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Abstract. We present an efficient and fair protocol for secure two-party
computation in the optimistic model, where a partially trusted third
party T is available, but not involved in normal protocol executions. T

is needed only if communication is disrupted or if one of the two parties
misbehaves. The protocol guarantees that although one party may termi-
nate the protocol at any time, the computation remains fair for the other
party. Communication is over an asynchronous network. All our proto-
cols are based on efficient proofs of knowledge and involve no general
zero-knowledge tools. As intermediate steps we describe efficient verifi-
able oblivious transfer and verifiable secure function evaluation protocols,
whose security is proved under the decisional Diffie-Hellman assumption.

1 Introduction

Secure computation between distrusting parties is a fundamental problem in
cryptology. Suppose two parties A with input x and B with input y wish to
jointly compute a function f(x, y) of their inputs without revealing anything
else than the result. It is known that any function can be computed securely
and with only few rounds of interaction under cryptographic assumptions [36,
26, 25].

However, if the computation should also be fair and give a guarantee that
A learns f(x, y) if and only if B learns f(x, y), two-party protocols inevitably
come at the cost of many rounds of interaction [36]. The reason is that a mali-
cious party could always quit the protocol early, e.g., as soon as it obtains the
information it is interested in, and the other party may not get any output at
all. The only way to get around this are several rounds of interaction, in which
the result is revealed verifiably and gradually bit-by-bit so that a cheating party
has an unfair advantage of at most one bit [36, 9, 15, 8].

This work presents an efficient protocol for fair secure computation using a
third party T to ensure fairness, which is not actively involved if A and B are
honest and messages are delivered without errors. This approach has been pro-
posed for fair exchange (e.g., of digital signatures) by Asokan, Schunter, Shoup,
and Waidner [1, 2] and is known as the optimistic model. Its main benefits are a
small, constant number of rounds of interaction between A and B, independent
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of the security parameter, and the minimal involvement of T . Our secure com-
putation protocol maintains the privacy of one party’s inputs even if T should
collude with the other party (unlike [2]). We achieve this by combining Yao’s
technique for securely evaluating a circuit with efficient zero-knowledge proofs.

We consider actually a more general model of fair secure computation, in
which there are two functions, fA(x, y) and fB(x, y), and A should learn fA(x, y)
if and only if B learns fB(x, y), evaluated on the same inputs.

A key feature of our protocol is that it works in an asynchronous environment
such as the Internet, where messages between A andB might be lost or reordered.

Our protocol is efficient in the sense that its complexity is directly propor-
tional to the size of the circuit computing f and does not involve large ini-
tial costs. All our zero-knowledge proofs and verifiable primitives are based on
proofs of knowledge about discrete logarithms, without resorting to expensive
general zero-knowledge proof techniques involving NP-reductions. Our solution
is of practical relevance for cases where A and B want to compute f with a
small circuit, for example, to evaluate the predicate xA ≥ xB (the “millionaire’s
problem” [35]), which has applications to on-line bidding and auctions.

Baum and Waidner [3] and Micali [29] have observed before that fair two-
party computation is feasible in the optimistic model. They used general tools
and did not focus on efficient protocols for small circuits, however.

1.1 Overview

We build the fair secure computation protocol in several steps and use interme-
diate concepts and protocols that may be of independent interest.

Recall Yao’s approach to secure function evaluation [36]: The circuit con-
structor A scrambles the bits on the wires of the circuit by replacing each with
a random token, encrypting the truth tables of all gates accordingly such that
two tokens together decrypt the corresponding token on the outgoing wire, and
providing the cleartext interpretation for the tokens appearing in the circuit out-
put. It sends the encrypted circuit to B (the circuit evaluator), who obtains the
tokens corresponding to his input bits using one-out-of-two oblivious transfer;
this ensures that he learns nothing about other tokens. B is then able to evalu-
ate the circuit and to compute the output on his own. Note that secure function
evaluation is one-sided because only B learns the output.

Our fair secure computation protocol, presented in Section 6, consists of
two intertwined executions of verifiable secure function evaluation (VFE) on
committed inputs between A and B, plus recovery involving T . Verifiable secure
function evaluation is a protocol (which we define in Section 5) extending Yao’s
construction that computes a given function on committed inputs of A and B.

In order to obtain the initial tokens, A and B use a verifiable oblivious transfer
(VOT) protocol that performs a one-out-of-two oblivious transfer on committed
values (as defined in Section 4).

