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Abstract. Partially blind signature schemes are an extension of blind
signature schemes that allow a signer to explicitly include necessary in-
formation (expiration date, collateral conditions, or whatever) in the
resulting signatures under some agreement with the receiver. This paper
formalizes such a notion and presents secure and efficient schemes based
on a widely applicable method of obtaining witness indistinguishable
protocols. We then give a formal proof of security in the random ora-
cle model. Our approach also allows one to construct secure fully blind
signature schemes based on a variety of signature schemes.
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1 Introduction

1.1 Background

Digital signature schemes are essential for electronic commerce as they allow
one to authorize digital documents that are moved across networks. Typically,
a digital signature comes with not just the document body but also attributes
such as “date of issue” or “valid until”, which may be controlled by the signer
rather than the receiver. One can find more about those attributes in PKCS
#9 [23], for instance.

Blind signature schemes, first introduced by Chaum in [5], are a variant of
digital signature schemes. They allow a receiver to get a signature without giving
the signer any information about the actual message or the resulting signature.
This blindness property plays a central role in applications such as electronic
voting (e.g. [6, 12]) and electronic cash schemes (e.g. [5, 7, 4]) where anonymity
is of great concern.

One particular shortcoming is that, since the singer’s view is perfectly shut off
from the resulting signatures, the signer has no control over the attributes except
for those bound by the public key. For instance, if a signer issues blind signatures
that are valid until the end of the week, the signer has to change his public key
every week! This will seriously impact availability and performance. A similar
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shortcoming can be seen in a simple electronic cash system where a bank issues
a blind signature as an electronic coin. Since the bank cannot inscribe the value
on the blindly issued coins, it has to use different public keys for different coin
values. Hence the shops and customers must always carry a list of those public
keys in their electronic wallet, which is typically a smart card whose memory is
very limited. Some electronic voting schemes also face the same problem when
an administrator issues blind signatures to authorize ballots. Since he can not
include the vote ID, his signature may be used in an unintended way. This means
that the public key of the administrator must be disposable. Accordingly, each
voter must download a new public key for each vote.

A partially blind signature scheme allows the signer to explicitly include com-
mon information in the blind signature under some agreement with the receiver.
For instance, the signer can attach the date of issue to his blind signatures as
an attribute. If the signer issues a huge number of signatures in a day, including
the date of issue will not violate anonymity. Accordingly, the attributes of the
signatures can be decided independently from those of the public key.

By fixing common information to a single string, one can easily transform
partially blind signature schemes into fully blind ones. However, the reverse is
not that easy. One can now see that partially blind signatures are a generalized
notion of blind signatures. The main subject of this paper is to consider the
security of partially blind signatures and present the first secure and efficient
schemes together with a formal proof of their security.

1.2 Related work

In [15], Juels, Luby and Ostrovsky gave a formal definition of blind signatures.
They proved the existence of secure blind signatures assuming the one-way trap-
door permutation family. Their construction was, however, only theoretical, not
practical. Before [15], Pointcheval and Stern showed the security of a certain type
of efficient blind signature in the random oracle model [20]. Namely, they showed
that Okamoto-Schnorr and Okamoto-Guillou-Quisquater signatures [18] are se-
cure as long as the number of issued signatures are bounded logarithmically in
the security parameter. Later, in [19], Pointcheval developed a generic approach
that converts logarithmically secure schemes into polynomially secure ones at
the cost of two more data transmissions between the signer and the receiver.
Unfortunately, his particular construction, that based on Okamoto signatures,
does not immediately lead to partially blind signature schemes.

The notion of partially blind signatures was introduced in [2]. Their construc-
tion, based on RSA, was analyzed in [1]. It also showed a construction based on
Schnorr signatures that withstands a particular class of attacks. There are some
other heuristic constructions in the literature. One of the authors was informed
that Cramer and Pedersen independently considered the same notion and con-
structed a scheme, which remains unavailable in public due to an embargo [8].
All in all, no provably secure and practical partially blind signature scheme has
been publicly released.
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1.3 Our contribution

This paper first gives a formal definition of partially blind signature schemes.
As partially blind signatures can be regarded as ones lying between ordinary
non-blind digital signatures and fully blind signatures, they should satisfy the
security requirements assigned to ordinary digital signatures and those of blind
signatures.

We then present efficient partially blind signature schemes with a rigorous
proof of security in the random oracle model [3] under the standard number
theoretic intractability assumptions such as discrete-log or the RSA assump-
tion. Since the technique developed by Pointcheval and Stern for proving the
one-more-unforgeability [20] is not applicable to our scheme, we provide a new
technique to prove the security of our scheme. The technique shown in this paper
is more generic than that of [20] and applicable to variety of schemes based on
the witness indistinguishable protocols including the ones that the technique of
[20] is applicable to. As well as the result of [20, 22], our proof guarantees that the
proposed scheme is secure as long as only a logarithmic number of signatures are
issued. So plugging our scheme into the generic, but yet practical scheme of [19]
will yield a scheme secure up to polynomial number of signatures.

