
Weaknesses in the SL2(IF2n) Hashing Scheme

Rainer Steinwandt, Markus Grassl, Willi Geiselmann, and Thomas Beth

Institut für Algorithmen und Kognitive Systeme,
Fakultät für Informatik, Universität Karlsruhe,

Am Fasanengarten 5, 76 128 Karlsruhe, Germany,
{steinwan,grassl,geiselma,EISS Office}@ira.uka.de.

Abstract. We show that for various choices of the parameters in the
SL2(IF2n) hashing scheme, suggested by Tillich and Zémor, messages
can be modified without changing the hash value. Moreover, examples
of hash functions “with a trapdoor” within this family are given. Due to
these weaknesses one should impose at least certain restrictions on the
allowed parameter values when using the SL2(IF2n) hashing scheme for
cryptographic purposes.

1 Introduction

At CRYPTO ’94 Tillich and Zémor [11] have proposed a class of hash
functions based on the group SL2 (IF2n), the group of 2 × 2-matrices
with determinant 1 over IF2n . The hash functions are parameterized by
the degree n and the defining polynomial f(X) of IF2n . The hash value
H(m) ∈ SL2 (IF2n) of some message m is a 2× 2-matrix.

At ASIACRYPT ’94 a first “attack” on this hash function was pro-
posed by Charnes and Pieprzyk [3]. They showed that the hash func-
tion is weak for some particular choices of the defining polynomial f(X).
However, for any chosen hash function it is easy to check if it is resis-
tant against this attack—the order of the generators of SL2 (IF2n) has
to be large. This can easily be calculated. Moreover, Abdukhalikov and
Kim [1] have shown that an arbitrary choice of f(X) results in a scheme
vulnerable to Charnes’ and Pieprzyk’s attack only with a probability of
approximately 10−27.

Some additional structure of the group SL2 (IF2n) was used by Geisel-
mann [5] to reduce the problem of finding collisions to the calculation of
discrete logarithms in IF2n or IF2 2n (which is feasible for the proposed
values of n ∈ {130, . . . , 170}). The drawback of this “attack” is the ex-
tremely long message required for such a collision. (E. g., the collision
given in [5] for n = 21 has a length of about 237 000 bits.).

The main advantage of the SL2 (IF2n) hashing scheme to other schemes
is the algebraic background that yields some proven properties about

289

distribution, shortest length of collisions [11, 15, 16], and allows a paral-
lelization of the calculation: it holds H(m1|m2) = H(m1) ·H(m2), where
m1|m2 denotes the concatenation of the two messagesm1,m2. This paral-
lelization property is very helpful in some applications so that Quisquater
and Joye have suggested to use this hash function for the authentication
of video sequences [10], despite the weaknesses already known (more in-
formation on parallelizable hash functions can be found in [2, 4]).

In this paper we describe some weaknesses in the SL2(IF2n) hashing
scheme that also affect the generalization of this scheme to arbitrary finite
fields suggested in [1]: as shown in [11], any collision in the SL2(IF2n)
hashing scheme involves at least one bitstring of length ` ≥ n. Hence it
is infeasible to search directly for a collision among the more than 2n

bitstrings of length ` ≥ n. But using some structural properties of the
group SL2(IFpn) we show that for several choices of the parameters it is
possible to find short bitstrings that hash to an element of small order
in SL2(IFpn). Repeating such a bitstring several times, a message can be
modified without changing its hash value. In the case where adequate
subfields of IFpn exist, this approach works quite efficiently. Cases where
n is prime are left to be resistant to this kind of attack. However, we
show that—independent of n being prime or not—for all suggested values
130 ≤ n ≤ 170 in the SL2(IF2n) hashing scheme one can find a defining
polynomial of IF2n with a prescribed collision.

2 Preliminaries

2.1 The SL2(IF2n) Hashing Scheme

By IFpn we denote the finite field with pn elements. The hash function
H(m) of Tillich and Zémor [11] is based on the group SL2 (IF2n):

Definition 1. Let A := (α 1
1 0), B :=

(

α α+1
1 1

)

be elements of SL2 (IF2n),
the group of 2×2-matrices with determinant 1 over IF2n . Here α ∈ IF2n is
a root of a generating polynomial f(X) of the field IF2n ' IF2[X]/f(X).

Then, according to [11], the hash value H(b1 . . . br) ∈ IF 2×2
2n of a binary

stream b1 . . . br is defined as the product M1 · . . . ·Mr with

Mi :=

{

A if bi = 0 ;
B if bi = 1 .

