
New Public-key Cryptosystem

Using Braid Groups

Ki Hyoung Ko1, Sang Jin Lee1, Jung Hee Cheon2,
Jae Woo Han3, Ju-sung Kang3, and Choonsik Park3

1 Department of Mathematics, Korea Advanced Institute of Science and Technology,
Taejon, 305-701, Korea

{knot,sjlee}@knot.kaist.ac.kr
2 Department of Mathematics, Brown university, Providence, RI 02912, USA

and Securepia, Korea
jhcheon@math.brown.edu

3 Section 8100, Electronics and Telecommunications Research Institute,
Taejon, 305-600, Korea

{jwhan,jskang,csp}@etri.re.kr

Abstract. The braid groups are infinite non-commutative groups nat-
urally arising from geometric braids. The aim of this article is twofold.
One is to show that the braid groups can serve as a good source to en-
rich cryptography. The feature that makes the braid groups useful to
cryptography includes the followings: (i) The word problem is solved via
a fast algorithm which computes the canonical form which can be ef-
ficiently manipulated by computers. (ii) The group operations can be
performed efficiently. (iii) The braid groups have many mathematically
hard problems that can be utilized to design cryptographic primitives.
The other is to propose and implement a new key agreement scheme and
public key cryptosystem based on these primitives in the braid groups.
The efficiency of our systems is demonstrated by their speed and infor-
mation rate. The security of our systems is based on topological, combi-
natorial and group-theoretical problems that are intractible according to
our current mathematical knowledge. The foundation of our systems is
quite different from widely used cryptosystems based on number theory,
but there are some similarities in design.

Key words: public key cryptosystem, braid group, conjugacy problem, key
exchange, hard problem, non-commutative group, one-way function, public key
infrastructure

1 Introduction

1.1 Background and previous results

Since Diffie and Hellman first presented a public-key cryptosystem(PKC) in [11]
using a trapdoor one-way function, many PKC’s have been proposed and broken.

167

Most of successful PKC’s require large prime numbers. The difficulty of fac-
torization of integers with large prime factors forms the ground of RSA [29] and
its variants such as Rabin-Williams [28, 36], LUC’s scheme [32] or elliptic curve
versions of RSA like KMOV [20]. Also the difficulty of the discrete logarithm
problem forms the ground of Diffie-Hellman type schemes like ElGamal [12],
elliptic curve cryptosystem, DSS, McCurley [23].
There have been several efforts to develop alternative PKC’s that are not

based on number theory. The first attempt was to use NP-hard problems in
combinatorics like Merkle-Hellman Knapsack [24] and its modifications. Though
many cryptographers have been pessimistic about combinatorial cryptography
after the breakdown of the Knapsack-type PKC’s by Shamir [30], Brickell [9], La-
garias [22], Odlyzko [26], Vaudenay [35] and others, and after the appearance of
Brassard theorem [8], there may still be some hopes as Koblitz has noted in [21].
The other systems that are worth to mention are the quantum cryptography
proposed by Bennet and Brassard [4] and the lattice cryptography proposed by
Goldreich, Goldwasser and Halevi [18].
Another approach is to use hard problems in combinatorial group theory

such as the word problem [1, 37, 17] or using the Lyndon words [31]. Recently
Anshel-Anshel-Goldfeld proposed in [2] a key agreement system and a PKC using
groups where the word problem is easy but the conjugacy problem is intractible.
And they noted that the usage of braid groups is particularly promising. Our
proposed systems is based on the braid groups but is independent from their
algebraic key establishment protocol on monoids in [2].
Most of cryptosystems derived from combinatorial group theory are mainly

theoretical or have certain limitations in wide and general practice. This is per-
haps due to the rack of efficient description of group elements and operations or
due to the difficulty of implementing cryptosystems themselves.

1.2 The features of braid groups

The n-braid group Bn is an infinite noncommutative group of n-braids defined
for each positive integer n. There is a natural projection from Bn to the group
Σn of all n! n-permutations and so Bn can be thought as a resolution of Σn. In
this article, we first show that the braid groups have the following nice proper-
ties, unlike the usual combinatorial groups, so that one can build cryptosystems
satisfying both security and efficiency requirements.

1. There is a natural way to describe group elements as data which can be
handled by computers: Theorem 1 shows that there is a canonical form for a
braid, which can be described as an ordered tuple (u, π1, π2, . . . , πp), where
u is an integer and πi’s are n-permutations. The canonical form can remove
the difficulties in using words in the description of the group elements.

2. There are fast algorithms to perform the group operations: The product of
two words U and V is just the concatenation UV and therefore the group
operation for the purpose of cryptography really means hiding the factors U
and V . This can be achieved by converting UV into its canonical form. For

168

a group whose element has no canonical form, this can be achieved only by
rewriting via defining relations and a retrieval must be done by a solution
to the word problem. Let U and V be n-braids whose canonical forms are
represented by p and q permutations respectively. Theorem 2 shows that the
canonical form of the product UV can be computed in time O(pqn log n)
and the canonical form of the inverse of U can be computed in time O(pn)

3. There are many hard problems based on topological or group-theoretical
open problems and one can sometimes design (trap-door) one-way functions
based on these problems that can be described basically by group operations.

4. As n grows in the braid groups Bn, the computation of group operations
become harder in O(n log n). On the other hand, a naive computation of the
inverses of one-way functions are seem to be at least O(n!). Consequently, n
plays a reliable role of a security parameter.

1.3 Our results

After exploring cryptographic aspects of the braid groups in §2, we propose a
trapdoor one-way function that is based on one of the hard problems in §2.3
and construct a key exchange scheme and a public-key cryptosystem in §3. A
theoretic operating characteristics and implementation of our PKC will be given
in §4 and so they are readily available in practice. Our PKC has the following
features.