For the sake of simplicity, we put off the generic description of our approach
and concentrate on describing one particular scheme based on the original (i.e.
not Okamoto version of) Schnorr signature scheme. One can, however, construct
a scheme in a similar way based on Guillou-Quisquater signatures [14] or variants
of modified ElGamal signatures [10, 21, 16] at the cost of doubling the computa-
tion and communication compared to the underlying schemes.

Although our primary goal is partially blind signatures, our approach also
yields secure fully blind signatures. Thus, from a different angle, our result can be
seen as a widely applicable approach that turns several secure signature schemes
into secure blind signatures.

1.4 Organization

Section 2 defines the security of partially blind signatures. In Section 3 we show
a partially blind signature scheme based on Schnorr signatures. Section 4 gives
a proof of security.

2 Definitions

In the scenario of issuing a partially blind signature, the signer and the user
are assumed to agree on a piece of common information, denoted as info. In
some applications, info may be decided by the signer, while in other applications
it may just be sent from the user to the signer. Anyway, this negotiation is
done outside of the signature scheme, and we want the signature scheme to
be secure regardless of the process of agreement. We formalize this notion by
introducing function Ag( ) which is defined outside of the scheme. Function Ag is



275

a polynomial-time deterministic algorithm that takes two arbitrary strings infos
and infou that belong to the signer and the user, respectively, and outputs info.
To compute Ag, the signer and the user will exchange infos and infou with each
other. However, if an application allows the signer to control info, then Ag is
defined such that it depends only on infos. In such a case, the user does not need
to send infou.

Some part of the following definitions refers to [15]. In the following, we
will use the term “polynomial-time” to mean a certain period bounded by a
polynomial in security parameter n.

Definition 1. (Partially Blind Signature Scheme) A Partially blind signature
scheme is a four-tuple (G,S,U ,V).

– G is a probabilistic polynomial-time algorithm that takes security parameter
n and outputs a public and secret key pair (pk, sk).

– S and U are a pair of probabilistic interactive Turing machines each of which
has a public input tape, a private input tape, a private random tape, a private
work tape, a private output tape, a public output tape, and input and output
communication tapes. The random tape and the input tapes are read-only,
and the output tapes are write-only. The private work tape is read-write.
The public input tape of U contains pk generated by G(1n), the description
of Ag, and infou. The public input tape of S contains the description of Ag
and infos. The private input tape of S contains sk, and that for U contains
message msg. The lengths of infos, infou, and msg are polynomial in n. S
and U engage in the signature issuing protocol and stop in polynomial-time.
When they stop, the public output tape of S contains either completed or not-
completed. If it is completed, then its private output tape contains common
information info(s). Similarly, the private output tape of U contains either ⊥
or (info,msg, sig).

– V is a (probabilistic) polynomial-time algorithm that takes (pk, info,msg, sig)
and outputs either accept or reject.

Definition 2. (Completeness) If S and U follow the signature issuing protocol,
then, with probability at least 1− 1/nc for sufficiently large n and some constant
c, S outputs completed and info = Ag(infos, infou) on its proper tapes, and U out-
puts (info,msg, sig) that satisfies V(pk, info,msg, sig) = accept. The probability
is taken over the coin flips of G, S and U .

We say a message-signature tuple (info,msg, sig) is valid with regard to pk if it
leads V to accept.

To define the blindness property, let us introduce the following game.

Definition 3. (Game A) Let U0 and U1 be two honest users that follow the
signature issuing protocol.

1. (pk, sk)← G(1n).
2. (msg0,msg1, infou0, infou1, Ag)← S

∗(sk).
3. Set up the input tapes of U0, U1 as follows:
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– Select b ∈R {0, 1} and put msgb and msgb̄ on the private input tapes of
U0 and U1, respectively (b̄ denotes 1− b hereafter).

– Put infou0 and infou1 on the public input tapes of U0 and U1, respectively.
Also put pk and Ag on their public input tapes.

– Randomly select the contents of the private random tapes.
4. S∗ engages in the signature issuing protocol with U0 and U1.
5. If U0 and U1 outputs (info0,msg0, sigb) and (info1,msg1, sigb), respectively,
on their private tapes, and info0 = info1 holds, then give those outputs to S

∗.
Give ⊥ to S∗ otherwise.

6. S∗ outputs b′ ∈ {0, 1}.

We say that S∗ wins if b′ = b.