However, this solution is not sufficient for fair secure computation in the
optimistic model. We need to escrow some information in the VFE construction
such that a third party T can open the result of the computation in case the
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sender refuses to continue or some of its messages are lost. (The escrow protocol
is defined and described in Section 3.4.)

These protocols are based on proofs of knowledge about discrete logarithms
and verifiable encryption. Our notation for proofs of knowledge is introduced in
Section 3.2 and allows to describe modular composition of proofs. For verifiable
encryption we use the methods of Camenisch and Damg̊ard [10] as described
in Section 3.3. Our model for optimistic fair secure two-party computation is
formalized in Section 2.

1.2 Related Work

Beaver, Micali, and Rogaway [6] give a constant-round cryptographic protocol
for multi-party computation. Its specialization to three parties is related to our
three-party model in that it guarantees fairness against one malicious party, but
T needs to be always involved.

Fair protocols for two-party computation (and extensions to multiple parties)
have previously been investigated by Chaum, Damg̊ard, and van de Graaf [13],
by Beaver and Goldwasser [5], and by Goldwasser and Levin [27]. They combine
oblivious circuit evaluation with gradual release techniques to obtain fairness,
but without focus on particularly efficient protocols.

Feige, Kilian, and Naor [24] study an extension of the multi-party secure
computation models using a third party T , which receives a single message, does
some computation, and outputs the function value, but does not learn anything
else about the inputs. Under cryptographic assumptions, every polynomial-time
computable function can be computed efficiently (i.e., in polynomial time) in
their model. In our model, T is not involved in regular computations and only
used in case some party misbehaves.

2 Optimistic Fair Secure Two-Party Computation

2.1 Notation

The security parameter is denoted by k. The random choice of an element x from
a set X with uniform distribution is denoted by x ∈R X . The concatenation of
strings is denoted by ‖.

The statistical difference between two probability distributions PX and PY is
denoted by |PX−PY |. A quantity εk is called negligible (as a function of k) if for
all c > 0 there exists a constant k0 such that εk < 1

kc for all k > k0. The formal
security notion is defined in terms of indistinguishability of probability ensembles
indexed by k, but extension from a single random variable to an ensemble is
assumed implicitly. Two probability ensembles X = {Xk} and Y = {Yk} are

called computationally indistinguishable (written X
c
≈ Y ) if for every algorithm

D that runs in probabilistic polynomial time (in k), the quantity |Prob[D(Xk) =
1]− Prob[D(Yk) = 1]| is negligible.
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2.2 Definition

The parties A, B, and T are probabilistic interactive Turing Machines (PITM)
that communicate via secure channels in an asynchronous environment. Let f :
XA × XB → YA × YB be a deterministic function with two inputs and two
outputs that A and B want to evaluate, possibly using T ’s help. Suppose f can
be evaluated by a polynomial-sized circuit in k (the extension to probabilistic
functions is straightforward and omitted). Let fA : XA × XB → YA denote the
restriction of f to A’s output and let fB : XA×XB → YB denote the restriction
of f to B’s output. A has private input xA and should output fA(xA, xB) and
B has private input xB and should output fB(xA, xB).

These requirements are expressed formally in terms of the simulatability
paradigm for general secure multi-party computation [4, 30, 25, 12], although we
consider only three parties. In this paradigm, the requirements on a protocol
are expressed in terms of an ideal process, where the parties have access to a
universally trusted device that performs the actual computation. A protocol is
considered secure if all an adversary may do in the real world can also happen
in the ideal process; formally, for every real-world adversary there must exist
some adversary in the ideal process such that the real protocol execution is
indistinguishable from execution of the ideal process.

First, one has to define the real-world model and the ideal process. We assume
static corruption throughout this work.

The real-world model. We consider an asynchronous three-party protocol as a
collection (A,B, T ) of PITM. All parties are initialized with the public inputs of
the protocol that includes the function f , T ’s public key yT , and possibly further
parameters of the encryption schemes. The private inputs are xA for A, xB for
B, and zT for T .

There is no global clock and the parties are linked by secure authenticated
channels in the following sense. All communication is driven by the adversary in
form of a scheduler S. There exists a global setM of undelivered messages tagged
with (S,R) that denote sender S and receiver R.M is initially empty. At each
step, S chooses a party P , selects some message M ∈ M with receiver P , and
activates P withM on its communication input tape. IfM is empty, P may also
be activated with empty input. P performs some computation and eventually
writes a message (R, τ) to its communication output tape. The message τ is then
added toM, tagged with (P,R). S repeats this step arbitrarily often and is not
allowed to terminate as long as M contains messages with receiver or sender
equal to T . (In other words, S must eventually deliver all messages between T
and any other party P ∈ {A,B}, but may suppress messages between A and
B.) Honest parties eventually generate an output as prescribed by the protocol
and terminate by raising a corresponding flag; they will not process any more
messages.

