L-collision Attacks against Randomized MACs

Michael Semanko

Department of Computer Science & Engineering,
University of California at San Diego,
9500 Gilman Drive,
La Jolla, California 92093, USA.
msemanko@cs.ucsd.edu

Abstract. In order to avoid birthday attacks on message authentication
schemes, it has been suggested that one add randomness to the scheme.
One must be careful about how randomness is added, however. This
paper shows that prefixing randomness to a message before running the
message through an iterated MAC leads to an attack that takes only
O (2t+n/3 +max{2l/2,2r/2}> queries to break, where [is the size of

the MAC iteration output and r is the size of the prefixed randomness.

Keywords: MACs, message authentication codes, randomness, L-collision, birth-
day attacks

1 Introduction

1.1 Problem

A message authentication scheme allows people to ensure that messages can
travel between them without being altered. These schemes are basic crypto-
graphic primitives, and thus they are widely used. Message authentication schemes
consist of three major algorithms: one for computing a message’s authentication
tag, one for checking that a message’s authentication tag is valid, and one for
picking a key. By tagging a message before it is transmitted, one can protect the
message from being maliciously altered. One popular form of message authenti-
cation is the iterated message authentication scheme.

Iterated message authentication schemes are those message authentication
schemes which break up the message into smaller blocks and then make repeated
use of a small keyed function on these blocks. The keyed function takes as input
a block of the message and the previous result of the function to yield the next
result. This is repeated for each block of the message, and the final result of the
function is then output. CBC-MAC [1], HMAC [2], NMAC [2], and EMAC [7] are
all examples of iterated MACs. All of these iterated MACs suffer from the same
security flaw: internal collision attacks [8], referred to more generally as birthday
attacks. Internal collision attacks can break any deterministic, stateless, iterated
MAC in O (25/ 2) queries, where [is the size of the internal chaining value.

217

1.2 Possible Solutions

In an attempt to make more efficient MACs, people have come up with methods
to try to avoid birthday attacks. There are two obvious possibilities: either make
the MAC function stateful or make it probabilistic. We briefly discuss each.

STATEFUL ITERATED MACS. Stateful iterated MACs are iterated MACs which
maintain s bits of state between queries, and access this state in the tagging algo-
rithm. The state is then changed so that a different state is always presented as
the input to the transformation. The authentication tag then is the [-bit output
of the MAC prepended to the s bits of state. These iterated MACs can actually
completely avoid the internal collision attack, as shown in [4]. The counter-based
XOR-MAC, XMACC, requires approximately O (2l) authenticated messages to
create a forgery, for instance [4]. XMACC achieves this by prepending a counter
to messages before they are run through the iteration.

Stateful MACs have problems of their own which make them less used. It
is often not convenient to maintain those s bits of state between authentica-
tions; for example, you cannot use a stateful iterated MAC if you want multiple
senders to share an authentication key. All of the systems that should be able
to authenticate would have to share the same s bits of state in order to main-
tain the security of the signatures. This is very difficult to do if there are many
machines or if those machines may not always be connected.

RANDOMIZED ITERATED MACSs. Using randomized iterated MACs is another
approach that could be taken. A randomized iterated MAC is a iterated MAC
which has a probabilistic tagging algorithm. The authentication tag in this case
is the [-bit output of the MAC prepended to the r bits of randomness.

A randomized scheme seems like it would be the answer to all of these prob-
lems. It does not need to maintain state between authentications. It can be used
on multiple machines with the same key. What is missing? The problem with
randomized schemes is that no one is really sure how secure randomized schemes
are. Security proofs of randomized MAC schemes become difficult if one tries to
prove security beyond the birthday bound. Designing a randomized authenti-
cation scheme that provably avoids birthday attacks was the topic of [3]. This
paper succeeded only by tripling to quadrupling the size of the authentication
tag. No one yet has designed a randomized MAC scheme with a proof of security
that beats the birthday bound without a significant increase in authentication
tag size or computation time.

Two approaches which are often suggested are to either prepend or append
a random message block to the message before the keyed function iterations
are performed. These approaches are promising because they only add a small
amount of computation time and do not require a lot of randomness. There have
not yet been results showing the security of either of these schemes.