Definition 4. (Partial Blindness) A signature scheme is partially blind if, for
all probabilistic polynomial-time algorithm S∗, S∗ wins in game A with prob-
ability at most 1/2 + 1/nc for sufficiently large n and some constant c. The
probability is taken over the coin flips of G, U0, U1, and S

∗.

As usual, one can go for stronger notion of blindness depending on the power
of the adversary and its success probability. Our scheme provides perfect partial
blindness where any infinitely powerful adversary wins with probability exactly
1/2.

Forgery of partially blind signatures is defined in the similar way as [15]
with special care for the various pieces of common information. At first look, the
forgery of a partially blind signature might be considered as forging the common
information, or producing `info + 1 signatures with regard to info provided `info

successful execution of the signature issuing protocol for that info. Forging the
common information is actually the same as producing one-more signature with
info where `info = 0. We define unforgeability through the following game.

Definition 5. (Game B)

1. (pk, sk)← G(1n).
2. Ag ← U∗(pk).
3. Put sk,Ag and randomly taken infs on proper tapes of S.
4. U∗ engages in the signature issuing protocol with S in a concurrent and
interleaving way. For each info, let `info be the number of executions of the
signature issuing protocol where S outputs completed and info on its output
tapes. (For info that has never appeared on the private output tape ofS, define
`info = 0.)

5. U∗ outputs a single piece of common information, info, and `info+1 signatures
(msg1, sig1), . . . , (msg`info+1, sig`info+1).

Definition 6. (Unforgeability) A partially blind signature scheme is unforgeable
if, for any probabilistic polynomial-time algorithm U∗ that plays game B, the
probability that the output of U∗ satisfies V(pk, info,msgj , sigj) = accept for all
j = 1, ..., `info + 1 is at most 1/n

c for sufficiently large n and some constant c.
The probability is taken over the coin flips of G, S, and U∗.



277

3 Construction

3.1 Key Idea

The security of signature schemes is defined so that they are secure against adap-
tive attacks [13]. To prove the security against such attacks, one has to simulate
the signer without knowing the private signing key. Introducing a random oracle
allows the simulation for ordinary signatures but does not help in the case of
blind signatures. So, the simulator has to have a real signing key. Accordingly, we
need to separate the signing key from the witness of the embedding intractable
problem, such as the discrete logarithm problem, that we attempt to solve by
using an attacker of the signature scheme. For this to be done, Pointcheval and
Stern used the blind Okamoto signature scheme where the existence of a suc-
cessful attacker implied extraction of the discrete logarithm of bases rather than
the signing key. They also exploited the witness indistinguishable property of
Okamoto signatures in a crucial way in their proof of security. Unfortunately, we
do not know how to achieve partial blindness with their construction.

In [9], Cramer, Damg̊ard and Schoenmakers presented an efficient method
of constructing witness indistinguishable protocols. With their adaptation, one
can turn a wide variety of signature schemes derived from public-coin honest
verifier zero-knowledge into witness indistinguishable ones. Intuitively, the signer
has one private key x but uses two different public keys, y and z, together to
sign a message in such a way that the user can not distinguish which private
key he has. By blinding the signing procedure, one can get fully blind witness
indistinguishable signature schemes.

Our idea to achieve partial blindness is to put common information, say info,
into one of those public keys. Suppose that z = F(info) where F is a sort of
public hash function that transforms an arbitrary string to a random public
key whose private key is not known to anybody. The signer then signs with
private key x of y. Since the resulting signatures are bound to public keys y, z,
the common information info is also bound to the signature. Since blinding will
not cover public keys, info (i.e. z) remains unblind. This adaptation preserves
witness indistinguishability which we need in our proof of security.

3.2 Preliminaries

Let GDL be a discrete logarithm instance generator that takes security parameter
n and outputs a triple (p, q, g) where p, q are large primes that satisfy q|p − 1,
and g is an element in ZZ∗

p whose order is q. Let 〈g〉 denote a subgroup in ZZ∗
p

generated by g. We assume that any polynomial-time algorithm solves logg h in
ZZq only with negligible probability (in the size of q and coin flips of GDL and
the algorithm) when h is selected randomly from 〈g〉. All arithmetic operations
are done in ZZp hereafter unless otherwise noted.
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Signer User

(p, q, g, x, info) (y = gx, info,msg)
↓ ↓

u, s, d ∈R ZZq

z := F(info)

a := gu, b := gszd

-a, b

t1, t2, t3, t4 ∈R ZZq

z := F(info)

α := agt1yt2

β := bgt3zt4

ε := H(α‖β‖z‖msg)

e := ε− t2 − t4 mod q
¾ e

c := e− d mod q

r := u− cx mod q
-(r, c, s, d)

ρ := r + t1 mod q

ω := c+ t2 mod q

σ := s+ t3 mod q

δ := d+ t4 mod q

ω + δ
?
= H(gρyω‖gσzδ‖z‖msg)

↓
(ρ, ω, σ, δ)

Fig. 1. Partially blind WI-Schnorr signature issuing protocol. The signer and the user
are assumed to agree on info beforehand outside of the protocol. The signer can omit
sending either c or d as the user can compute it himself from e.