The straightforward generalization of this hashing scheme is to switch
to IFpn , i. e., replacing SL2(IF2n) by SL2(IFpn), the group of 2×2-matrices
with determinant 1 over IFpn , generated by A =

(

α −1
1 0

)

and B =
(

α α−1
1 1

)

(see Proposition 2).

290

2.2 Some Properties of SL2(IFpn)

As stated before, we use some properties of the group SL2(IFpn) to find
collisions of relatively short length. First we recall the structure of the
projective special linear group PSL2(IFpn) which will prove useful for an-
alyzing SL2(IFpn). Denoting the cyclic group with r elements by Cr we
have (see, e. g., [7, Kapitel II, Satz 8.5])

Proposition 1. Any non-identity element of PSL2(IFpn) is either con-
tained in an elementary abelian p-Sylow group Cn

p
∼= P, in a cyclic

subgroup C(pn−1)/k
∼= U, or in a cyclic subgroup C(pn+1)/k

∼= S, where
k = gcd(p − 1, 2). Thus the group can be written as a disjoint union of
sets

G := PSL2(IFpn) = E] P] U] S

where the sets E, P, U , and S are defined by the disjoint unions

E := E = {id} U :=
⊎

g∈G
(Ug \ E)

P :=
⊎

g∈G
(Pg \ E) S :=

⊎

g∈G
(Sg \ E) .

(Here Hg := {g−1hg : h ∈ H} is the conjugate of H with respect to g.)

This yields immediately the structure of the group SL2(IFpn):

Corollary 1. As matrix, any element of SL2(IFpn) can be written as ±M
where M ∈ E ∪ P ∪ U ∪ S.

Proof. By definition, PSL2(IFpn) = SL2(IFpn)/(SL2(IFpn) ∩ Z) where Z =
{a · I2 : a ∈ IF×pn} as matrix group (with I2 denoting the 2 × 2 identity
matrix). For p = 2, SL2(IFpn)∩Z = E and hence SL2(IFpn) ∼= PSL2(IFpn).
For p > 2, SL2(IFpn) ∩ Z = {±I2} ∼= C2. So we may conclude that
SL2(IFpn) ∼= C2 × PSL2(IFpn). ut

Further properties of the group SL2(IFpn) are summarized as follows:

Remark 1. For any subfield IFpm ≤ IFpn of IFpn , SL2(IFpm) and all its
conjugates are subgroups of SL2(IFpn).

Remark 2. The group SL2(IFpn) has pn(pn + 1)(pn − 1) elements. There
are p2n− 1 elements of order p (cf. [7, Kapitel II, Satz 8.2]). Furthermore
for all factors f of (pn− 1)/ gcd(p− 1, 2) and (pn+1)/ gcd(p− 1, 2) there
are elements of order f . In particular, for p = 2 there are elements of
order 3.

291

Lemma 1. The group SL2(IF2n) has 22n + (−2)n elements of order 3.

Proof. LetM =
(

a b
c d

)

∈ SL2(IF2n) be of order 3. ThenM 3 = I2 andM 6=
I2, hence the characteristic polynomial fM (X) = X2+(a+d)X+(ad+bc)
ofM equalsX2+X+1. The number of common solutions of the equations
a + d = 1 and ad + bc = 1 is computed as follows: for b = 0, c is
unconstrained, and a and d are specified by a+ d = 1 and a2 + a+1 = 0.
The latter equation has two solutions iff n is even. For b 6= 0, a can take
any value, and c and d are given by d = a+1 and c = (a2 + a+1)/b. ut

Finally, we present relations between bitstrings and their hash value.

Proposition 2. Let IFpn = IFp(α). Then, as a matrix group, SL2(IFpn)
is generated by

A =

(

α −1
1 0

)

and B =

(

α α− 1
1 1

)

.

Furthermore, the hash value of a bitstring m = b1 . . . b` of length ` is
of the form Mb` (where b` is the last bit of m) with

M0 =

(

c`(α) c`−1(α)
d`−1(α) c`−2(α)

)

and M1 =

(

c`(α) d`(α)
c`−1(α) d`−1(α)

)

.

Here ci, di ∈ IFp[X] are polynomials of degree i.
If M ∈ SL2(IFpn) is the hash value of a bitstring m of length ` < n,

the representation in the form Mi is unique and the bitstring m can be
obtained by successively stripping the factors.

Proof. (cf. also [11, proof of Lemma 3.5]) For a proof that A and B gen-
erate SL2(IFpn) see, e. g., [1]. Defining the degree of the zero polynomial
to be −1, the statement is true for H(0) = A = M0 and H(1) = B = M1,
i. e., bitstrings of length 1.