1.3 Background and Related Work

Bellare, Killian, and Rogaway’s paper [5], provides a formal analysis of the secu-
rity of CBC-MAC. This paper is a good starting point from which the effects of

218

birthday attacks can be seen on message authentication schemes in use. Later,
Preneel and van Oorschot described the internal collision attack on MACs in [8].
This attack works upon all deterministic iterated MACs. They propose using
keyed hash functions with large outputs to mitigate the effects of this attack.
Although this works, it leads to MACs which may be less efficient than possible.

In Bellare, Guerin, and Rogaway’s paper [4], the XOR-MAC schemes were
introduced. One of these schemes, XMACC, was the first MAC which provably
avoided the birthday attack problem. XMACC is a stateful MAC, however, and
thus has all of the problems associated with a stateful MAC scheme. For a
while, the only way to not be affected by birthday attacks was to use a stateful
counter-based scheme.

More recently, Bellare, Goldreich, and Krawczyk provided a randomized,
stateless scheme in [3] which is secure beyond the birthday bound in terms
of the size of the hashed message; however, is not nearly as secure in terms of
the size of the entire authentication tag because they had to transmit multiple
random numbers in the tag.

Part of the problem with the term “birthday bound” lays in the fact that
there are many parameters to a MAC, and even more to a randomized iterated
MAC. An increase in any of these parameters can generally lead to an increase
in the security of the MAC. In the best case, we would like to be able to increase
the security of MACs, without a significant increase in the key size, computation
time, authentication tag size, blocksize, or randomness.

1.4 Results

This paper shows a new form of birthday attack, called the L-collision attack.
This attack applies to schemes that prepend random data before MACing. The
L-collision attack allows an adversary to create a forgery with a constant prob-
ability in only O (2(”’)/3 + max{2!/2, 2”/2}) queries where [is the size of the
internal chaining value of the randomized MAC, and r is the size of the random-
ness.

Section 2 provides basic definitions that allow us to examine iterated message
authentication schemes formally. Section 3 describes how the internal collision
attack works, as this is the basis for our new attack. Section 4 presents a variation
upon MAC schemes, which is based upon the idea of prepending a random block.
This scheme is often secure against birthday attacks, but it falls to our new
attack.

2 Definitions

This section presents the basic definitions of message authentication schemes,
their security, and iterated message authentication schemes.

219

2.1 Function Families

Function families are vital components to MACs, and thus we wish to treat them
formally. We do so in the format of [5].

Definition 1. Let h: {0,1}* x {0,1}* — {0,1}7 be a map. We say that h is a
function family. We define {0,1}* as the keyspace of h, {0,1}* as the domain
of h, and {0,1} as the range of h. Then for each particular key K, we define a
map hx: {0,1}" — {0,1}9 such that Yu € {0,1}%, hy(u) = h(k,u). We say that
hx is a particular instance of h.

Function families can be seen in such primitives as keyed-hash functions and
block ciphers. Often, when proving security, we do not want to consider the
effects of a particular block cipher or other keyed function on the security of a
scheme. Thus, we replace the function with a function drawn at random from
the set of all functions.

2.2 Message Authentication Schemes

We first define the syntax of message authentication schemes so that we may
examine their security. This definition is a combination of the schemes used in
[5] and [4].

Definition 2. A message authentication scheme MA = (Tag, Vf, Key) consists
of three algorithms as follows:

— A randomized key generation algorithm, Key, which returns a key from the
set {0,1}F.

— A tagging algorithm, Tag which can be either randomized or stateful. It takes
a key K and a message M, and returns a tag o from {0,1}.

— A deterministic verification algorithm, Vf, which takes a key K, a message
M, and a tag o to return a bit v. We say that o is a valid tag for a message
M under a key K if VAM,o0,K) = 1.

We require that VAM, Tag(M,K),K) = 1 for all M € {0,1}*. The scheme is
said to be deterministic if the tagging algorithm is deterministic.

The security of a message authentication scheme is based upon the proba-
bility that an adversary without the secret key can create a forgery, which is a
correct message/tag pair such that the verification procedure considers the pair
valid.

2.3 Iterated Message Authentication Schemes

There are no interesting known general attacks on message authentication schemes
as they are given above. We need to define a more specific message authentica-
tion scheme in order to be able to talk about actual attacks. For this reason, we
now define iterated message authentication schemes. Figure 1 shows the general
layout of an iterated MAC tagging algorithm, and below we present a definition
based upon [8].