An adversary in the real world is an algorithm C that controls S and at
most two of the parties A, B, and T . Parties controlled by the adversary are
called corrupt; we assume their output is empty. The adversary itself outputs
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an arbitrary function of its view, which consists of the information observed by
the scheduler and all messages written to and read from communication tapes
of corrupted parties. W.l.o.g. we assume the adversary is deterministic. For a
fixed adversary C and inputs xA and xB , the joint output of A, B, T , and C,
denoted by OABTC(xA, xB), is a random variable induced by the internal coins
of the honest parties.

The ideal process. The ideal process consists of algorithms Ā, B̄, and T̄ , and
uses on a universally trusted party U to specify all desired properties of the real
protocol. U is parametrized by f . Ā has input xA, B̄ has input xB , and T̄ has
no input. The operation is as follows. Ā sends a message in XA ∪ {⊥} to U , and
B̄ sends a message in XB ∪ {⊥} to U , and T̄ sends two distinct messages to U
in arbitrary order, one containing a value bA ∈ YA ∪ {¦,⊥} and the other one
containing a value bB ∈ YB ∪ {¦,⊥}. Messages are delivered instantly.

U is a device that computes two messages, mA and mB , for Ā and B̄, respec-
tively. Each message is generated as soon as all necessary inputs have arrived.
The message for Ā depends on xA, xB , and bA, and is given by

mA =











fA(xA, xB) if bA = ¦ and xA 6= ⊥ and xB 6= ⊥

⊥ if bA = ¦, but xA = ⊥ or xB = ⊥

bA if bA 6= ¦.

mB is computed analogously from xA, xB , and bB .
Honest parties in the ideal process operate as follows. Ā and B̄ just send

their input to U and T̄ sends bA = ¦ and bB = ¦. Ā and B̄ then wait for an
answer from U , output the received value, and terminate. T̄ halts as soon as it
has sent two messages to U and outputs nothing.

The ideal-process adversary is an algorithm C̄ that controls the behavior of
the corrupted parties in the ideal process. It sees the inputs of a corrupted party
and may substitute them by an arbitrary value before sending the specified mes-
sage to U . The adversary sees also U ’s answer to a corrupted party. Corrupted
parties output nothing, but the adversary outputs an arbitrary function of all
information gathered in the protocol.

For a fixed (deterministic) adversary C̄ and inputs xA and xB , the output of
the ideal process is the concatenation of all outputs, denoted by OĀB̄T̄ C̄(xA, xB).

In contrast to most of the literature using the simulation paradigm for secure
computation, each party (including U) sends a message as soon as it is ready in
this asynchronous specification. This means that an adversary may also delay
the message of a corrupted party until it has obtained the output of another
corrupted party.

Simulatability. We are now ready to state the definition of fair secure computa-
tion. Seemingly separate requirements on a protocol such as correctness, privacy,
and fairness are expressed via the simulatability by an ideal process. Recall that
an adversary in the real world is an algorithm C that controls S and at most
two of the three parties and that C’s output is arbitrary.
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Definition 1. Let f : XA×XB → YA×YB be a function that can be evaluated by
a polynomial-sized circuit. We say that a protocol (A,B, T ) performs fair secure
computation if for every real-world adversary C, there exists an adversary C̄
in the ideal process such that for all xA ∈ XA and for all xB ∈ XB, the joint
distribution of all outputs of the ideal process is computationally indistinguishable
from the outputs in the real world, i.e.,

OABTC(xA, xB)
c
≈ OĀB̄T̄ C̄(xA, xB).

A fair secure computation protocol is called optimistic if whenever all parties
follow the protocol and messages between them are delivered instantly, then T
does not receive or send any message.

Remarks on the above definition.

1. By the design of the ideal process, fairness is only guaranteed if T is not
colluding with A or B. This is unavoidable because a cheating participant of
a two-party protocol may always refuse to send the last message. Protocols
to defend against such misbehavior require a number of rounds of interaction
that is inverse proportional to the cheating probability [36, 9].

2. Conversely, if T is corrupt, then the computation may be unfair and an
honest party, say A, may not receive its output. Moreover, B and T may
still decide to block A after seeing fB and even cause A to output a value
that has nothing to do with fA. This occurs in the ideal process if T̄ colluding
with B̄ delays sending bA until it has observed B̄’s output and then decides
to send bA 6= ¦. But notice that T̄ and B̄ together do not learn more about
Alice’s input than what follows from fB .