3.3 A partially blind WI-Schnorr signature scheme

Let H : {0, 1}∗ → ZZq and F : {0, 1}∗ → 〈g〉 be public hash functions. Let
x ∈ ZZq be a secret key and y := gx be a corresponding public key.

Signer S and user U first agree on common information info in an prede-
termined way. They then execute the signature issuing protocol illustrated in
Figure 1. The resulting signature for message msg and common information info

is a four-tuple (ρ, ω, σ, δ). A signature is valid if it satisfies

ω + δ ≡ H(gρyω‖gσF(info)δ‖F(info)‖msg) (mod q).

Observe that the signature issuing protocol is witness indistinguishable. That
is, the user’s view has exactly the same distribution even if S executes the
protocol with witness w(= logg z) instead of x computing as v, r, c ∈R ZZq,
a := gryc, b := gv, d = e− c mod q, and s := v − dw mod q.

In the above description, we assumed the use of hash function F that maps
an arbitrary string to an element of 〈g〉. This, however, would be problematic in
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practice because currently available hash functions, say D, such as SHA-1 and
MD5, are of D : {0, 1}∗ → {0, 1}len for some fixed len. An immediate thought
would be to repeat D with random suffixes until the output eventually falls
in 〈g〉. However, such a probabilistic strategy makes the running-time expected
polynomial-time rather than strict polynomial-time. Furthermore, in practice,
if q is much smaller than p as in ordinary Schnorr signatures, such a strategy
is hopeless. We show two deterministic constructions of F assuming the use of
hash function D with len = |p|.

Construction 1 Take p, q that satisfy p = 2q + 1. Define F as

F(info) ,

(

D(info)

p

)

D(info) mod p

where

(

D(info)

p

)

is the Jacobi symbol of D(info).

Construction 2 Take p, q that satisfy q|p− 1 and q2 - p− 1. Define F as

F(info) , D(info)
p−1

q mod p.

The second construction is better in terms of computation as we can choose
smaller q such as |q| ≈ 2160. If D behaves as an ideal hash function, both con-
structions meet our requirement for the proof of security (that is, we can assign
an arbitrary element of 〈g〉 as an output of F). For simplicity, we set aside that
detail and assume F be an atomic function in our proof of security in section 4.

4 Security

This section proves the security of our scheme assuming the intractability of the
discrete logarithm problem and ideal randomness of hash functions H and F .

Lemma 1. The proposed scheme is partially blind.

Proof. Let S∗ be a player of game A. For i = 0, 1, let ai, bi, ei, ri, ci, si, di,
infoi be data appearing in the view of S

∗ during the execution of the signature
issuing protocol with Ui at step 4.

When S∗ is given ⊥ in step 6 of the game, it is not hard to see that S∗ wins
game A with probability exactly the same as random guessing of b.

Suppose that info1 = info0, and {(ρ0, ω0, σ0, δ0)} and {(ρ1, ω1, σ1, δ1)} are
given to S∗. It is sufficient to show that there exists a tuple of random factors
(t1, t2, t3, t4) that maps ai, bi, ri, ci, si, di to ρj , ωj , σj , δj for each i, j ∈ {0, 1}. (ei
and infoi can be omitted as ci, di determines ei, and infoi is common.) Define
t1 := ρj − ri, t2 := ωj − ci, t3 := σj − si, and t4 := δj − di. As ai = griyci and
bi = gsizdi holds, we see that

ωj + δj = H(g
ρjyωj‖gσjzδj‖F(info)‖msg)

= H(aig
−riy−cigρjyωj‖big

−siz−digσjzδj‖F(info)‖msg)

= H(aig
ρj−riyωj−ci‖big

σj−sizδj−di‖F(info)‖msg)

= H(aig
t1yt2‖big

t3yt4‖F(info)‖msg).
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Thus, ai, bi, ri, ci, si, di and ρj , ωj , σj , δj have exactly the same relation defined
by the signature issuing protocol. Such t1, t2, t3, t4 always exist regardless of the
values of ri, ci, si, di and ρj , ωj , σj , δj . Therefore, even an infinitely powerful S

∗

wins game A of our scheme with probability exactly 1/2. ut

Lemma 2. The proposed scheme is unforgeable if `info < poly(log n) for all info.