220

Fig. 1. A general scheme for iterated MACs

Definition 3. Let h: {0,1}* x {0,1}* x {0,1}' — {0,1}! be a function family
with domain {0,1}* x {0,1}, and let g: {0,1} — {0,1}° be an output transfor-
mation. We associate to h and g the following iterative message authentication
scheme IMA = (Tagy,, Vi, Key):

— Tagy, first divides a message M to be tagged into b-bit blocks, labeled x1, . . ., T,
where M = x1||...||x: (where || denotes concatenation). We call k the key-
size of the MAC, b the blocksize of the iterated MAC, | the chaining variable
size, and o the output size of the MAC.

— Tagy, makes use of the keyed function h iteratively to retrieve a value accord-

ing to the algorithm hi (z1||...||xt), which we define below.
Sfunction hi (z1]] ... ||x¢)
So «— IV

fori=1,...,t do
S; — hi(x;, Si—1)

endfor

return Sy

Note that this definition of iterated MACs includes the well-known CBC-
MAC by making hy(z;, Si—1) = fx(z;®S;—1), where f} is the block cipher to be
used in CBC-MAC. For this paper, we shall be set the output transformation g
to be the identity function. Thus, the chaining variable size and the output size
of the iterated MACs in this paper shall both be [. Changing the attack to deal
with different output transformations can be done in the same way as in [8].

3 Birthday Attacks

If we wish to avoid birthday attacks with a message authentication scheme, we
must be able to define what a birthday attack is. Usually, the type of birthday
attacks that MAC designers attempt to avoid are known as internal collision
attacks. The general idea behind an internal collision attack is that if we find
two messages with the same n block suffix but different m block prefixes that
lead to the same output, then we are likely to be able to change the suffix and
still have the two messages have the same output. Such collisions may be found
because iterated MACs have an internal state. A collision on the output means

221

that at some point, the internal state of the two MACs was probably the same.
Given the same internal state, and the same suffixes, the MAC will be likely to
output the same tags.

For completeness, we define the internal collision attack, as given in [8], more
formally in the Appendix.

4 A New Attack

We first present a basic modification to the iterated MAC scheme, having a
random message prefix. Many random prefix versions of MACs seem to be secure
against internal collision attacks. We then present the L-collision attack, a new
attack which breaks these schemes. Finally, we find the probability that the
attack produces a valid forgery of an unqueried message for any number of
queries.

4.1 Random Prefix Versions of Message Authentication Schemes

The iterated message authentication schemes that we examine in this paper are
modified by adding a random prefix to the message to be tagged before the
tagging algorithm is run. We denote a random prefix version of a scheme by
prepending it with RP-. For example, CBC-MAC with a random prefix added
to the message can be refered to as RP-CBC-MAC. We shall use the phrase
RP-MAC to denote a general iterated MAC with a random prefix.

One thing to note about RP-MACs is that internal collision attacks do not
seem to work. The reason for this is that although one may get two messages to
collide on some output, one cannot get any further queries with one of the two
random numbers used in the collision. These random numbers are prepended to
the messages, and thus become part of the prefix. We are thus unable to generate
a query to the third message in the internal collision attack because we cannot
get the same prefix again.

4.2 The L-collision Attack

We now describe a new attack that can be used to defeat a random prefix scheme.
This is not a length-based attack, and any MAC which would normally fall to
an internal collision attack would fall to this new attack if random data were
first prepended.

We first define the idea of a collision formally so that the similarities can be
seen in the definition of a collision and an L-collision.

Definition 4. Let A be a set, and let C' be a list of elements from the set A.
We say that the list C' contains a collision if there exist at least two elements of
the list C' that are the same.

222

Fig. 2. An L-collision given 5 queries, where there are only 8 possible random values
and 8 possible output values.

The idea of a collision can be extended by thinking about what sort of collisions
can occur when we take the list C' from the Cartesian product of two sets. An
L-collision, intuitively, is a chain of two collisions in this Cartesian product. One
collision is in the first set, and the second collision is in the second set. These two
collisions contain a single common point. A picture of this can be seen in Figure
2. In the figure, the x-axis is indexed by the elements of the first set, the y-axis
is indexed by the elements of the second set, and the black balls represent the
elements of the list C. An L-collision is highlighted in the figure. The L-shape
that is formed by the collision chain is the reason we refer to these chains as
L-collisions. We now state the formal definition for an L-collision.

