowledge extraction procedure incorporating the given values p, q, g,X, but
generating the same distribution as the extractor. That is, select a message
m ∈R M, as well v, w ∈R ZZ∗q , set

g0 := g−1/mX, g1 := g, h0 := Xv, h1 := Xw,

and computeM,A, S, c, y, z according to the protocol description. Wlog. assume
that X 6= 1 and Xm 6= g, else we already know the discrete log of X. Then g0,
g1, h0 and h1 are random generators of the subgroup Gq. Furthermore, g1M =
ggm0 hr

0 = Xm+rv and thus log(g1M) h1 = (m + rv)/w mod q. Next we emulate
A on values p, q, g0, g1, h0, h1 and M,A, S by running the extraction procedure
above. Note that this, too, means that we may abort before even starting to loop.
Once we have entered the rewind phase, whenever the extractor is supposed to
open A to determine the challenge c in the loop, we also open the commitment
such that the coin flipping protocol always yields the same value c. This is
possible as we know log(g1M) h1 and are therefore able to open A ambiguously.
Observe that the communication here is identically distributed to the one in the
extraction procedure. Hence, given that A wins with noticeable probability in
the extraction procedure, A finds some a∗i 6= a∗j for two accepting executions
i, j with the same probability in this experiment here. Let u∗i , u

∗
j denote the

corresponding portions of the decommitment for A∗ in these loops. Recall that
we take the decommitment stage as an additional step of the proof of knowledge.
Therefore, after having revealed m, r in place of the sender in loop no. j, we also
obtain some m∗, r∗ satisfying the verification equation M ∗ = gm

∗

0 hr∗

0 from the
adversary. Particularly, we have:

h
(u∗i−u∗j )/(a∗j−a∗i )

1 = g1M
∗ = g1g

m∗

0 hr∗

0 = g1−m∗/mXm∗+r∗v

Since h1 = Xw we can transform this into

g1−m∗/m = Xx for x = w(u∗i − u∗j )/(a
∗
j − a∗i )− (m∗ + r∗v) mod q

Observe that x is computable from the data that we have gathered so far. From
m∗ 6= m we conclude that 1 − m∗/m 6= 0 mod q and therefore x 6= 0 mod q
has an inverse modulo q. Thus the discrete logarithm of X to base g equals
(1−m∗/m)/x mod q. ut

Summerizing, with probability πopen(A, R)− 1/q − δ(n) (which is negligibly
close to the adversary’s success probability) we extract some message m′. The
final step in the proof is to show that indeedm′ equals the adversary’s decommit-
ment m∗ except with negligible probability; this follows by standard techniques
and is omitted.