1. Our key exchange scheme is based on a variation of the conjugacy problem
similar to the Diffie-Hellman problem and our PKC is constructed from this
key exchange scheme. Therefore our PKC and behaves somewhat similarly
to ElGamal PKC.

2. Our PKC is non-deterministic: The ciphertext depends on both of the plain-
text and the braid chosen randomly at each session.

3. The message expansion is at most 4-1.
4. There are two parameters p, n in our PKC so that the message length be-
comes pn log n. The encryption and decryption are O(p2n log n) operations.
The security level against brute force attacks is O((n!)p) = O(exp(pn log n)).
Thus the parameter n rapidly increases the security level without sacrificing
the speed.

Our cryptosystems are efficient enough, comparing to other widely used cryp-
tosystems. The security of our scheme is discussed and a possible attack based on
a mathematical knowledge is introduced in §5. As a further study, possible im-
provements of our cryptosystems and possible replacements of the braid groups
are discussed in §6.

2 A cryptographic aspect of the braid groups

The braid group was first introduced by Artin in [3]. Because these groups play
important roles in low dimensional topology, combinatorial group theory and

169

(a) the 3-braid σ2
2σ
−1
1 σ2 (b) the generator σi

Fig. 1. An example of braid and the generator

representation theory, considerable research has been done on these groups. In
this section, we will briefly introduce the notion of braids and give evidence that
the braid groups can also play important roles in cryptography. The general
reference for braid theory is the Birman’s book [5] and for the word problem
and conjugacy problem, see [6, 13, 14, 16].

This section is composed as follows: §2.1 is the definition of the braid groups.
In §2.2 we first summarize the known results on the word problem (or the canoni-
cal form problem). Theorem 1 is important since it enables one to encode a braid
into a data format that can be handled easily by computers. The remains are
supplementary to this theorem.

In §2.3 we list hard problems that are potential sources to develop primitives
in cryptography.

2.1 Definition of the n-braid group

The n-braid group Bn is defined by the following group presentation.

Bn =

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσjσi = σjσiσj if |i− j| = 1
σiσj = σjσi if |i− j| ≥ 2

〉

(∗)

The integer n is called the braid index and each element of Bn is called an n-
braid. Braids have the following geometric interpretation: an n-braid is a set of
disjoint n strands all of which are attached to two horizontal bars at the top
and at the bottom such that each strand always heads downward as one walks
along the strand from the top to the bottom. The braid index is the number
of strings. See Figure 1(a) for an example. Two braids are equivalent if one can
be deformed to the other continuously in the set of braids. In this geometric
interpretation, σi is the elementary braid as in Figure 1(b).

The multiplication ab of two braids a and b is the braid obtained by position-
ing a on the top of b. The identity e is the braid consisting of n straight vertical
strands and the inverse of a is the reflection of a with respect to a horizontal line.
So σ−1

i can be obtained from σi by switching the over-strand and under-strand.
See [5] for details.

170

Note that if we add the relation σ2
i = 1, i = 1, . . . , n− 1, to the presentation

(∗), it becomes the group presentation of the n-permutation group Σn, where
σi corresponds to the transition (i, i + 1). So there is a natural surjective ho-
momorphism ρ:Bn → Σn. Let’s denote a permutation π ∈ Σn, π(i) = bi, by
π = b1b2 · · · bn. In terms of geometric braids, the homomorphism ρ:Bn → Σn

can be described as follows: given a braid a, let the strand starting from the i-th
upper position ends at the bi-th lower position. Then ρ(a) is the permutation
b1b2 · · · bn.

2.2 Describing braids using permutations

The easiest way to describe a braid is to write it as a word on σi’s. But there
is no unique way to do this. For example, all the words in the following for-
mula represent the same braid ∆4 in Figure 2(a), where the defining relations,
σ1σ2σ1 = σ2σ1σ, σ2σ3σ2 = σ3σ2σ3 and σ1σ3 = σ3σ1, are applied to the under-
lined subwords.

∆4 = σ1σ2σ3σ1σ2σ1 = σ1σ2σ3σ2σ1σ2 = σ1σ3σ2σ3σ1σ2

= σ3σ1σ2σ1σ3σ2 = σ3σ2σ1σ2σ3σ2 = σ3σ2σ1σ3σ2σ3

In 1947, Artin proved that a braid can be described uniquely as an automor-
phism of the free group of rank n [3]. In late sixties, Garsides solved the word
problem after exploring the properties of the semigroup of positive words in [16]
and his idea was improved by Thurston [14], Elrifai-Morton [13] and Birman-
Ko-Lee [6]. They showed that there is a fast algorithm to compute the canonical
form, which is unique for their results briefly.
Before stating the theorem, we introduce the notions of the permutation braid

and the fundamental braid. To each permutation π = b1b2 · · · bn, we associate
an n-braid A that is obtained by connecting the upper i-th point to the lower
bi-th point by a straight line and then making each crossing positive, i.e. the
line between i and bi is under the line between j and bj if i < j. For example if
π = 4213, then A = σ1σ2σ1σ3 as in Figure 2(b).
The braids made as above is called a permutation braid or a canonical factor

and Σ̃n denotes the set of all permutation braids. The correspondence from
a permutation π to a canonical factor A is a right inverse of ρ:Bn → Σn as
a set function. So the cardinality of Σ̃n is n!. The permutation braid can be
characterized by the property that every crossing is positive and any pair of
strands crosses at most once [13, 14].
The permutation braid corresponding to the permutationΩn = n(n−1) · · · (2)1

is called the fundamental braid and denoted by ∆n. If there is no confusion on
the braid index, we drop the subscript to write just ∆. See Figure 2(a) for an
example.
The following theorem gives a method to describe a braid. It is Theorem 2.9

of [13], where they proved the theorem for the positive words, and then discuss
the general words in the next section. The notion of left-weightedness will be
explained right after.