Definition 5. Let A, B be two sets, and let C' be a list of elements from the set
A x B. We say that the set C' contains an L-collision over A and B if there exist
distinct elements (a,b), (a,y), (z,b) € C. We call these elements the collision
points. We call (a,b) the pivot of the L-collision, (a,y) the A-collision end, and
(z,b) the B-collision end.

For the L-collision attack, we let one of the sets be the possible random values
that could be prefixed to the message, and we let the other set be the possible
output values. By getting a certain L-collision over these sets, we can forge a
message.

The messages queried have two m block message prefixes, and two n block
message suffixes. There are four different ways these prefixes and suffixes can
be combined into complete messages. By generating enough queries on three of
these combinations, we hope to forge the fourth combination.

Definition 6. Let m,n be any positive integers. Then we define an L-collision
attack as an attack performed by an adversary A that, given an oracle g =
Tag(K,-) attacks a MAC scheme as follows:

223

Fig. 3. An L-collision on the three messages M1, M2, and M3 allows us to forge the
fourth message M4. Notice that the internal state S is the same before the third block
in all of the messages. For clarity, m = 1 and n = 1 in this example.

function A9

x & {0,1)mb

v e {0,1}70 — {z}

y < {013

w < {0,13" — {y}

My —z|ly; Mo —vl|ly

My —z||w; My —vl|lw

fori=11to3 do
for j=1to %] do

(rij, zij) — g(M;)

endfor

endfor

if 3e,d, f such that riq = r3. and z14 = 225, then
return (My, (roy, 23¢))

Figure 3 shows us why the L-collision attack works. Because the internal state
S is the same in all of the messages at some point, we know that the outputs
depend only upon the final block(s) which occur after this point. Thus, we know
that the outputs of the fourth message and the second message are going to be
the same. The theorem below specifies the parameters for the L-collision attack.

Theorem 1. For any deterministic, non-stateful iterated message authentica-
tion scheme MAC, there is a constant ¢ > 0 such that an adversary A using the
above strategy requires only

— (s tagging queries,
— qy verification queries, and
— c(b+1)(gs + qv) time

224

to be able to forge a message for the random prefix version of MAC, RP-MAC,
3
with probability € ~ (% (1 — #) , where n is the number of blocks in the

suffizes y and w, and qs satisfies max{2/2, 27/2} < q, < 20+7)/3,

If we assume that the MAC is CBC-MAC or has a similar ¢ombine-then-
permute structure, the above result is similar except that e ~ 162‘?%). We

leave the proof of these theorems for later. In order to be able to complete this
proof, we must first be able to find the probability that a randomly chosen set
contains L-collisions over two sets.

4.3 L-collision Probabilities

We now can turn our attention away from the cryptographic problem for a
while, to examine the probabilistic problem of the frequency of L-collisions. We
can represent L-collisions in a rectangle, with rows representing the elements of
set A and columns representing the elements of the set B.

Definition 7. Suppose we pick q elements randomly and independently from the
set A x B where |A| = M and |B| = N. Then L(M, N, q) denotes the probability
of at least one L-collision over A and B within these elements.

We now provide a lemma that gives us the approximate probability of finding
such an L-collision.

Lemma 1. Let L(M, N, q) be defined as above. Then,

3
q
LM, N,q) ~ (1)

Jor all q such that maz{vVM,VN} < ¢ < (MN)3.

The results of this lemma can be seen intuitively through the following argu-
ment. The probability that any given triple, (a,b), (¢,d), (e, f) taken randomly
from A x B, is an L-collision is equal to the probability that a = ¢ times the
probability that b = f, since these events are independent. Thus, a triple is
an L-collision with probability of ﬁ If we chose three elements from the ¢
random queries, we have % ways of choosing the elements without regard to
order. Putting this together, we expect to see an L-collision in the queries with

probability M[Z—BN.

4.4 Analysis of L-collision Attack

Now that we know bounds on the probability that there is an L-collision, we can
prove Theorem 1.