Assuming that H(m|0) is of the form M0, the hash value H(m|00) =
H(m|0) ·A is computed as

(

c`(α) c`−1(α)
d`−1(α) c`−2(α)

)

·A =

(

α · c`(α) + c`−1(α) −c`(α)
α · d`−1(α) + c`−2(α) −d`−1(α)

)

,

i. e., H(m|00) is of the form M0 where the degrees of all polynomials are
increased by one. Analogously, we can show that H(m|10) is of the form
M0 and that H(m|01) and H(m|11) are of the form M1.

Note that the minimal polynomial fα(X) ∈ IFp[X] of α over IFp has
degree n. Hence, in polynomial representation of IFpn , no reduction occurs

292

when ` < n and the representation is unique. Furthermore, by inspection
of the degrees of the polynomials, it is easy to decide if a given matrix
M is of the form M0 or M1. This yields the final bit b` of a bitstring
m = m′|b` hashing to M . Using the identities H(m′) = H(m′|0) · A−1

and H(m′) = H(m′|1) · B−1, we can strip off one factor and proceed
similarly to determine the bitstring m′. ut

3 Finding Elements of Small Order

If we know a bitstring that hashes to the identity matrix then this bit-
string can be inserted into a given message at arbitrary positions without
changing the hash value of that message. For practical purposes we are of
course particularly interested in short bitstrings that hash to the identity
matrix. In order to find such bitstrings we want to exploit Proposition 1
and Remark 2 which imply that in case of (pn − 1)/ gcd(p − 1, 2) or
(pn + 1)/ gcd(p − 1, 2) having several small factors, the group SL2(IFpn)
contains various elements of small order: instead of looking for arbitrary
bitstrings hashing to the identity matrix I2 we try to find very short bit-
strings (say less than 50 bits) which hash to a matrix of small order (say
less than 300).

One family of matrices which are promising candidates for being of
small order is formed by the elements M ∈ SL2(IFpn) whose coefficients
are contained in a proper subfield IFpm ¯ IFpn already, because according
to Proposition 1 the order of such a matrix is bounded by pm + 1. More-
over, as the orders of similar matrices coincide, we are also interested in
matrices M ∈ SL2(IFpn) that are similar to some M ′ ∈ SL2(IFpm) with
IFpm ¯ IFpn (i. e. M = N−1 ·M ′ ·N for some non-singular matrix N with
coefficients in an extension field of IFpm). By means of the trace operation
(which computes the sum of the diagonal entries of a matrix) we can give
the following characterization:

Proposition 3. Let M ∈ SL2(IFpn) and IFpm ≤ IFpn. Then

M is similar to a matrix M ′ ∈ SL2(IFpm) ⇐⇒ Trace(M) ∈ IFpm .

Proof. =⇒: Trivial.
⇐=: If the minimal polynomial ofM is linear thenM = ±I2 ∈ SL2(IFp) ≤
SL2(IFpm). So we assume w. l. o. g. that the minimal polynomial m(X) of
M is quadratic, i. e., m(X) = X2−Trace(M) ·X+1 ∈ IFpn [X]. Let λ1, λ2

be the (not necessarily distinct) eigenvalues of M . Then the Jordan nor-
mal form ofM (as a matrix in the general linear group GL2(IFpn(λ1, λ2)))

is either
(

λ1 1
0 λ1

)

or
(

λ1 0
0 λ2

)

.

293

In the former case we have λ1 = λ2 and det(M) = 1 implies λ1 = ±1,
i. e., the Jordan normal form of M is contained in SL2(IFp) ≤ SL2(IFpm).
In the latter caseM has two different eigenvalues and is similar to the ma-

trix
(

λ1 0
0 λ2

)

, which is also similar to M ′ :=
(

Trace(M) −1
1 0

)

∈ SL2(IFpm),

as the characteristic polynomials of M and M ′ coincide. ut

Corollary 2. For M ∈ SL2(IFpn) with Trace(M) ∈ IFpm ≤ IFpn we have
ord(M) ≤ pm + 1.

Proof. Immediate from Proposition 1 and Proposition 3. ut

So if the trace θ of a matrix M ∈ SL2(IFpn) generates only a small
subfield IFp(θ) ¯ IFpn then M is of small order. Of course, it is not
sufficient to know a matrix M ∈ SL2(IFpn) of small order—we also need
a short bitstring which hashes to M . Subsequently we want to verify that
for certain choices of IFpn such matrices and corresponding bitstrings can
indeed be found.