171

(a) the fundamental braid ∆4 (b) the braid A ∈ Σ̃n corresponding to π = 3124

Fig. 2. The permutation braid and the fundamental braid

Theorem 1. For any W ∈ Bn, there is a unique representation, called the left-
canonical form, as

W = ∆uA1A2 · · ·Ap, u ∈ ZZ, Ai ∈ Σ̃n \ {e,∆},

where AiAi+1 is left-weighted for 1 ≤ i ≤ p− 1.

So we can describe a braidW = ∆uA1A2 · · ·Ap by a tuple (u, π1, π2, . . . , πp),
where the canonical factor Ai corresponds to the permutation πi. Here p is called
the canonical length, denoted by len(W), of W . We will use this description
when implementing cryptosystems. Now we explain briefly the idea of Garside,
Thurston, Elrifai-Morton and Birman-Ko-Lee, following the paper of Elrifai-
Morton [13].

1. Note that the relations in the group presentation (∗) relate two positive
words with same word length. Let B+

n be the semigroup defined by the
generators and relations in the presentation. Garside proved that the natural
homomorphism :B+

n → Bn is injective [16]. Thus two positive words P and
Q are equivalent in Bn if and only if P and Q are equivalent in B

+
n .

2. For a positive word P , the starting set S(P) and the finishing set F (P) is
defined by

S(P) = {i | P = σiP
′ for some P ′ ∈ B+

n },

F (P) = {i | P = Q′σi for some Q
′ ∈ B+

n }.

For a canonical factor A corresponding to a permutation π ∈ Σn, S(A) =
{i | π(i) > π(i+1)} [14] and similarly F (A) = {i | π−1(i) > π−1(i+1)}. We
note that S(A) is just the descent set [33] defined in the combinatorics. So
for ∆4 in Figure 2(a), S(∆4) = F (∆4) = {1, 2, 3} and for A = σ1σ2σ1σ3 in
Figure 2(b), S(A) = {1, 2} and F (A) = {1, 3}.

3. The fundamental braid ∆ has the following two properties.
(a) For each 1 ≤ i ≤ n − 1, ∆ = σiAi = Biσi for some permutation braids

Ai and Bi.
(b) For any 1 ≤ i ≤ n− 1, σi∆ = ∆σn−i.

172

For an arbitrary word W on σi’s, we can replace each occurrence of σ
−1
i by

the formula σ−1
i = ∆−1Bi from the first property and collect ∆

−1’s to the
left by using the second property to get the expression W = ∆uP , P ∈ B+

n .
4. For any positive word P , there is a unique decomposition, which is called
the left-weighted decomposition as follows:

P = A1P1, A1 ∈ Σ̃n, P1 ∈ B+
n , F (A1) ⊃ S(P1).

By iterating the left-weighted decomposition P = A1P1, P1 = A2P2, . . .,
and then collecting ∆’s to the left, we have the left-canonical form

P = ∆uA1A2 · · ·Ap, u ∈ ZZ, Ai ∈ Σ̃n \ {e,∆},

where AiAi+1 is left-weighted. (In fact, AiAi+1 is left-weighted for all 1 ≤
i < p if and only if Ai(Ai+1 · · ·Ap) is left-weighted for all 1 ≤ i < p.) This
left canonical form is unique.

5. By combining 3 and 4, we have the left-canonical form for arbitrary braids
as in Theorem 1.

Theorem 2. 1. Let W be a word on σi’s with word length `. Then the left-

canonical form of W can be computed in time O(`2n log n).
2. Let U = ∆uA1 · · ·Ap and V = ∆vB1 · · ·Bq be the left-canonical forms

of n-braids. Then we can compute the left-canonical form of UV in time

O(pqn log n).
3. If U = ∆uA1 · · ·Ap is the left-canonical form of U ∈ Bn, then we can

compute the left-canonical form of U−1 in time O(pn).

Proof. The proofs of 1 and 2 are in [14]. The left-canonical form of U−1 is
given by U−1 = ∆−u−pA′p · · ·A

′
1, where A

′
i is the permutation braid such that

∆ = Ai(∆
u+iA′i∆

−u−i) [13]. Let πi and Ω be the permutations corresponding to
Ai and ∆. Then A

′
i is the permutation braid corresponding to the permutation

π′ = Ω−u−i(π−1
i Ω)Ωu+i. Since Ω2 is the identity, we can compute π′i in O(n).

Thus we can compute the whole left-canonical form of U−1 in time O(pn) as
desired. ut

In order to analyze the security against brute force attacks, we will need a
lower bound for the number of n-braids of a given canonical length. The estimate
given in the following theorem has some room to improve.

Theorem 3. The number of n-braids of canonical length p is at least (b n−1
2
c!)p.

Proof. Since bn−1
2
c = r for n = 2r + 1 and n = 2r + 2, and clearly there are

more (2r + 2)-braids than (2r + 1)-braids of a fixed canonical length, we may
assume that n = 2r + 1. Consider the two subsets of the Σ̃n.

S =
{

A ∈ Σ̃n | S(A) ⊂ {1, 2, . . . , r} and F (A) ⊃ {2, 4, . . . , 2r}
}

T =
{

A ∈ Σ̃n | S(A) ⊂ {2, 4, . . . , 2r} and F (A) ⊃ {1, 2, . . . , r}
}

173

(a) The construction of element of S (b) The construction of element of T

Fig. 3.