Proof (Theorem 1). We first show that the algorithm provides a valid forgery in
the case where the if statement is true. So, suppose there exists an e, d, f such

225

that r14 = 73. and z14 = z2y. Then we know that (r14,214) = Tag(K,z || y)
and (rof,227) = Tag(K, v || y) collide on the iteration outputs since z14 = 2ay.
The message prefixes which are likely to have led to this collision are r14 ||
and 7o || v (note that the randomness is prefixed to the message). Because the
suffixes of both messages are the same, we have a birthday style collision here.
According to [8], the collision occurs before the n block suffix y with probability

(1 - = +1) for a random function and with probability 1 for a CBC-style iterative

function with the block cipher replaced by a random permutation. Once we have
this collision, all we need is one query of r14 || with a different suffix, and we
will be able to forge the message 72 || v with that same suffix.

We get this additional query by the fact that we know (r3e, z3¢) = Tag(K, z || w).
Since 13, = r14, we have the same prefix, r14||z with a different suffix, w. Be-
cause it is likely that the output will be the same, we replace the prefix of the
third message with the colliding prefix of the second message. This gives us to
rof||v||w, a valid forgery under the output zs.. It is clear that v || w has never
previously been queried, since the only queries were to x || y, x || w, and v || y.

We now need a lower bound on the probability that the if statement is be
true. Notice that the if statement corresponds to there being an L-collision over
{0,1}" and {0,1}!, where we set the pivot to be (714, 214), we set the {0,1}"-
collision end to be (73, z3¢), and we set the {0, 1}-collision end to be (ray, 227).

Lemma 1 shows an approximation of the probability that an L-collision occurs
over two sets, given that there are ¢ queries made. We let one of these sets be
{0,1}", and the other be {0,1}!, and we set the number of collisions made to be
qs- Then, we get a lower bound on the probability of an L-collision in this case

3
to be L(2’",2l,qs) ~ Ggﬁ. Just the existence of an L-collision is not enough,
however. We need the L-collision to be such that the points (714, 214), (3¢, 23¢),
and (raf, 20¢) are the pivot, the {0,1}"-collision end, and the {0, 1}!-collision

end, respectively. The probability that this happens is quq&J - LSq"J . L?’q“J ~ 1

Combining the two above probablhtles we get the approxnnate probablhty that

the if statement is true, 27.6‘21+T = Tga.orr

The only thing left to do is show that we can find this collision in time pro-
portional to ¢,, and thus finding the collision takes no more time than computing
the MAC in the first place. We can do this by keeping a hash table of outputs
and randomness. Then we also have hash tables of output collisions and random-
ness collisions. Whenever we find that we have an output collision by the output
hash table, we can add this collision to the output collision hash table. Similarly
for randomness collisions. We then search through all of the My query results. If
any of them have elements in both the row collision and column collision hash
table, we are done. This whole procedure takes linear time in g, concluding the
proof. B

Given Theorem 1, we can see that only O (2(1”)/3 + max{2!/2, 2T/2}) queries
are required to get a constant probability of the collision chain occurring. While
this attack requires more queries than normal birthday attacks, it can turn out

226

to cause almost as many problems. We can illustrate this by looking at CBC-
MAC with a 64-bit block cipher. Without the random bits prepended, we saw
that we could get a forgery in about 232 queries. After prepending 64 random
bits, we now require about 243 queries. This is almost as unacceptable, given the
computing power of today’s machines. Given the doubling in size of our message
authentication tag, we would hope that the security would also be doubled. The
L-collision attack shows that this is not the case.

5 Conclusion

Now that we know an attack against message authentication schemes with a ran-
dom prefix, there is still the open question of whether there are any non-stateful
schemes which avoid collision-based attacks on tagging algorithm queries. The
problem with such a request is that there are many tradeoffs which can be made
to achieve better security. Most schemes involve either greatly increased compu-
tation time or greatly increased key size. What we would like to see is a simple
scheme which requires just one block cipher key, that has near ideal security.

This paper has shown that there is an inherent upper bound to the security
that can be achieved by prepending randomness to messages in an iterated MAC
scheme. Because this bound is less than ideal, it may be in the best interest of
MAC cryptanalysts to examine other ways of combining randomness with the
message.