3. A stronger requirement would be that T is only permitted to send ¦ or
⊥, but not a substitute for A or B’s output. The current model reflects a
corresponding property of our protocol because T ’s actions in the resolve
protocols are not verifiable. However, by making all proofs non-interactive
and resorting to the random oracle model, our protocol satisfies also this
stronger requirement.

4. Our model applies only to an isolated three-party case (as is customary in
the literature on secure computation). A multi-user model that allows for
concurrent execution of multiple protocol instances can be constructed by
combining our model with techniques proposed by Asokan et al. [2]. Basically,
a unique transaction identifier has to be added to all messages and techniques
for concurrent composition of zero-knowledge proofs have to be used [20].

3 Proofs of Knowledge and Verifiable Encryption

This section introduces our notation for proofs of knowledge about discrete log-
arithms, the notion for verifiable encryption, and our escrow scheme. It starts
with a description of the underlying encryption schemes.
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3.1 Preliminaries

A semantically secure public-key cryptosystem (Ek, Dk) with security parameter
k consists of a (public) probabilistic encryption algorithm Ek(·) and a (secret)
decryption algorithm Dk(·). The encryption algorithm Ek :M→ C takes a mes-
sage m ∈M and outputs a ciphertext c; the corresponding decryption algorithm
Dk : C →M computes m from c.

Semantic security asserts that an eavesdropper cannot get partial informa-
tion about the plaintext from a ciphertext [28]. More precisely, (Ek, Dk) is a
semantically secure public-key system if for two arbitrary messages m0 and m1,
the random variables representing the two encryptions Ek(m0) and Ek(m1) are
computationally indistinguishable.

The protocols in this paper are mostly based on ElGamal encryption [22].
Let G be a group of large prime order q (polynomial in k) and let g ∈ G be
a randomly chosen generator. An ElGamal public key is (g, y) for y = gx with
a randomly chosen x ∈ Zq and the corresponding secret key is x. ElGamal
encryption of a message m ∈ G proceeds as follows:

Algorithm ElGamal(g, y)(m)

1. choose a random r ∈ Zq;
2. compute and output (c, c′) = (gr,myr).

The decryption algorithm computes m = c′/cx and outputs m.
Consider the two distributions over G4 with D0 = (g, g

x, gy, gz) for x, y, z ∈R
Zq and D1 = (g, gx, gy, gxy) for x, y ∈R Zq. The Decisional Diffie-Hellman
(DDH) assumption is that there exists no probabilistic polynomial-time (PPT)
algorithm that distinguishes with non-negligible probability between D and R.
By a random self-reduction property [34, 31], the DDH assumption is equivalent
to assuming that there is no PPT algorithm that decides with high probability
for all tuples (g, gx, gy, gz) if z = xy mod q. It is well known that ElGamal
encryption is semantically secure under the DDH assumption.

Using a hybrid argument, one can show that also the two distributions

M0 = (g, g
x1 , . . . , gxn , gy1 , . . . , gym , gz1 , . . . , gznm)

with xi, yj , zij ∈R Zq and

M1 = (g, g
x1 , . . . , gxn , gy1 , . . . , gym , gx1y1 , . . . , gxnym)

with xi, yj ∈R Zq for i = 1, . . . , n and j = 1, . . . ,m are computationally indis-
tinguishable under the DDH Assumption. The argument is essentially the same
as the one by Naor and Reingold [31].

3.2 Proofs of Knowledge about Discrete Logarithms

We introduce a notation for describing proofs of knowledge about discrete log-
arithms. Such three-move proofs of knowledge can be composed efficiently in
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parallel and in a modular way, as shown by Cramer, Damg̊ard, and Schoemak-
ers [17]. The notation was first used by Camenisch and Stadler [11] and subsumes
several discrete logarithm-based proof techniques (see the references therein).
Our extension allows to describe modular composition.

Let G be a group of large prime order q and let g, g1 ∈ G be generators such
that logg g1 is not known (e.g. provided by a trusted dealer).

The simplest example of such a proof is the proof of knowledge of a discrete
logarithm of y ∈ G [33]. For reference, we recall some of properties of this
protocol between a prover P and verifier V . Public inputs are (g, y) and P ’s
private input is x such that y = gx. First, P computes a commitment t = gr with
r ∈R Zq and sends it to V . Then V sends to P a random challenge c ∈ {0, 1}k

′

,
to which P responds with s = r − cx mod q, where k′ is a security parameter.
V accepts if and only if t = gsyc. We denote this protocol by

PK log(g, y)

{ξ : y = gξ}.