We will show that there are injective functions from Σr → S and Σr → T . It
is easy to see that the functions are not surjective and so |S| > r! and |T | > r!.
Since for any A ∈ S and B ∈ T , AB and BA are left-weighted, there are at least
(r!)p n-braids of canonical length p and so we are done.
For a permutation π′ ∈ Σr, we construct a canonical factor A in S by defining

the corresponding permutation π ∈ Σ2r+1 by

π(i) =

2π′(i) + 1 for 1 ≤ i ≤ r,
1 if i = r + 1,
2(i− r − 1) for r + 2 ≤ i ≤ 2r + 1.

See Figure 3(a) for an illustration for r = 3. For r + 1 ≤ i ≤ 2r, π(i) < π(i+ 1)
so that i 6∈ S(A). Thus S(A) ⊂ {1, 2, . . . , r}. And since π−1(2i) ≥ r + 1 and
π−1(2i+ 1) ≤ r, 2i ∈ F (A) for any 1 ≤ i ≤ r. So F (A) ⊃ {2, 4, . . . , 2r}.
Similarly, for a permutation π′ ∈ Σr, we construct a canonical factor A in T

by defining the corresponding permutation π ∈ Σ2r+1 by

π(2i− 1) = (r + 2)− i for 1 ≤ i ≤ r + 1,
π(2i) = (r + 1) + π′(i) for 1 ≤ i ≤ r.

See Figure 3(b) for an illustration for r = 3. Since π(2i− 1) = (r+2)− i ≤ r+1
and π(2i) = (r + 1) + π′(i) > r + 1, (2i − 1) 6∈ S(A) for 1 ≤ i ≤ r. Thus
S(A) ⊂ {2, 4, . . . , 2r}. And since π−1(i) = 2r− 2i+3 > 2r− 2i+1 = π−1(i+1)
for 1 ≤ i ≤ r, F (A) ⊃ {1, 2, . . . , r}. ut

2.3 Hard problems in the braid group

We describe some of problems in braid groups that are mathematically hard and
may be interesting in cryptography.
We say that x and y are conjugate if there is an element a such that y =

axa−1. And for m < n, Bm can be considered as a subgroup of Bn generated by
σ1, . . . , σm−1.

174

1. Conjugacy Decision Problem

Instance: (x, y) ∈ Bn ×Bn.
Objective: Determine whether x and y are conjugate or not.

2. Conjugacy Search Problem

Instance: (x, y) ∈ Bn ×Bn such that x and y are conjugate.
Objective: Find a ∈ Bn such that y = axa−1.

3. Generalized Conjugacy Search Problem

Instance: (x, y) ∈ Bn ×Bn such that y = bxb−1 for some b ∈ Bm, m ≤ n.
Objective: Find a ∈ Bm such that y = axa−1.

4. Conjugacy Decomposition Problem

Instance: (x, y) ∈ Bn ×Bn such that y = bxb−1 for some b ∈ Bm, m < n.
Objective: Find a′, a′′ ∈ Bm such that y = a′xa′′.

5. p-th Root Problem

Instance: (y, p) ∈ Bn × ZZ such that y = xp for some x ∈ Bn

Objective: Find z ∈ Bn such that y = zp.

6. Cycling1 Problem

Instance: (y, r) ∈ Bn × ZZ such that y = cr(x) for some x ∈ Bn

Objective: Find z ∈ Bn such that y = cr(z).

7. Markov Problem

Instance: y ∈ Bn such that y is conjugate to a braid of the form wσ±1
n−1 for

some w ∈ Bn−1

Objective: Find (z, x) ∈ Bn ×Bn−1 such that zyz
−1 = xσ±1

n−1.

The Conjugacy Decision Problem and the Conjugacy Search Prob-

lem are very important because there are many topologically important prob-
lems defined up to conjugacy. But they are so difficult that there is no known
polynomial time algorithm to solve this problem. The Generalized Conju-

gacy Search Problem is a generalized version of the conjugacy problem,
which has a restriction on the braid that conjugates x. We will use this problem
to propose an one-way function in §3. The Conjugacy Decomposition Prob-

lem is trivial for m = n and is easier than Generalized Conjugacy Search

Problem. We conjecture that Generalized Conjugacy Search Problem

is equivalent to Conjugacy Decomposition Problem for some choices of x.
The security of the key agreement scheme proposed in §3 are in fact based on
Conjugacy Decomposition Problem.

It seems that one can write down potential one-way functions from the above
problems. Furthermore since we can always extract a fixed number of factors at
the designated position in a canonical form of a braid, it may be possible to design
potential (keyed) hash functions from a combination of the above problems.

Finally we remark that the Markov Problem is closely related to the
study of knots and links via braids. As every knot theorist dreams of a complete
classification of knots and links, this problem should be hard.

1 For an n-braid x = ∆uA1 · · ·Ap in the left-canonical form, the cycling of x is defined
by c(x) = ∆uA2 · · ·Apτ

u(A1), where the automorphism τ :Bn → Bn is defined by
τ(σi) = σn−i for i = 1, . . . , n− 1.

175

3 The cryptosystem using braid groups

In this section, we propose a one-way function based on the difficulty of the
Generalized Conjugacy Search Problem. Also we propose a key agree-
ment scheme and a PKC using the proposed one-way function. But we don’t
have a digital signature scheme based on the braid groups yet.
Note: All the braids in this section are supposed to be in the left-canonical

form. For example, for a, b ∈ Bn, ab means the left-canonical form of ab and so
it is hard to guess its factors a or b from ab.