Proof. The proof is done in three steps. We first treat the common-part forgery
where an attacker forges a signature with regard to common information info that
has not appeared while Game B (i.e., `info = 0). Next we treat one-more forgery
where `info 6= 0. For this case, we first prove the security with restricted signer S
that issues signatures only for a fixed info. We then eliminate the restriction by
showing the reduction from the unrestricted signer model to the restricted one.

We first deal with successful common-part forger U∗ who plays game B and
produces, with probability µ > 1/nc, a valid message-signature tuple (info,msg,
ρ, ω, σ, δ) such that `info = 0. This part of the proof follows that used for ID-
reduction [17]. By using U∗, we construct a machine M that forges a non-
blind version of the WI-Schnorr signature in a passive environment (i.e. without
talking with signer S). We then useM to solve the discrete logarithm problem
by exploiting the collision property.

Let qF and qH be the maximum number of queries asked from U∗ to F
and H, respectively. Similarly, let qS be the maximum number of invocation of
signer S in game B. All those parameters are limited by a polynomial in n. For
simplicity, we assume that all queries are different. (For all duplicated queries
to F and H, return formerly defined values.) Let (y, g, p, q) be the problem that
we want to solve logg y(= x) in ZZq. MachineM simulates game B as follows.

1. Select I ∈U {1, . . . , qF + qS} and J ∈U {1, . . . , qH + qS}.

2. Run U∗ with pk := (y, g, p, q) simulating H, F and S as follows.

– For i-th query to F , return z such that

• z := F(infoI) (i.e. ask oracle F) if i = I, or
• z := gwi where wi ∈U ZZq, otherwise.

– For j-th query to H,

• ask H if j = J , or
• randomly select the answer from ZZq, otherwise.

– For requests to S, first negotiate the common information. Let infok be
the result of the negotiation. If F(infok) is not defined yet, define it as
mentioned above. Then,

• if infok 6= infoI , simulate S by using witness wk, or
• if infok = infoI , we expect that U

∗ aborts the session before it receives
(r, c, s, d). (If U∗ tries to complete the session, the simulation fails.)
Just to simulate the state of abortion, send random (a, b) to U ∗.

3. If U∗ eventually outputs signature (ρ, ω, σ, δ) with regard to infoI and msgJ ,
output them.
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Note that the queries to F and H may include the ones inquired during the
simulation of S. So, F and H are defined at at most qF + qS and qH + qS points
during the simulation, respectively. The simulation of S for infok 6= infoI can be
perfectly done with wk due to witness indistinguishability. The probability that
U∗ is successful without asking F ,H in a proper way is negligible because of the
unpredictability of those hash functions. Thus, the success probability of M is
only negligibly worse than µ

(qH+qS)(qF+qS)
which is not negligible in n. By µ′, we

denote the success probability ofM.

Now we useM to solve logg y. The trick is to simulate F by responding to
the query fromM with ygγ where γ is chosen randomly from ZZq. Note thatM
asks each of F and H only once. Furthermore, the query to F happens before
the query to H with overwhelming probability when M is successful because
F(info) is contained in the inputs of H. Next, we apply the standard replay
technique [11]. That is, runM with a random tape and a random choice of H.
M then outputs a valid signature, say (ρ, ω, σ, δ), with probability at least 1−e−1

(here, e is base of natural logarithms) after 1/µ′ trials. We then rewindM with
the same random tape and run it with a different choice of H. By repeating
this rewind-trial 2/µ′ times, we get another valid signature, say (ρ′, ω′, σ′, δ′),
with probability at least (1 − e−1)/2. After all, with constant probability and
polynomial running time, we have two valid signatures whose first messages
(a, b) are the same. Thus, ρ+ ωx = ρ′ + ω′x, σ + δ(x+ γ) = σ′ + δ′(x+ γ), and
ω + δ 6= ω′ + δ′ holds. Since at least ω 6= ω′ or δ 6= δ′ happens, one can get x as
x = (ρ− ρ′)/(ω′ − ω) mod q or x = (σ − σ′)/(δ′ − δ)− γ mod q.

Next we consider the case where the forgery is attempted against info such
that `info 6= 0. As the first step, we consider Game B with a single info. Hence z
is common for all executions of the signature issuing protocol. Accordingly, we
prove the security of fully blind version of our scheme. Let ` = `info.

Reduction algorithm

Assume a single-info adversary, U∗F , which is a probabilistic polynomial time
algorithm that violates unforgeability for infinitely many sizes, n’s, with the
attack defined as Game B. (Let n0 be such a size, and the success probability
of U∗F is at least η). Then we construct an algorithm, M, that utilizes U ∗F as
black-box and breaks the intractability assumption of the discrete logarithm
for infinitely many n’s. That is, the input to M is (p, q, g, z0), and M tries to
compute w0 such that z0 = gw0 , provided U∗F .