The witness(es) are conventionally written in Greek letters and only known to
the prover while all other parameters are known to the verifier as well.

Unlike the simplifying description above, we assume that all proofs here are
actually three-move concurrent zero-knowledge protocols, i.e., carried out using
trapdoor commitments for the first message t. Such trapdoor commitments may
be constructed, for example, using an additional generator h ∈ G, which is chosen
at random by a trusted dealer or is determined in a once-and-for-all setup phase;
the zero-knowledge simulator can extract the trapdoor logg h from this. It will
allow the simulator to open a given commitment t in an arbitrary way upon
receiving a challenge c because it can compute suitable s from the trapdoor,
without having to rewind the verifier (for more details see, e.g., [20]); this allows
also arbitrarily large challenges (i.e., k′ = O(k)).

This basic protocol can be extended in many ways. For example,

PK rep(g, g1, y)

{ξ, ρ : y = gξg1
ρ}

denotes a proof of knowledge of a representation of y with respect to g and g1.

Proofs written in this notation may be composed in a modular way. It is
known that this is sound for monotone boolean expressions from the results of
Cramer et al. [17]. For instance, the prover can convince the verifier that he
knows the representation of at least one of x and y w.r.t. bases g and g1 with

PK or(g, g1, x, y)

{rep(g, g1, x) ∨ rep(g, g1, y)}.

It is also possible to prove that two discrete logarithms (or parts of repre-
sentations) are equal [14]. We give an example of this technique. It shows that
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a commitment z contains the product modulo q of the two values committed to
in x and y:

PK mul(g, g1, x, y, z)

{α, β, γ, δ, ε : x = gαg1
γ ∧ y = gβg1

δ ∧ z = yαg1
ε}.

This works also for z = gag1
r with r = 0 and arbitrary a ∈ Zq, which is needed

in Section 5.

When such proofs are combined, some optimizations are often possible, just
like in assembly code that is produced by a compiler from a high-level language.
An example that occurs in Section 5 is that multiple parallel commitments to
the same value are introduced, where only one of them is needed.

3.3 Verifiable Encryption

Verifiable encryption is an important building block here and has been used for
publicly verifiable secret sharing [34], key escrow, and optimistic fair exchange [2].
It is a two-party protocol between a prover and encryptor P and a verifier and
receiver V . Their common inputs are a public encryption key E, a public value v,
and a binary relationR on bit strings. As a result of the protocol, V either rejects
or obtains the encryption c of some value s under E such that (s, v) ∈ R. For
instance, R could be the relation (s, gs) ⊂ Zq × G. The protocol should ensure
that V accepts an encryption of an invalid s only with negligible probability and
that V learns nothing beyond the fact that the encryption contains some s with
(s, v) ∈ R. The encryption key E typically belongs to a third party, which is not
involved in the protocol at all.

Generalizing the protocol of Asokan et al. [2], Camenisch and Damg̊ard [10]
provide a verifiable encryption scheme for all relations R that have an honest-
verifier zero-knowledge three-move proof of knowledge where the second message
is a random challenge and the witness can be computed from two transcripts
with the same first message but different challenges. This includes most known
proofs of knowledge, and in particular, all proofs about discrete logarithms from
the previous section. The verifiable encryption scheme is itself a three-move proof
of knowledge of the encrypted witness s and is zero-knowledge if a semantically
secure encryption scheme is used [10].

We use a similar notation as above and denote by, e.g.,

VE (ElGamal, (g, y), tag){ξ : v = gξ}

the verifiable encryption protocol for the ElGamal scheme, whereby logg v along
with tag is encrypted under public key y. The tag , an arbitrary bit string, is
needed for the composition of such protocols, as we will see later. The ciphertext
c is represented by (a function of) the verifier’s transcript of this protocol, which
we abbreviate by writing c← VE (ElGamal, (g, y), tag){ξ : v = gξ}, and is stored
by V .



103

Together with the corresponding secret key (x = logg y in this example), tran-
script c contains enough information to decrypt the witness efficiently. We as-
sume that the corresponding decryption algorithm VD(ElGamal, (g, x), c, string)
is subject to the condition that a tag matching string is encrypted in c; VD

outputs the witness in this case and ⊥ in all other cases.
We refer to Camenisch and Damg̊ard [10] for further details of the verifiable

encryption scheme.