3.1 Proposed one-way function

We consider two subgroups LB` and RBr of B`+r. LB` (resp. RBr) is the
subgroup of B`+r consisting of braids made by braiding left ` strands(resp. right
r strands) among `+r strands. Thus LB` is generated by σ1, . . . , σ`−1 and RBr is
generated by σ`+1, . . . , σ`+r−1. An important role is played by the commutative
property that for any a ∈ LB` and b ∈ RBr, ab = ba.
Now we propose the following one-way function

f :LB` ×B`+r → B`+r ×B`+r, f(a, x) = (axa−1, x).

It is a one-way function because given a pair (a, x), it is easy to compute axa−1

but all the known attacks need exponential time to compute a from the data
(axa−1, x). This one-way function is precisely based on the Generalized Con-

jugacy Search Problem.
The securities of our key agreement scheme and PKC are based on the diffi-

culty of the following problem.

[Base Problem]
Instance: The triple (x, y1, y2) of elements in B`+r such that y1 = axa−1

and y2 = bxb−1 for some hidden a ∈ LB` and b ∈ RBr.
Objective: Find by1b

−1(= ay2a
−1 = abxa−1b−1).

We do not know whether this problem is equivalent to the Generalized

Conjugacy Search Problem, even though the latter problem implies the
former problem. The two problems seem to have the almost same complexity
and this phenomenon is similar to the case of the Diffie-Hellman problem and
the discrete logarithm problem.
The role of x is similar to that of g in the Diffie-Hellman problem to find

gxy from gx and gy. In order to make our base problem hard, x must be suffi-
ciently complicated by avoiding the “reducible” braids x1x2z where x1 ∈ LB`,
x2 ∈ RBr and z is a (` + r)-braid that commutes with both LB` and RBr

as depicted in Figure 4 for ` = r = 3. If x were decomposed into x1x2z, then
by1b

−1 = (ax1a
−1)(bx2b

−1)z would be obtained from y1 = (ax1a
−1)x2z and

y2 = x1(bx2b
−1)z without knowing a and b. It is shown by Fenn-Rolfsen-Zhu in

[15] that (` + r)-braids that commute with RBr (or LB`) are of the form x1z
(or x2z, respectively) up to full twists ∆

2
` and ∆2

r of left ` strands and right r

176

Fig. 4. An example of reducible braid

strands. The probability for a randomly chosen (`+ r)-braid of canonical length
q to be reducible is small, that is, roughly (`!r!/(`+ r)!)q.

Conjugacy Decomposition Problem also implies the base problem since
for a′, a′′ ∈ LB` such that a

′xa′′ = y1, we have a
′y2a

′′ = a′bxb−1a′′ = ba′xa′′b−1 =
by1b

−1. We note that Conjugacy Decomposition Problem is trivial if x is
reducible. Thus a necessary condition on x for which Conjugacy Decompo-

sition Problem becomes equivalent to Generalized Conjugacy Search

Problem is that x is not reducible. A sufficient condition on x is that xcx−1 is
not in Bm for each nontrivial c ∈ Bm. But we do not have a good characteriza-
tion of this sufficient condition yet and further study on the choice of x may be
required to maintain the soundness of our base problem.
Recall the surjection ρ:Bn → Σn into the permutation group. In order to

prevent adversaries from computing ρ(a) and ρ(b) by looking at ρ(x), ρ(y1) and
ρ(y2), x should be a pure braid so that ρ(y1) and ρ(y2) as well as ρ(x) are the
identity.

3.2 Key agreement

Now we propose a key agreement system between A(lice) and B(ob). This is the
braid group version of the Diffie-Hellman key agreement system.

1. Preparation step: An appropriate pair of integers (`, r) and a sufficiently
complicated (`+ r)-braid x ∈ B`+r are selected and published. The require-
ment to be sufficiently complicated has been discussed in §3.1.

2. Key agreement: Perform the following steps each time a shared key is
required.
(a) A chooses a random secret braid a ∈ LB` and sends y1 = axa−1 to B.
(b) B chooses a random secret braid b ∈ RBr and sends y2 = bxb−1 to A.
(c) A receives y2 and computes the shared key K = ay2a

−1.
(d) B receives y1 and computes the shared key K = by1b

−1.

Since a ∈ LB` and b ∈ RBr, ab = ba. Thus

ay2a
−1 = a(bxb−1)a−1 = b(axa−1)b−1 = by1b

−1

177

and so Alice and Bob obtain the same braid.
Since the Anshel-Anshel-Goldfeld’s key agreement in [2] is also based on

combinatorial groups and conjugacy problems, it seems necessary to discuss
the difference between our key agreement and the Anshel-Anshel-Goldfeld’s key
agreement. The points of their algebraic key establishment protocol in [2] are the
homomorphic property of an one-way function and the public key of multiple
arguments. But our key agreement relies neither on the homomorphic property
nor on the public key of multiple arguments.
The group theoretic application in [2] uses the following generalization of the

usual conjugacy search problem:

Given words t1, . . . , tk, and at1a
−1, . . . , atka

−1 in a group G, find such a
word a in G.

On the other hand our key agreement is based on another generalization of the
conjugacy search problem as follows:

Given words x and axa−1 in a group G and given a subgroup H of G, find
such a word a in H.

We believe that the two generalizations are independent each other, especially
for the braid group Bn and its subgroup LB` under our current mathematical
knowledge.
It should be also noted that the trapdoors of two key agreements are dis-

tinct. Our scheme uses the commutativity between two subgroups LB` and RBr.
On the other hand the Anshel-Anshel-Goldfeld’s scheme uses the homomorphic
property of conjugations, that is, (asa−1)(ata−1) = asta−1.