First,M selects b ∈U {0, 1} and assigns (y, z) as (y, z) = (g
x, z0g

γ) if b = 0,
or (y, z) = (z0g

γ , gw) if b = 1 by choosing γ and x (or w) randomly from
ZZq. F is defined so that it returns appropriate value of z according to the
choice. Hereafter, without loss of generality, we assume that b = 0 is chosen
and (y, z) = (gx, z0g

γ) is set.M can then simulate signer S, since the protocol
between S and U∗F is witness indistinguishable and having x = logg y is sufficient

for S to complete the protocol. Let Ŝ denote the signer simulated byM.
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Signer Ŝ User U
∗

Verifier H

y = gx, z(= gw) y, z y, z

-a1, b1
...

-a`, b`

¾ e1

-(r1, c1, s1, d1)

...

¾ e`

-(r`, c`, s`, d`)

-α1, β1

¾ ε1

...

-α`+1, β`+1

¾ ε`+1

-(ρ1, ω1, σ1, δ1)
...

-(ρ`+1, ω`+1, σ`+1, δ`+1)

Fig. 2. Corresponding Divertible Identification Protocol.

If U∗F is successful with probability at least η, we can find a random tape

string for U∗F and Ŝ with probability at least 1/2 such that U
∗
F with Ŝ succeeds

with probability at least η/2.

By employing U∗F as a black-box, we can construct U
∗
which has exactly

the same interface with Ŝ as U∗F has, and plays the role of an impersonator
in the interactive identification protocol with verifier H (see Fig. 2). When U ∗F
asks at most qF queries to random oracle H, U

∗
is successful in completing the

identification protocol with verifier H with probability at least η/2q`+1
H , since,

with probability greater than 1/2q`+1
H , U

∗
can guess a correct selection of `+ 1

queries that U∗ eventually uses in the forgery.

M then use the standard replay technique for an interactive protocol to
compute the discrete logarithm. M first runs U

∗
with Ŝ and H, and find a

successful challenge tuple (ε1, . . . , ε`+1).M then randomly chooses an index, i ∈
{1, . . . , `+1}, and replay with the same environments and random tapes except
different challenge tuple (ε1, . . . , εi−1, ε

′
i, . . . , ε

′
`+1) where the first i−1 challenges

are unchanged. Since εi 6= ε′i, at least either δi 6= δ′i or ωi 6= ω′
i happens. If δi 6= δ′i,

thenM can compute w(= logg z) as w = (σi−σ
′
i)/(δ

′
i−δi) mod q.M then obtain

w0 = w − γ mod q such that z0 = gw0 .

Evaluation of the success probability

Let Ω and Θ be random tape strings ofM and U∗, respectively. Note that Ω
includes the random selection of b and random factors in the simulation of S. Ω
and Θ are assumed to be fixed throughout this evaluation. Let ~ε = (ε1, . . . , ε`+1),
and ~e = (e1, . . . , e`). E denotes the set of all ~ε’s (hence #E = q`+1). The first
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i− 1 elements of ~ε, i.e. (ε1, . . . , εi−1), is denoted by ~εi, and the i-th element of
~ε is denoted by ~ε[i]. We define Succ a set of successful ~ε such that ~ε ∈ Succ iff ~ε

is an accepted sequence of challenges between U
∗
and H.

Observe that there exists different ~ε and ~ε ′ that yield the same transcript
between U

∗
and S because ~e is uniquely determined from ~ε as U

∗
and S are

deterministic when Ω and Θ are fixed, and ~ε has more variation than ~e. We
classify elements in Succ into classes so that elements in the same class yield the
same transcript between U

∗
and S. Precisely, we introduce a mapping, λ : ~ε 7→ ~e,

i.e., λ(~ε ) = ~e, and define an equivalence relation between elements in Succ as
~ε ∼ ~ε ′ iff λ(~ε ) = λ(~ε ′). Let E(~ε ) denote the equivalence class where ~ε belongs.