3.1 Elements of Small Order, Functional Decomposition, and
Intermediate Fields

Let Fpn = IFp[X]/f(X) where f(X) ∈ IFp[X] is an irreducible polyno-
mial with a root α. Moreover, assume that f(X) can be expressed as a
functional composition f(X) = (g ◦ h)(X) = g(h(X)) with (non-linear)
“composition factors” g(X), h(X) ∈ IFp[X]—such decompositions can be
found efficiently (for more information about the problem of computing
functional decompositions of polynomials cf., e. g., [6, 13, 14]):

Proposition 4. (see [8, Theorem 9]) An irreducible polynomial of degree
n over IFp can be tested for the existence of a nontrivial decomposition

g ◦ h in NC (parallel time logO(1) np on (np)O(1) processors). If such a
decomposition exists, the coefficients of g and h can be computed in NC.

If the trace of a matrix M ∈ SL2(IFpn) equals h(α), then we know
that the extension IFp(Trace(M))/IFp is of degree deg(g(Y))—note that
irreducibility of f(X) implies irreducibility of g(Y). So according to Corol-
lary 2 we have ord(M) ≤ pdeg(g(Y)) + 1. Consequently, if M can be ex-
pressed as a product in the generators A,B ∈ SL2(IFp(α)) with ` factors,
then we obtain a bitstring of length ≤ ` · (pdeg(g(Y)) + 1) hashing to the
identity I2 ∈ SL2(IF2(α)).

So the idea for exploiting a decomposition f(X) = (g◦h)(X) ∈ IFp[X]
is to construct a bitstring that hashes to a matrix with trace h(α). As for

294

practical purposes we are only interested in short bitstrings, we restrict
ourselves to bitstrings of length ≤ n (for the SL2(IF2n) hashing scheme
suggested in [11] we have 130 ≤ n ≤ 170). In order to obtain a matrix with
trace h(α), Proposition 2 suggests to choose the length of our bitstring
equal to deg(h(X)), and if deg(h(X)) is not too large we can simply use
an exhaustive search over all 2deg(h(X)) bitstrings of length deg(h(X)) to
check whether a product of this length with the required trace exists.

3.2 Application to the SL2(IF2n) Hashing Scheme of Tillich
and Zémor

To justify the relevance of the above discussion we apply these ideas to
the SL2(IF2n) hashing scheme suggested in [11] (i. e., we choose 130 ≤
n ≤ 170). As irreducible trinomials are of particular interest when im-
plementing an IF2n arithmetic in hardware, we first give an example of a
decomposable irreducible trinomial:

Example 1. For the representation IF2147
∼= IF2(α) with α being a root

of X147 + X98 + 1 = (Y 3 + Y 2 + 1) ◦ (X49) ∈ IF2[X] the orders of A
and B compute to ord(A) = 2147 − 1, ord(B) = 2147 + 1, and the bit-
string 1111101111111000100011111001010010101000111110110 (of length
49) hashes to a matrix with trace α49 and order 7. So we obtain a bitstring
of length 7 · 49 = 343 that hashes to the identity.

Some more examples based on decomposable polynomials are listed
in Table 2 in the appendix. Here we continue with an example in charac-
teristic 3 which demonstrates that using characteristic 2 is not vital:

Example 2. For the representation IF390
∼= IF3(α) with α being a root of

X90+X78+X75−X69+X66−X63+X57+X56+X55+X54−X53−X48+X45−

X44−X43−X40−X39+X38+X35+X34−X32+X30+X26+X25−X23+X22−X21+

X20 +X19 +X18 +X16 +1 = (Y 6 − Y 4 + Y 2 +1) ◦ (X15 −X11 −X10 +X8) ∈ IF3[X]

the orders of A and B are ord(A) = (390−1)/4, ord(B) = (390−1)/52,
and the bitstring 000101111111100 (of length 15) hashes to a matrix with
trace α15−α11−α10+α8 and order 56. So we obtain a bitstring of length
15 · 56 = 840 that hashes to the identity.

All of the examples mentioned make use of the existence of a nontrivial
intermediate field IFp[Y]/g(Y) of the extension IFp ≤ IFp[X]/f(X) where
f(X) = (g ◦ h)(X). But even in the case when f(X) is indecomposable,
there may exist short bitstrings where the trace of the hash value lies in
a small intermediate field:

295

Example 3. The polynomial

f(X) = X140 +X139 +X137 +X135 +X133 +X132 +X127 +X122 +X120 +X119 +

X116 +X114 +X113 +X112 +X111 +X106 +X104 +X101 +X100 +X94 +X93 +X91 +

X90 +X88 +X87 +X84 +X83 +X82 +X80 +X79 +X73 +X71 +X69 +X67 +X65 +

X63 +X62 +X60 +X59 +X57 +X56 +X55 +X53 +X52 +X51 +X49 +X47 +X46 +

X45 +X43 +X40 +X39 +X38 +X37 +X35 +X34 +X33 +X32 +X31 +X30 +X28 +

X27 + X25 + X23 + X17 + X16 + X15 + X8 + X7 + X6 + X4 + X + 1

is indecomposable. For IF2140
∼= IF2(α) with α a root of f(X) we have

ord(A) = ord(B) = 2140 + 1, and the bitstring m := 1111111110101110
hashes to a matrix H(m) with Trace(H(m)) ∈ IF210 and ord(H(m)) = 25.