This paper has also shown that the design of randomized MAC schemes is
more difficult than first imagined. The birthday bound seems to be one of many
bounds between current message authentication schemes and ideal schemes. Usu-
ally, when a MAC scheme is designed, one can immediately see how birthday
attacks apply. L-collision attacks are much more difficult to see, and when they
apply, they can be much trickier to avoid.

6 Acknowledgments

This paper would not have been possible without the guidance of my advi-
sor, Mihir Bellare. I would like to give additional thanks to David Wagner for
sheparding my paper, and for providing his comments on my paper drafts. His
willingness to assist has taken a stressful load off of my shoulders.

The work done on this paper was supported in part by Mihir Bellare’s 1996
Packard Foundation Fellowship in Science and Engineering and NSF CAREER
Award CCR-9624439.

References

1. ANSI X9.9. American National Standard for Financial Institution Message Au-
thentication (Wholesale), American Bankers Association, 1981. Revised 1986.

7

227

. M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Message

Authentication. Advances in Cryptology — Crypto 96 Proceedings, Lecture Notes
in Computer Science Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

. M. Bellare, O. Goldreich, and H. Krawczyk. Stateless Evaluation of Pseudoran-

dom Functions: Security beyond the Birthday Barrier. Advances in Cryptology —
Crypto 99 Proceedings, Lecture Notes in Computer Science Vol. 1666, M. Wiener
ed., Springer-Verlag, 1999.

. M. Bellare, R. Guerin, and P. Rogaway. XOR MACs: New Methods for Message

Authentication Using Finite Pseduorandom Functions. Advances in Cryptology —
Crypto 95 Proceedings, Lecture Notes in Computer Science Vol. 963, D. Copper-
smith ed., Springer-Verlag, 1995.

. M. Bellare, J. Killian, and P. Rogaway. The security of cipher block chaining.

Advances in Cryptology — Crypto 94 Proceedings, Lecture Notes in Computer
Science Vol. 839, Y. Desmedt ed., Springer-Verlag, 1994.

. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-

phy. CRC Press. 1996.

. E. Petrank and C. Rackoff. CBC-MAC for Real-Time Data Sources. Dimacs Tech-

nical Report, 97-26, 1997.

. B. Preneel and P. van Oorschot. MDx-MAC and Building Fast MACs from Hash

Functions. Advances in Cryptology — Crypto 95 Proceedings, Lecture Notes in
Computer Science Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995.

Appendix

7.1 Internal Collision Attacks

We formally describe internal collision attacks below.

Definition 8. Let MA be an iterated message authentication scheme with block-
size b, and let m,n be any positive integers. Then the internal collision attack
is performed by an adversary B, given an oracle g =Tag(K,-), according the
following algorithm.

that there is a collision. This adversary succeeds with probability (1 —

function BY

Y & {Oa 1}nb; w ‘2 {07 1}nb - {y}

fori=1toq do
T <£ {0, 1}mb
M; —a; |y
zi — g(M;)

endfor

if 3d,e such that z4 = z., then
M—axg||w; M —z || w
z— g(M)
return (M’ z)

else return null

When we get two different messages that give us the same output, we say

n
n+1

228

whenever there is a collision (see [8]). This is because any collision that occurs is
likely to occur in the prefixes x4 and ., and thus regardless of what we append
to them (as long as they maintain the message length) we still have a collision.
A well-known result of [8] is that these collisions are expected to occur when
there are v/2 - 2(/2) queries. This is generalized by the following theorem:

Theorem 2. For any deterministic, non-stateful iterated message authentica-
tion scheme MAC, there is a constant ¢ > 0 such that an adversary B using the
internal collision attack requires only

— gs tagging queries,
— qy verification queries, and
— c(b+1)(gs + qu) time

_a2(n+1)

to be able to forge a message with probability € = <1 —e T2lFt) (1 — RLH)

where n is the number of blocks in the suffives y and w and where q5 satisfies
0 <22
This theorem is implied by the results of [8].

Notice that the internal collision attack queries only messages of the same
length. This is important because collisions that occur when messages are of
one length, might not occur when messages are another length. Consider for
instance the case where the length of the message is prepended before querying.
It is also important to notice that this attack only takes ©(q) time. This is
because for each query, we can immediately detect whether the output collided
with a previous output or not using a hash table keyed to the outputs.