Next we classify Succ in a different way. Let Br(~ε, ~ε ′) = i ∈ {0, . . . , ` + 1}
denote the ’branching’ index such that ~εi = ~ε′i and ~ε[i] 6= ~ε′[i] (define Br(~ε, ~ε

′) = 0
if ~ε = ~ε ′ ). For ~ε ∈ Succ, let Brmax(~ε ) = i denote an index where ~ε is most
likely to branch compared with randomly taken element of E(~ε ). Formally, for
~ε ∈ Succ, Brmax(~ε ) = i iff

#{~ε ′ ∈ E(~ε ) | Br(~ε, ~ε ′) = i} = max
j∈{1,... ,`+1}

(#{~ε ′ ∈ E(~ε ) | Br(~ε, ~ε ′) = j})

(if two j’s happen to give the same maximal value, define i with the larger j).
Now, the elements in Succ is classified by Brmax. Let Ei∗ denotes the largest class
among them. Formally, Ei∗ = {~ε | Brmax(~ε ) = i∗} where i∗ ∈ {1, . . . , ` + 1} is
defined so that it satisfies #{~ε | Brmax(~ε ) = i∗} = maxj∈{1,... ,`+1}(#{~ε

′ |
Brmax(~ε

′) = j}). Note that i∗ = 0 does not happen since Brmax(~ε ) = 0 happens
only if #E(~ε ) = 1 and such ~ε ∈ Succ is at most q` − 1. From the definition, it
is clear that

#Ei∗

#E
≥ η1/(`+ 2).

Note that #E = ql+1.
For ~ε ∈ Ei∗ , define Γi∗ and ξi∗(~ε ) as

Γi∗(~ε ) = {ε |
∃~ε ′ ∈ Succ ; ~ε ′i∗ = ~εi∗ ∧ ~ε ′[i∗] = ε},

ξi∗(~ε ) =
#Γi∗(~ε )

q
.

Intuitively, Γi∗(~ε ) is the number of good (potentially successful) choices as the
i-th challenge when first i∗− 1 challenges are fixed according to ~ε. And ξi∗ is its
fraction. We can obtain the following claim using the standard heavy low lemma
technique [11]. Note that if ~ε is randomly selected from E , the probability that
~ε ∈ Ei∗ is at least η1/(`+ 2), where η1 = η/2q`+1

H .

Claim. Pr
~ε∈Ei∗

[ξi∗(~ε ) ≥ η1/2(`+ 2)] > 1/2.

Proof. Assume that there exits a fraction, F , of Ei∗ such that #F ≥ #Ei∗/2 and
∀~ε ∈ F , ξi∗(~ε ) < η1/2(`+ 2). We then obtain, for each ~ε ∈ F ,

#{~ε ′ ∈ Succ | ~ε ′i∗ = ~εi∗} < q × (η1/2(`+ 2))× q`−i
∗+1 = q`−i

∗+2η1/2(`+ 2).
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Since
∑

~ε∈F #{~ε
′ ∈ Succ | ~ε ′i∗ = ~εi∗} ≥ #F ≥ #Ei∗/2 =

q`+1η1

2(`+2) , the variation

of the first (i∗−1) challenges of the elements in F , i.e. #{~εi∗ | ~ε ∈ F}, is strictly
greater than

q`+1η1/2(`+ 2)

q`−i∗+2η1/2(`+ 2)
= qi

∗−1.

As i∗ − 1 challenges have at most qi
∗−1 variations, this is contradiction.

For each ~ε ∈ Ei∗ , we arbitrarily fix a partner of ~ε, denoted as ~ε
′ = Prt(~ε ),

that satisfies ~ε ′ 6= ~ε and ~ε ′ ∈ E(~ε ). Let Êi∗ be a set that consists of all elements
of Ei∗ and their partners. That is, Êi∗ = Ei∗ ∪ {~ε

′ | ~ε ′ = Prt(~ε )}. We then call
a triple, (~ε, ~ε ′, ~ε ′′), a triangle, iff ~ε ∈ Ei∗ , ~ε

′ = Prt(~ε ), ~ε ′′ ∈ Succ, ~εi∗ = ~ε ′′i∗ ,
~ε[i∗] 6= ~ε ′′[i∗], and ~ε ′[i∗] 6= ~ε ′′[i∗]. For a triangle, (~ε, ~ε

′, ~ε ′′), we call (~ε, ~ε ′′) and
(~ε ′, ~ε ′′) a side of the triangle, and call (~ε, ~ε ′) the base of the triangle. The number
of triangles is at least

#Ei∗/3 ≥ q`+1η1/(6(`+ 2)).

Here w.o.l.g., we assume that y = gx is chosen according to Ω. Clearly, from
the definition, at least one of x and w can be calculated fromM’s view regarding
a side of a triangle, (~ε, ~ε ′′) (and (~ε ′, ~ε ′′)). We now denote (~ε, ~ε ′′) → w iff w is
extracted fromM’s view regarding ~ε and ~ε ′′, otherwise (~ε, ~ε ′′) 6→ w. It is easy
to see that the following claim holds.

Claim. Let (~ε, ~ε ′, ~ε ′′) be a triangle. Suppose that (~ε, ~ε ′′) 6→ w and (~ε ′, ~ε ′′) 6→ w.
Then (~ε, ~ε ′) 6→ w.