To prevent the above attack we may choose IFpn ∼= IFp[X]/f(X) in
such a way that n is prime. Then f does not permit a nontrivial functional
decomposition, and there are no nontrivial intermediate fields of IFpn/IFp.
Moreover, in order to make the search for elements of small order not
unnecessarily easy, we may also try to fix n in such a way that the orders
(pn ∓ 1)/ gcd(p − 1, 2) of the cyclic groups U, S (cf. Proposition 1) do
not have many small factors. Ideally, for p = 2 we have the following
conditions fulfilled: n is prime and (2n− 1) · (2n+1) = 3 · p1 · p2 for some
prime numbers p1, p2.

Using a computer algebra system like MAGMA one easily checks that
for IFpn = IF2n with 120 ≤ n ≤ 180 the only possible choice for satisfying
these conditions is n = 127; in particular none of the parameter values
130 ≤ n ≤ 170 suggested in [11] meets these requirements. Furthermore,
the next section shows that independent of the degree of the extension
IFpn/IFp one should be careful about who is allowed to fix the actual
representation of IFpn as IFp[X]/f(X) used for hashing.

4 Deriving “Hash Functions with a Trapdoor”

In [16, Section 5.3] it is pointed out that for the SL2(IFp) hashing scheme
discussed in [16] “ . . . some care should be taken in the choice of the prime
number p, because finding simultaneously two texts and a prime number
p such that those two texts collide for the hash function associated to p,
is substantially easier than finding a collision for a given p . . . ”

In the sequel we shall discuss a related problem with the SL2(IF2n)
hashing scheme of [11]—being allowed to choose a representation of IF2n

we can select a hash function “with a trapdoor”:

Example 4. For the representation IF2167
∼= IF2(α) with α being a root of

296

X167 +X165 +X161 +X160 +X158 +X157 +X156 +X155 +X154 +X152 +X150 +

X148+X145+X143+X142+X140+X138+X137+X134+X131+X130+X126+X125+

X123+X119+X118+X117+X116+X115+X113+X112+X111+X107+X105+X104+

X99 +X96 +X93 +X91 +X89 +X88 +X86 +X85 +X82 +X81 +X80 +X77 +X76 +

X74 +X73 +X71 +X65 +X64 +X62 +X61 +X58 +X57 +X54 +X53 +X51 +X49 +

X48 +X47 +X45 +X40 +X38 +X37 +X35 +X34 +X33 +X30 +X29 +X27 +X26 +

X25 +X21 +X19 +X17 +X14 +X13 +X12 +X10 +X6 +X5 +X2 +X +1 ∈ IF2[X]

the orders of A and B are ord(A) = 2167 + 1, ord(B) = (2167 + 1)/3.
Moreover, 167 is prime, and the prime factorizations of (2167∓1) compute
to

2167 − 1 = 2349023 · 79638304766856507377778616296087448490695649 ,
2167 + 1 = 3 · 62357403192785191176690552862561408838653121833643 .

At first glance these parameters look reasonable. However, the bitstring

01010100 01101000 01101001 01110011 00100000 01101001

(ASCII) T h i s i
01110011 00100000 01110100 01101000 01100101 00100000

s t h e
01110111 01100001 01111001 00100000 01100001 00100000

w a y a
01110100 01110010 01100001 01110000 01100100 01101111

t r a p d o
01101111 01110010 00100000 01100011 01100001 01101110

o r c a n
00100000 01101100 01101111 01101111 01101011 00100000

l o o k
01101100 01101001 01101011 01100101 00101110 00100000

l i k e .

(of length 42 · 8 = 336) hashes to a matrix with trace 0 and order 2. So
we obtain a bitstring of length 336 · 2 = 672 that hashes to the identity.