3.3 Public-key cryptosystem

By using the key agreement system in §3.2, we construct a new PKC. Let
H:B`+r → {0, 1}k be an ideal hash function from the braid group to the message
space.

1. Key generation:
(a) Choose a sufficiently complicated (`+ r)-braid x ∈ B`+r.
(b) Choose a braid a ∈ LB`.
(c) Public key is (x, y), where y = axa−1; Private key is a.

2. Encryption: Given a message m ∈ {0, 1}k and the public key (x, y).
(a) Choose a braid b ∈ RBr at random.
(b) Ciphertext is (c, d), where c = bxb−1 and d = H(byb−1)⊕m.

3. Decryption: Given a ciphertext (c, d) and private key a, compute m =
H(aca−1)⊕ d.

Since a and b commute, aca−1 = abxb−1a−1 = baxa−1b−1 = byb−1. SoH(aca−1)⊕
d = H(byb−1) ⊕ H(byb−1) ⊕ m = m and the decryption recovers the original
braid m.

178

Because H is an ideal hash function, our PKC is semantically secure relative
to the decisional version of our base problem; if the adversary can compute some
information of the message from the public key and the ciphertext, (s)he can
also compute some information of byb−1 = abxa−1b−1 from x, axa−1 and bxb−1.
We hope that one can make a semantically secure PKC using the proposed

one-way function without assuming the hash function to be an ideal hash func-
tion.

4 The theoretic operating characteristics and

implementation

In this section, we discuss the theoretic operating characteristics of our PKC and
the security/message length parameters for future implementations. Because our
PKC has not been fully implemented yet as a computer program, we can not
compare its speed with other PKC’s. But we can report the speed of a conversion
algorithm into left canonical forms that is the essential part of our PKC
Recall that our PKC uses three braids x ∈ B`+r, a ∈ LB` and b ∈ RBr,

and the ciphertext is (bxb−1, H(abxa−1b−1) ⊕m). When we work with braids,
we should consider two parameters, the braid index and the canonical length.
For simplicity, we assume that the braid indexes in our PKC are ` = r = n

2
and

the canonical lengths are len(x) = len(a) = len(b) = p. The followings are the
discussions about the operating characteristics of our PKC, which is summarized
in Table 1.

1. An n-permutation can be represented by an integer 0 ≤ N < n!. Since
n! ∼ exp(n log n), a braid with p canonical factors can be represented by a
bit string of size pn log n.

2. For braids y1, y2 ∈ Bn, len(y1y2) ≤ len(y1) + len(y2) and for y1 ∈ LB`, y2 ∈
RBr, len(y1y2) = max{len(y1), len(y2)}. So len(bxb

−1) and len(abxa−1b−1)
are at most 3p. For generic choices of a, b, and x, they are no less than 2p.
Thus we assume that len(bxb−1) and len(abxa−1b−1) are between 2p and 3p.

3. The size of the private key a is p` log ` ∼ pn
2
log n

2
∼ 1

2
pn log n.

4. The size of the public key bxb−1 is at most 3pn log n.
5. By Theorem 3, the number of n braids with 2p canonical factors is at least
the exponential of

log
(⌊

n−1
2

⌋

!
)2p
= 2p log

(⌊

n−1
2

⌋

!
)

∼ 2p log
(

n
2
!
)

∼ 2p · n
2
· log n

2
∼ pn log n.

Thus we may let the bit length of H(abxa−1b−1) equal pn log n and so the
message length is also pn log n. Since the bit size of bxb−1 is at most 3pn log n,
the size of ciphertext is at most 3pn log n + pn log n = 4pn log n. Hence the
message expansion is less than 4-1.

6. As noted earlier, the encryption/decryption speed is O(p2n log n).
7. The hardness of the brute force attack to compute a from axa−1, or equiva-
lently to compute b from bxb−1, is proportional to (`!)p = (n

2
!)p ∼ exp(1

2
pn log n).

179

Plaintext block pn logn bits

Ciphertext block 4pn logn bits

Encryption speed O(p2n logn) operation

Decryption speed O(p2n logn) operation

Message expansion 4-1

Private key length 1
2
pn logn bits

Public key length 3pn logn bits

Hardness of brute force attack (n
2
!)p ∼ exp(1

2
pn log n)

Table 1. The operating characteristics of our PKC

Both the security level and the message length are affected at the same extent
by p and n log n, but the speed is quadratic in p and linear in n log n. Thus it is
better to increase n rather than p in order to increase the security level.
Table 2 shows speed of the canonical form algorithm in the braid group. It

is the total ellapsed time of our C-program which takes a pair of integers (n, s),
and then generates s random canonical factors A1, . . . , As, and then computes
the left-canonical form of A1 · · ·As in Pentium III 450MHz. The table shows
that the multiplication in braid groups is efficient.
The C-program inputs pairs (n, s) and outputs the ellasped time t. The other

entries in Table 2 are computed from (n, s) and t as follows:

1. Let p = d s
3
e+1 be the canonical length of the fixed braid x of our PKC. Let

q = n−p
2
. Then we consider the PKC, where len(x) = p, len(a) = len(b) = q.

2. The expected message length k is computed by p log n!.
3. Kbits/(sec) is computed by k/(210t).
4. Hardness of brute force attack is computed by log(n

2
!)q.