3.4 Escrow Schemes

A (verifiable) escrow scheme [2] is a protocol involving three parties: a sender S,
a receiver R, and a third party T , whose public key yT of an encryption scheme is
known to S and R. We require that T ’s encryption scheme is semantically secure
against adaptive chosen-ciphertext attacks [21]. S has a bit string a as private
input. T ’s private input is zT , the secret key corresponding to yT . Furthermore,
there is a public input string tag for S and R that controls the condition under
which T may resolve the escrow of a.

The operation of an escrow scheme consists of two phases. In the first phase,
only S and R interact. If R accepts Phase I, then he is guaranteed to receive
a in Phase II as long as either S or T is honest. That is, R either receives a
single message from S that will allow him to compute a (and hence T needs not
participate in the protocol at all) or, if this does not happen, R sends T a single
request containing tag , to which T will reply with a.

Several escrow schemes with different tags may be run concurrently among
the same participants.

The security requirements of the escrow scheme are that a malicious R cannot
gain any information on a before Phase II. More precisely, for all bit strings a′,
a′′, and tag , suppose S runs Phase I of the escrow scheme with R∗ on tag and
a ∈ {a′, a′′} chosen at random. Subsequently R∗ interacts arbitrarily with T
subject only to the condition that it never submits a request containing tag to
T ; the escrow scheme is secure if such an R∗ cannot distinguish a = a′ from
a = a′′ with more than negligible probability.

A secure escrow scheme can be implemented easily using verifiable encryption
and a cryptosystem for T that is semantically secure against chosen-ciphertext
attacks. We use the Cramer-Shoup cryptosystem [18], denoted by CS, with public
key yT and private key zT .

In Phase I, S chooses u ∈R Z∗q , computes A = gag1
u, and sends A to R. S

and R also carry out PK rep(g, g1, A) and

out ← VE (CS, yT , tag){α, β : A = gαg1
β}.

In Phase II, S sends a and u to R and R verifies that A = gag1
u. If this check

fails or if R did not receive a message from S, then R sends to T the message
(out , tag). T runs VD(CS, zT , out , tag) and sends the output to R. In either case,
R learns a.

It is easy to see that this is a secure escrow scheme using the security of CS

and the properties of PK and VE.
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4 Verifiable Oblivious Transfer

This section describes a variant of oblivious transfer that is needed for our fair
secure computation protocol. Oblivious transfer, proposed by Rabin [32] and by
Even, Goldreich, and Lempel [23], is a fundamental primitive for multi-party
computation. In its basic incarnation as a one-out-of-two oblivious transfer, a
sender S has two input bits b0 and b1, and a receiver R has a bit c. As a result
of the protocol R should obtain bc, but should not learn anything about bc⊕1
whereas S should not get any information about c.

A verifiable oblivious transfer (VOT) is an oblivious transfer on committed
values, where the sender S has made two commitments A0 and A1, containing
two values a0 and a1, and R has made a commitment C, containing a bit c.
The requirements are that R outputs ac without learning anything about ac⊕1
and that S does not learn anything about c. (A committed oblivious transfer
as described by Crépeau, van de Graaf, and Tapp [19] is a similar protocol
that performs an oblivious transfer of commitments such that R ends up being
committed to ac; Cramer and Damg̊ard [16] give an efficient implementation for
this.)

Suppose the commitments A0, A1, and C are of the form B = gbg1
r for a

randomly chosen r ∈ Zq and committed value b ∈ Zq. In this section, we assume
that corresponding commitments are computed correctly from the inputs a0, a1,
and c. In other words, a commitment oracle receives a0 and a1 from S, chooses
random t0, t1 ∈ Zq, places A0 = ga0g1

t0 and A1 = ga1g1
t1 in the public input,

and returns t0 and t1 to S privately; similarly, it receives c from R, computes
C = gcg1

r using a random r ∈ Zq, places C in the public input and gives r
privately to R. This commitment oracle is an artificial construction for using
VOT as part of a larger protocol. Alternatively, one might assume that S and
R generated and exchanged the commitments beforehand, together with a proof
that they are constructed correctly; this is indeed how VOT is used in Section 6
below.

The following protocol is based on verifiable encryption and the oblivious
transfer constructions by Even et al. [23] and Bellare and Micali [7]. Our no-
tational convention for such protocols is as follows. All inputs are written as
argument lists in parentheses, grouped by the receiving party; the first list con-
tains public inputs, the second list private inputs of the first party (S), the third
list private inputs of the second party (R), and so on.