The phenomenon of hash functions with a trapdoor is well-known
(see, e. g., [9, 12]). For the SL2(IF2n) hashing scheme deriving parame-
ters with a trapdoor as in Example 4, is comparatively easy—the basic
idea is to exploit the fact that, independent of the value of n, the group
SL2(IF2n) always contains elements of order 2 and 3 (see Proposition 1
and Lemma 1): we start by fixing a bitstring which consists of two or
three (depending on whether we want to have an element of order two or
three) repetitions of an arbitrary bit sequence m. Then we compute the

297

“generic hash value” H = H(X) of this bitstring, i. e., instead of using
the matrices A and B we use the matrices

AX =

(

X 1
1 0

)

and BX =

(

X X + 1
1 1

)

,

where the generator α is replaced by an indeterminate X. Next, we com-
pute the irreducible factors f1, . . . , fr of the greatest common divisor
of the entries of the matrix H − I2. Then choosing the field IF2n as
IF2n ∼= IF2(α) with α a root of some fi guarantees that H − I2 is in
the kernel of the specialization X 7→ α. In other words, the bit sequence
m hashes to a matrix of order at most two resp. three. Experiments show
that it is quite easy to derive weak parameters for the SL2(IF2n) hashing
scheme in this way for all 127 ≤ n ≤ 170 (see Table 1 in the appendix for
some examples).

5 Constructing “Real” Collisions

We conclude by a simple example that illustrates the use of elements of
small order for deriving “real” collisions, i. e. (short) non-empty bitstrings
m1 6= m2 that hash to the same value.

Remark 3. Let m be a bitstring hashing to a matrix of order ord(m).
Then also each bitstring rot(m) derived from m through bit-wise left- or
right-rotation hashes to a matrix of order ord(m).

Proof. Rotating the bitstring simply translates into conjugating the hash
value with a non-singular matrix. Hence, as the order of a matrix is in-
variant under conjugation, the claim follows. ut

In the following example Remark 3 is used for deriving a collision:

Example 5. We use the representation of IF2140 of Example 3. Applying a
brute-force approach for constructing short products of A and B of small
order one can derive the identities

(B9ABAB3A)25 = I2 = (B3ABAB9A)25 .

As B3ABAB9A is similar to B9AB3ABA we get

(B9ABAB3A)25 = I2 = (B9AB3ABA)25

resp. after multiplication with (B9AB)−1 from the left and (BA)−1 from
the right

AB3A(B9ABAB3A)23B9ABAB2 = B2ABA(B9AB3ABA)23B9AB3A .

So we obtain two different bitstrings of length 5+ 16 · 23+ 14 = 387 that
hash to the same value.

298

6 Summary and Conclusion

We have shown that for various choices of the parameters in the SL2(IF2n)
hashing scheme, suggested in [11], messages can be modified without
changing the hash value. Moreover, we have given several examples of
hash functions “with a trapdoor” within this family.

In order to avoid the attacks based on functional decomposition and
intermediate fields presented in Section 3, one should choose n being
prime. We dissuade from using the SL2(IF2n) hashing scheme or its gen-
eralization to SL2(IFpn) in case of n being composite. Moreover, Section 4
demonstrates that even in the case of n being prime it is fairly easy to
find defining polynomials yielding hash functions with a trapdoor. Con-
sequently, appropriate care should be taken in fixing the representation
of IF2n which is used for hashing (concerning the problem of avoiding
trapdoors in hash functions cf., e. g., [12]).

Acknowledgments The first author is supported by grant DFG - GRK
209/3-98 “Beherrschbarkeit komplexer Systeme”. Moreover, we would like
to thank the referees for several useful remarks and references.

References

1. K. S. Abdukhalikov and C. Kim, On the Security of the Hashing Scheme Based

on SL2, in Fast Software Encryption – FSE ’98, S. Vaudenay, ed., vol. 1372 of
Lecture Notes in Computer Science, Springer, 1998, pp. 93–102.

2. M. Bellare and D. Micciancio, A New Paradigm for Collision-Free Hashing:

Incrementality at Reduced Cost, in Advances in Cryptology – EUROCRYPT ’97,
W. Fumy, ed., vol. 1233 of Lecture Notes in Computer Science, Springer, 1997,
pp. 163–192.

3. C. Charnes and J. Pieprzyk, Attacking the SL2 hashing scheme, in Advances
in Cryptology – ASIACRYPT ’94, J. Pieprzyk and R. Safavi-Naini, eds., vol. 917
of Lecture Notes in Computer Science, Springer, 1995, pp. 322–330.

4. I. B. Damgård, A Design Principle for Hash Functions, in Advances in Cryp-
tology – CRYPTO ’89, G. Brassard, ed., vol. 435 of Lecture Notes in Computer
Science, Springer, 1989, pp. 416–427.