Braid Expected Ellapsed Hardness of
s p index message time t Kbits/(sec) brute force

n length k (sec) attack

11 5 50 1071 0.0112 93.4 251

11 5 70 1662 0.0210 77.3 399

11 5 90 2294 0.0344 65.2 559

17 7 50 1499 0.0173 84.6 418

17 7 70 2327 0.0325 69.9 665

17 7 90 3212 0.0532 59.0 931

32 12 50 2570 0.0326 77.0 837

32 12 70 3989 0.0611 63.8 1329

32 12 90 5507 0.1037 51.9 1863

Table 2. The performance of the algorithm converting into the left canonical forms.

180

5 Security analysis

In this section, we analyze the security of the proposed encryption scheme.

5.1 Similarity with ElGamal scheme

Our PKC is similar to the ElGamal PKC in design and it has the following
properties.

1. The problem of breaking our PKC is equivalent to solving the base problem,
as breaking the ElGamal PKC is equivalent to solving the Diffie-Hellman
problem. In the proposed scheme, the ciphertext is

(c, d) = (bxb−1, H(abxa−1b−1)⊕m)

and decrypting the ciphertext into a plaintext m is equivalent to knowing
abxa−1b−1.

2. Like any other probabilistic PKC’s, it is critical to use different key b for
each session: If the same session key b is used to encrypt both of m1 and m2

whose corresponding ciphertexts are (c1, d1) and (c2, d2), then m2 can be
easily computed from (m1, d1, d2) because H(byb

−1) = m1 ⊕ d1 = m2 ⊕ d2.

5.2 Brute force attack

A possible brute force attack is to compute a from axa−1 or b from bxb−1, which
is just an attack to Generalized Conjugacy Search Problem. Assume
that we are given a pair (x, y) of braids in B`+r, such that y = axa−1 for some
a ∈ LB`. The braid a can be chosen from an infinite group LB` in theory. But in
a practical system, the adversary can generate all braids a = ∆uA1 . . . Ap in the
canonical form with some reasonable bound for p and check whether y = axa−1

holds. The necessary number is at least (`−1
2
!)p by Theorem 3. If ` = 45 and

p = 2, then (`−1
2
!)p > 2139, which shows that the brute force attack is of no use.

We note that there might be another a′ ∈ LB` such that y = a′xa′−1. Then
a−1a′ must be a member of the centralizer C(x) of x. For a generic x and a
fixed canonical length, the probability for a braid in LB` to be a member of
C(x) ∩ LB` seems negligible, that is, it is hard to find such an a

′ different from
a.

Another possible brute force attack is to find a′ ∈ LB` such that x
−1a−1a′x ∈

LB`, which is an attack to Conjugacy Decomposition Problem. As we con-
jectured earlier, there are choices of x so that Conjugacy Decomposition

Problem implies Generalized Conjugacy Search Problem, that is, such
an a′ must equals to a. Thus we need to concern only about an attack to Gen-

eralized Conjugacy Search Problem.

181

5.3 Attack using the super summit set

The adversary may try to use a mathematical solution to the conjugacy problem
by Garside [16], Thurston [14], Elrifai-Morton [13] and Birman-Ko-Lee [6]. But
the known algorithms find an element a ∈ B`+r, not in LB`. Hence the attack
using the super summit set will not be successful.

6 Further study

1. We think that further primitives and cryptosystems can be found by using
hard problems in the braid groups. For example, a new digital signature
scheme is waiting for our challenge.

2. Generalized Conjugacy Search Problem implies Conjugacy De-

composition Problem that in turn implies the base problem in §3.1. We
would like to know what choice of x makes these three problems equiva-
lent. If this question is too challenging, it is nice to know a practical suffi-
cient condition on x that makes the first two problems equivalent. It seems
hard to prove directly that Conjugacy Decomposition Problem or the
base problem are intractible. On the other hand,Generalized Conjugacy

Search Problem seems mathematically more interesting and so it could
attract more research.

3. We may try to use other groups with an one-way function based on the
conjugacy problem and so on. To support our ideas, the group must have
the following properties.
– The word problem should be solved by a fast algorithm. It would be
much better if the word problem is solved by a fast algorithm which
computes a canonical form. For example, the automatic groups may be
good candidates [14, 25].

– The conjugacy problem must be hard. The permutation group does not
satisfy this requirement.

– It should be easy to digitize the group element.
Our idea can be applied to matrix groups. In particular, for an n-braid, we
can compute its image of Burau representation [5], which is an n×n matrix
in GLn(ZZ[t, t

−1]). One might expect that the conjugacy problem in this
matrix group is easier than in the braid groups. But it does not seem so.
And it is not easy to encode the message into a matrix and vice versa.

Acknowledgement

We wish to thank Dan Boneh, Mike Brenner and anonymous referees for their
valuable comments and suggestions. The first two authors also wish to thank
Joan Birman for her kind introduction of the braid theory and her continuing
encouragement. The first author was supported in part by the National Research
Laboratory Grant from the Ministry of Science and Technology in the program
year of 1999.

182

References

1. I. Anshel and M. Anshel, From the Post-Markov theorem through decision problems

to public-key cryptography, Amer. Math. Monthly 100 (1993), no. 9, 835–844.
2. I. Anshel, M. Anshel and D. Goldfeld, An algebraic method for public-key cryptog-

raphy, Mathematical Research Letters 6 (1999) 287–291.
3. E. Artin, Theory of braids, Annals of Math. 48 (1947), 101–126.
4. C. H. Bennet and G. Brassard, Quantum cryptography: Public key distribution and

coin tossing, Proc. IEEE Int. Conf. Computers, Systems and Signal Processing
(Bangalore, India, 1984), 175–179.

5. J. S. Birman, Braids, links and mapping class groups, Annals of Math. Study, no.
82, Princeton University Press (1974).