Proof. Let δ, δ′, and δ′′ correspond to ~ε, ~ε ′, and ~ε ′′. If (~ε, ~ε ′′) 6→ w, then δ = δ′′.
If (~ε ′, ~ε ′′) 6→ w, then δ′ = δ′′. Therefore, δ = δ′. It follows that (~ε, ~ε ′) 6→ w.

We then obtain the following claim:

Claim. For at least 1/5 fraction of sides, w is extracted with probability at least
1/3 over Ω.

Proof. If x (w resp.) is included in Ω, then w (x resp.) is called a good witness,
which we want to extract. Suppose that a good witness is not obtained from at
least 4/5 fraction of sides with probability at least 2/3 over Ω. It then follows
from Claim 4 that a good witness is not obtained from at least 3/5 fraction of
base, (~ε, ~ε ′), with probability at least 2/3 over Ω. When a good witness is not
obtained from at least 3/5 fraction of base, (~ε, ~ε ′), the result is (non-negligibly)
biased by the witness with Ω. That is, the biased result occurs with probability
at least 2/3 over Ω. Since the information of a base, (~ε, ~ε ′), is independent of the
witness the simulator already has as a part of Ω, this contradicts that a biased
result should occur with probability (over Ω) less than 1/2 + 1/poly(n) for any
polynomial poly.
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Finally we will evaluate the total success probability ofM. The probability
that i∗ is correctly guessed is at least 1

`+1 . When ~ε is randomly selected, ~ε ∈ Êi∗
and ξi∗(~ε ) ≥ η1/2(` + 2) with probability at least

η1

2(`+2) . ~ε
′′
[i∗] ∈ Γi∗(~ε ) is

selected with probability at least ξi∗(~ε ) ≥ η1/2(` + 2). Then (~ε, ~ε
′′
[i∗]) → w

with probability greater than 1/15 (= (1/3)× (1/5)). Thus, in total, the success

probability ofM is
η2
1

60(`+1)(`+2)2 , where η1 = η/2q`+1
H .

Now we consider the case where the common information is not all the same.
Given successful forger U∗B of game B, we construct successful forger U

∗
F of the

fixed-info version of game B.
The basic strategy of constructing machine U∗F is to screen the conversation

between U∗B and S except for the ones involving info that U∗B will output as
a result of forgery. U∗F simulates S with regard to the blocked conversations
by assigning gw to z with randomly picked w. The simulation works perfectly
thanks to the witness indistinguishability of the signature issuing protocol.

Now, we describe U∗F in detail. Let qF be the maximum number of queries for
F from U∗B . Similarly, let qS be the maximum number of queries for S. Observe
that F is defined at most at qF+qS points while U

∗
B plays game B. For simplicity,

we assume that all queries to F are different.

1. Select J randomly from {1, . . . , qF + qS}.
2. Run U∗B simulating F ,H and signer S as follows.

– For j-th query to F , return z such that
• z := gwj where wj ∈R ZZq for j 6= J , or
• z := F(infoJ ) (i.e. ask F) if j = J .
If z has been already defined at query point infoj , return that value.

– For all queries to H, ask H.
– If U∗B initiates the signature issuing protocol with regard to infoJ , U

∗
F

negotiates with S in such a way that they agree on infoJ (this is possible
because Ag is deterministic). U∗F then behaves transparently so that U

∗
B

can talk with S.
– If U∗B initiates the signature issuing protocol with regard to infoj where
j 6= J , U∗F simulates S by using wj .

3. Output what U∗B outputs.

Note that Ag is decided by U∗B at the beginning of step 2. U
∗
F is successful if

U∗B is successful and correct J is chosen so that the final output of U
∗
B contains

infoJ . Therefore, the success probability of U
∗
F is

µ
qF+qS

where µ is the success
probability of U∗B . ut

5 Conclusion

We have presented a formal definition of partially blind signature schemes and
constructed an efficient scheme based on the Schnorr signature scheme. We then
gave a proof of security in the random oracle model assuming the intractability
of the discrete logarithm problem.
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Although we have shown a particular construction based on Schnorr signa-
ture, the basic approach of constructing WI protocols and the proof of security
do not substantially rely on the particular structure of the underlying signature
scheme. Accordingly, a signature scheme derived from public-coin honest verifier
zero-knowledge can be plugged into our scheme if it can be blinded. It covers, for
instance, Guillou-Quisquater signature and some variants of modified ElGamal
signature schemes.

As we mentioned, one can easily transform fully blind signature schemes
from partially blind ones. We have shown that the reverse is possible; partially
blind signature schemes can be derived from fully blind witness indistinguishable
signature schemes.
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