5. W. Geiselmann, A Note on the Hash Function of Tillich and Zemor, in Crypto-
graphy and Coding, C. Boyd, ed., vol. 1025 of Lecture Notes in Computer Science,
Springer, 1995, pp. 257–263.

6. J. Gutiérrez, T. Recio, and C. Ruiz de Velasco, Polynomial decomposi-

tion algorithm of almost quadratic complexity, in Applied Algebra, Algebraic Al-
gorithms and Error-Correcting Codes (AAECC-6), Rome, Italy, 1988, T. Mora,
ed., vol. 357 of Lecture Notes in Computer Science, Springer, 1989, pp. 471–475.

7. B. Huppert, Endliche Gruppen I, vol. 134 of Grundlehren der mathematischen
Wissenschaften, Springer, 1967. Zweiter Nachdruck der ersten Auflage.

299

8. D. Kozen and S. Landau, Polynomial Decomposition Algorithms, Journal of
Symbolic Computation, 7 (1989), pp. 445–456.

9. B. Preneel, Design principles for dedicated hash functions, in Fast Software
Encryption, R. Anderson, ed., vol. 809 of Lecture Notes in Computer Science,
Springer, 1994, pp. 71–82.

10. J.-J. Quisquater and M. Joye, Authentication of sequences with the SL2 hash

function: Application to video sequences., Journal of Computer Security, 5 (1997),
pp. 213–223.

11. J.-P. Tillich and G. Zémor, Hashing with SL2, in Advances in Cryptology –
CRYPTO ’94, Y. Desmedt, ed., vol. 839 of Lecture Notes in Computer Science,
Springer, 1994, pp. 40–49.

12. S. Vaudenay, Hidden Collisions on DSS, in Advances in Cryptology – CRYPTO
’96, N. Koblitz, ed., vol. 1109 of Lecture Notes in Computer Science, Springer,
1996, pp. 83–88.

13. J. von zur Gathen, Functional Decomposition of Polynomials: The Tame Case,
Journal of Symbolic Computation, 9 (1990), pp. 281–300.

14. , Functional Decomposition of Polynomials: The Wild Case, Journal of Sym-
bolic Computation, 10 (1990), pp. 437–452.

15. G. Zémor, Hash Functions and Graphs With Large Girths, in Advances in Cryptol-
ogy – EUROCRYPT ’91, D. W. Davies, ed., vol. 547 of Lecture Notes in Computer
Science, Springer, 1991, pp. 508–511.

16. , Hash Functions and Cayley Graphs, Designs, Codes and Cryptography, 4
(1994), pp. 381–394.

Appendix: Examples

For each 127 ≤ n ≤ 170 we easily found representations of IF2n ∼=
IF2[X]/f(X) together with a bitstring m of length n that hashes to a
matrix of order 3. In Table 1, we list for each prime number in this range
such a representation together with the corresponding bitstring. To illus-
trate that neither A nor B is of small order, the orders of A and B are
also included in the table.

Note that all the examples have been derived by means of the com-
puter algebra system MAGMA on usual SUN workstations at a university
institute; neither specialized hard- or software nor extraordinary compu-
tational power have been used.

In Table 2 some representations of IF2n ∼= IF2[X]/f(X) are listed,
where the defining polynomial f(X) = (g ◦ h)(X) allows a nontrivial de-
composition. In addition to a bitstring m that hashes to a matrix H(m)
of small order ord(H(m)), the orders of A and B are also included. In the
last column, we list the total length of the resulting bitstring hashing to
the identity. As low weight polynomials are of particular interest for hard-
ware implementations of IF2n arithmetic, a main focus is on decomposable
trinomials.

300

Table 1. Weak parameters (bitstrings m of length n and ord(H(m)) = 3)

n f(X) ord(A) ord(B) m

127 X127+X125+X117+X113+X109+
X103 + X87 + X85 + X81 + X77 +
X71+X23+X21+X17+X13+X7+1

2127
−1 2127

−1 120130120310114

131 X131 + X123 + X121 + X115 +
X113 + X109 + X99 + X97 + X77 +
X67 + X65 + X13 + X3 + X + 1

2131+1 2131
−1 150410121

137 X137 + X135 + X125 + X119 +
X113 + X105 + X103 + X97 + X73 +
X71 + X65 + X9 + X7 + X + 1

2137+1 2137
−1 10101010130

139 X139+X133+X127+X123+X121+
X117 +X113 +X107 +X101 +X97 +
X75+X69+X65+X11+X5+X+1

2139+1 2139
−1 1302130131

149 X149+X143+X137+X133+X129+
X113 +X111 +X105 +X101 +X97 +
X85 + X79 + X73 + X69 + X65 +
X21 + X15 + X9 + X5 + X + 1

2149+1
3

2149
−1 10310144

151 X151 + X147 + X139 + X135 +
X131 + X107 + X103 + X99 + X87 +
X83 + X75 + X71 + X67 + X23 +
X19 + X11 + X7 + X3 + 1

2151
−1 2151

−1 1010148

157 X157+X155+X153+X147+X141+
X137 + X131 + X109 + X105 +
X99 + X93 + X91 + X89 + X83 +
X77 + X73 + X67 + X29 + X27 +
X25 + X19 + X13 + X9 + X3 + 1