6. J. S. Birman, K. H. Ko and S. J. Lee, A new approach to the word and conjugacy

problems in the braid groups, Advances in Math. 139 (1998), 322-353.
7. D. Boneh, Twenty years of attacks on the RSA cryptosystem, Notices Amer. Math.
Soc. 46 (1999), 203–213.

8. G. Brassard, A note on the complexity of cryptography, IEEE Transactions on
Information Theory 25 (1979), 232-233.

9. E. F. Brickell, Breaking iterated knapsacks, Advances in Cryptology, Proceedings
of Crypto ’84, Lecture Notes in Computer Science 196, ed. G. R. Blakley and D.
Chaum, Springer-Verlag (1985), 342–358.

10. P. Dehornoy, A fast method for comparing braids, Advances in Math. 125 (1997),
200-235.

11. W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions
on Informaton Theory 22 (1976), 644–654.

12. T. ElGamal, A public key cryptosystem and a signature scheme based on discrete

logarithms, IEEE Transactions on Information Theory 31 (1985), 469–472.
13. E. A. Elrifai and H. R. Morton, Algorithms for positive braids, Quart. J. Math.

Oxford 45 (1994), no. 2, 479–497.
14. D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson and W. Thurston, Word

processing in groups, Jones & Bartlett, 1992.
15. R. Fenn, D. Rolfsen and J. Zhu Centralisers in the braid group and singular braid

monoid, Enseign. Math. (2) 42 (1996), no. 1-2, 75–96.
16. F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20 (1969),

no. 78, 235–254.
17. M. Garzon and Y. Zalcstein, The complexity of Grigorchuk groups with application

to cryptography, Theoretical Computer Sciences 88 (1991) 83–98.
18. O. Goldreich, S. Goldwasser and S. Halevi, Public-key cryptosystems from lattice

reduction problems, Advances in Cryptology, Proceedings of Crypto ’97, Lecture
Notes in Computer Science 1294, ed. B. Kaliski, Springer-Verlag (1997), 112–131.

19. E. S. Kang, K. H. Ko and S. J. Lee, Band-generator presentation for the 4-braid

group, Topology Appl. 78 (1997), 39-60.
20. K. Komaya, U. Maurer, T. Okamoto and S. Vanston, New public-key schemes bases

on elliptic curves over the ring Zn, Advances in Cryptology, Proceedings of Crypto
’91, Lecture Notes in Computer Science 576, ed. J. Feigenbaum, Springer-Verlag
(1992), 252–266

21. N. Koblitz, Algebraic aspects of cryptography, Algorithms and Computations in
Mathematics 3 (1998) Springer-Verlag, Berlin.

22. J. C. Lagarias, Knapsack public key cryptosystems and Diophantine approximation,
Advances in Cryptology: Proceedings of Crypto ’83, ed. by D. Chaum, Plenum
Publishing (1984), 3–24.

183

23. K. McCurley, A key distribution system equivalent to factoring, Journal of Cryp-
tology 1 (1988), 95–105.

24. R. C. Merkle and M. E. Hellman, Hiding information and signatures in trapdoor

knapsacks, IEEE Transactions on Information Theory 24 (1978), 525–530.
25. L. Mosher, Mapping class groups are automatic, Ann. Math. 142 (1995), 303–384.
26. A. M. Odlyzko, The rise and fall of knapsack cryptosystems, Cryptology and Com-

putational Number Theory, Proc. Symp. App. Math. 42 (1990), 75–88.
27. M. S. Paterson and A. A. Rasborov, The set of minimal braids is co-NP-complete,

J. Algorithms. 12 (1991), 393–408.
28. M. O. Rabin, Digitized signatures and public-key functions as intractible as fac-

torization, MIT Laboratory for Computer Science Technical Report, LCS/TR-212
(1979).

29. R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures

and public key cryptosystems, Communications of the ACM 21 (1978), 120–126.
30. A. Shamir, A polynomial time algorithm for breaking the basis Merkle-Hellman

cryptosystem, Advances in Cryptology: Proceedings of Crypto ’82, ed. by D. Chaum
et al., Plenum Publishing (1983), 279–288.

31. R. Siromoney and L. Mathew, A public key cryptosystem based on Lyndon words,
Information Proceeding Letters 35 (1990) 33-36.

32. P. Smith and M. Lennon, LUC: A new public key system, Proceedings of the IFIP
TC11 Ninth International Conference on Information Security, ed. E. Dougall,
IFIP/Sec 93, 103–117, North-Holland, 1993.

33. R. P. Stanley, Enumerative combinatorics, Wadsworth and Brooks/Cole, 1986.
34. Y. Tsiounis and M. Yung, On the security of Elgamal based encryption, In PKC

’98, Lecture Notes in Computer Science 1431, Springer-Verlag (1998), 117–134.
35. S. Vaudenay, Cryptanalysis of the Chor-Rivest Cryptosystem, Advances in Cryp-

tology: Proceedings of Crypto ’98, Lecture Notes in Computer Science 1462, ed.
Krawczyk, Springer-Verlag (1998), 243–256.

36. H. Williams, Some public-key crypto-funtions as intractible as factorization, Ad-
vances in Cryptology, Proceedings of Crypto ’84, Lecture Notes in Computer Sci-
ence 196, ed. G. R. Blakley and D. Chaum, Springer-Verlag (1985), 66–70.

37. N. R. Wagner and M. R. Magyarik, A public-key cryptosystem based on the word

problem, Advances in Cryptology, Proceedings of Crypto ’84, Lecture Notes in
Computer Science 196, ed. G. R. Blakley and D. Chaum, Springer-Verlag (1985),
19–36.