Protocol VOT(g, g1, A0, A1, C)(a0, a1, t0, t1)(c, r)

1. S as encryptor andR as receiver engage in two verifiable encryption protocols

out0 ← VE (ElGamal, (g1, C ), ∅){α, β : A0 = gαg1
β}

out1 ← VE (ElGamal, (g1,
C

g
), ∅){α, β : A1 = gαg1

β}.

2. If R accepts both of the above protocols, he computes

ac = VD(ElGamal, (g1, r), outc, ∅).
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The above protocol uses R’s commitment C directly as encryption public
key and saves one round compared to the direct adoption of the Bellare-Micali
scheme. The way the commitment C is constructed from c ensures that R knows
logg1(C/gc) = r needed to decrypt outc, but not the discrete logarithm needed
to decipher the other encryption. (The proof of the following lemma is omitted
from this extended abstract.)

Lemma 1. Under the DDH assumption, Protocol VOT is a secure verifiable
oblivious transfer.

5 Verifiable Secure Function Evaluation

Verifiable secure function evaluation (VFE) is an interactive protocol between a
circuit constructor A and an evaluator B. Both parties have as common public
input values CA and CB , representing commitments to their inputs. A has two
private inputs strings: her input string xA and a string rA allowing her to open
CA; likewise, B has two private input strings, xB and rB . Their goal is to evaluate
fB on the committed inputs such that B learns fB(xA, xB).

We assume here, as already in Section 4, that all commitments are computed
correctly from the inputs, which in turn may have been chosen in an arbitrary
way. More precisely, assume A gives xA to a commitment oracle, which com-
putes CA according to the specified commitment scheme using the random bits
rA and returns CA and rA (similarly for B). These are the corresponding com-
mitments used below. (Alternatively, one might assume that A and B generated
and exchanged correct commitments beforehand.)

Given concrete implementations of a parties A and B, a protocol execution
between A and B with inputs CA, CB , xA, xB , rA, and rB defines naturally the
views VA and VB of A and B, respectively, which are families of random variables
determined by the public input, A’s private input, B’s private input, and the
internal random coins. Moreover, if B is deterministic then VB is a random
variable depending only on A’s coin flips.

Definition 2. A verifiable secure function evaluation protocol for a function
fB : XA ×XB → YB between A and B satisfies the following requirements:

Correctness: If A and B are honest and follow the protocol, then ∀xA ∈
XA,∀xB ∈ XB and corresponding commitments, B outputs fB(xA, xB) ex-
cept with negligible probability.

Soundness: ∀A∗ and ∀x∗A ∈ XA and corresponding commitments C∗A, if the
protocol starts with public inputs C∗A, CB, then, except with negligible proba-
bility, B outputs fB(x

∗
A, xB) or ⊥.

Privacy: We consider two cases, corresponding to cheating B and cheating A.
1. Privacy for A: ∀B∗ there exists a probabilistic polynomial-time algorithm
(PPT) SIMB∗ such that ∀xA ∈ XA and ∀x

∗
B ∈ XB with corresponding

commitments CA, C∗B,

VB∗(CA, C∗B , xA, rA, x∗B , r∗B)
c
≈ SIMB∗(CA, C∗B , fB(xA, x∗B), x

∗

B).
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2. Privacy for B: ∀A∗ there exists a PPT algorithm SIMA∗ such that ∀xB ∈
XB and ∀x

∗
A ∈ XA with corresponding commitments C∗A, CB,

VA∗(C∗A, CB , x∗A, r∗A, xB , rB)
c
≈ SIMA∗(C∗A, CB , x∗A).

The soundness condition bindsA to her committed inputs. The corresponding
binding for B is part of the privacy condition for A, which ensures that B is
committed to the value xB at which he evaluates fB before the protocol starts.
This is needed to use the one-sided concept of VFE as a building block for
optimistic fair secure computation below.

5.1 Overview of the Encrypted Circuit Construction

We give a brief description of our protocol and the “encrypted circuit construc-
tion”; it follows the approach to secure function evaluation developed by Yao [36],
but uses public-key encryption instead of pseudo-random functions for the sake of
verifiability. Suppose A’s private input is a binary string xA = (xA,1, . . . , xA,nA

)
and B’s private input is a binary string xB = (xB,1, . . . , xB,nB

); assume further
w.l.o.g. that fB is represented a binary circuit consisting of nand gates.