2157
−1 2157

−1 10120210150

163 X163+X162+X157+X156+X141+
X140 + X109 + X108 + X99 + X98 +
X93 + X92 + X77 + X76 + X35 +
X34 + X29 + X28 + X13 + X12 + 1

2163
−1 2163

−1 15010210153

167 X167+X165+X163+X153+X149+
X133 +X129 +X113 +X103 +X99 +
X97+X89+X85+X69+X65+X39+
X37+X35+X25+X21+X5+X+1

2167+1 2167
−1 10130212010210153

3
0
1

T
a
b
le

2
.
D
eco

m
p
o
sa
b
le

trin
o
m
ia
ls

a
n
d
n
o
n
-m

o
n
o
m
ia
l
d
eco

m
p
o
sitio

n
s

n f(X) ord(A) ord(B) m ord(H(m)) total

147 X147 + X49 + 1 = (Y 3 + Y + 1) ◦ (X49) 2147
−1 2147

−1 0310140310101503170313021010512 9 441

147 X147 + X98 + 1 = (Y 3 + Y 2 + 1) ◦ (X49) 2147
−1 2147+1 0310140310101503170313021010512 7 343

155 X155 + X62 + 1 = (Y 5 + Y 2 + 1) ◦ (X31) 2155
−1

2155+1
11

17041101000170104 31 961

155 X155 + X93 + 1 = (Y 5 + Y 3 + 1) ◦ (X31) 2155
−1 2155

−1 17041101000170104 31 961

156 X156 + X91 + 1 = (Y 12 + Y 7 + 1) ◦ (X13) 2156
−1

212
−1

2156+1 0110000011011 273 3549

162 X162 + X81 + 1 = (Y 6 + Y 3 + 1) ◦ (X27) 2162
−1 2162+1 0210610210120102120312 63 1701

162 X162 + X135 + 1 = (Y 6 + Y 5 + 1) ◦ (X27) 2162
−1 2162+1 0210610210120102120312 21 567

130 (Y 10 + Y 8 + Y 4 + Y 3 + 1) ◦ (X13 + X9) 2130
−1 2130

−1 0010011001101 93 1209

133 (Y 7 + Y + 1) ◦ (X19 + X17 + X7) 2133
−1 2133

−1 1110101011100000000 43 817

135 (Y 9 + Y 8 + Y 7 + Y 6 + Y 5 + Y + 1) ◦ (X15 + X11) 2135
−1 2135

−1 010101000001011 171 2565

140 (Y 7+Y +1)◦ (X20 + X19 + X12 + X11 + X4 + X3) 2140
−1 2140+1 10000000000000000000 43 860

147 (Y 7 + Y + 1) ◦ (X21 + X15 + X5) 2147
−1 2147

−1 111100001010000000000 43 903

152 (Y 8 + Y 4 + Y 3 + Y 2 +1) ◦ (X19 + X13 + X11 + X5) 2152
−1 2152

−1 1101101000001000000 51 969

153 (Y 9 + Y 8 + Y 6 + Y 5 + Y 4 + Y + 1) ◦
(X17 + X11 + X7 + X5)

2153
−1 2153

−1 00000010000101111 19 323

160 (Y 8 + Y 4 + Y 3 + Y + 1) ◦ (X20 + X19 + X10 + X9) 2160
−1 2160

−1 11000010100100000000 257 5140

162 (Y 9 + Y 8 + Y 6 + Y 5 + Y 4 + Y + 1) ◦
(X18 + X17 + X12 + X11 + X8 + X7 + X6 + X5)

2162
−1 2162

−1 101010010100000000 19 342

168 (Y 8 + Y 7 + Y 5 + Y 3 + 1) ◦ (X21 + X17 + X11) 2168
−1 2168+1 110010001101000000000 51 1071

170 (Y 10+Y 6+Y 5+Y 3+Y 2+Y +1)◦(X17 + X7 + X) 2170+1 2170+1 00000100011110001 25 425