Protocol VFE(g, g1, CA, CB , fB)(xA, rA)(xB , rB)

V1. A produces an encrypted version of the circuit computing fB . The circuit
consists of gates and wires linking the gates. Except for input and output
wires, each wire connects the output of one gate with the input of one or
more other gate(s). For each wire, A chooses two random tokens s0 and s1,
representing bits 0 and 1 on this wire, and produces unconditionally hiding
commitments u0 and u1 to these tokens.
For each gate, A encrypts the truth table as follows: First, the bits are
replaced by (new) commitments to the tokens representing the bits. Next,
for each row, a “row public key” for encryption is computed and added to
the table such that the corresponding secret key can be derived from com-
bining the two input tokens of the row. Finally, all four rows are permuted
randomly.
These tables and the commitments are sent to B as an ordered list such
that B knows which commitment represents token 0 or 1 etc. Moreover,
A proves to B in zero-knowledge that the commitments and the encrypted
gates are consistent, ensuring (1) that the tokens of the input and output
wires are the same as those committed to in the truth table, (2) that the
secret key for each row of a gate is derived correctly from the input tokens
of the row, and (3) that each encrypted gate implements nand.

V2. For each row of each gate of the circuit, A and B engage in verifiable en-
cryption of the output token under the row public key.

V3. For each of her input bits, A sends to B the corresponding token and proves
to him that this is consistent with her input xA committed in CA. Further-
more, B obtains the tokens representing his input bits through nB verifiable
oblivious transfers from A to B and A opens all the commitments of the
output wires.
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V4. Once B has obtained all this information, he is able to evaluate the circuit
gate by gate on his own.

Suppose w.l.o.g. the circuit consists of n nand gates G1, . . . ,Gn and n+nA+
nB wires W1, . . . , Wn+nA+nB

and has nA + nB inputs and nO outputs. Wires
W1, . . . ,Wn are output wires of the gates G1, . . . ,Gn. Wires Wn+1, . . . ,Wn+nA

are input wires of A and Wn+nA+1, . . . , Wn+nA+nB
are input wires of B. Wires

Wn−nO+1, . . . ,Wn are the output wires of the circuit; except for those, any wire
is an input to at least one gate.

The commitment to A’s input xA is CA = (CA,1, . . . , CA,nA
), where for i =

1, . . . , nA, a bit commitment

CA,i = gxA,ig1
rA,i

has been constructed using a random rA,i ∈ Zq and rA = (rA,1, . . . , rA,nA
) is a

private input of A.
Similarly, the commitment to B’s input xB is CB = (CB,1, . . . , CB,nB

), where
for i = 1, . . . , nB , a bit commitment

CB,i = gxB,ig1
rB,i

has been constructed using a random rB,i ∈ Zq and rB = (rB,1, . . . , rB,nB
) is a

private input of B.
The details of the verifiable secure function evaluation protocol and its analy-

sis are omitted from this extended abstract.

6 Optimistic Fair Secure Computation Protocol

We are now ready to describe our protocol for optimistic fair secure two-party
computation. In short, the protocol consists of two intertwined executions of the
verifiable secure function evaluation protocol from the previous section, where
the output tokens are not directly revealed, but mutually escrowed with T first
and opened later. Recall that optimistic fair secure computation involves three
parties A, B, and T , in the asynchronous communication model of Definition 1.

In the following we use Protocol VOT from Section 4 and the secure escrow
scheme based on Cramer-Shoup encryption from Section 3.4.

Common inputs are a function f : XA ×XB → YA × YB , T ’s public key yT ,
and generators g, g1 ∈ G. The private input of A is xA ∈ XA, the private input
of B is xB ∈ XB , and the private input of T is the secret key zT corresponding
to yT .

Protocol FAIRCOMP(g, g1, f, yT )(xA)(xB)(zT )

F1. A chooses rA,1, . . . , rA,nA
∈R Zq, computes the commitments

CA = (CA,1, . . . , CA,nA
) = (gxA,1g1

rA,1 , . . . , gxA,nA g1
rA,nA ),
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sends CA to B, and runs with B

PK {α1, β1, . . . , αnA
, βnA

: CA,1 = gα1g1
β1 ∧ · · · ∧ CA,nA

= gαnA g1
βnA )}.

If B rejects any proof, it outputs ⊥ and halts.
F2. B chooses rB,1, . . . , rB,nB

∈R Zq, computes the commitments

CB = (CB,1, . . . , CB,nB
) = (gxB,1g1

rB,1 , . . . , gxB,nB g1
rB,nB ),

sends CB to A, and runs with A

PK {α1, β1, . . . , αnB
, βnB

: CB,1 = gα1g1
β1 ∧ · · · ∧ CB,nB

= gαnB g1
βnB )}.

If A rejects any proof, it outputs ⊥ and halts.
F3. A and B invoke a modification of Protocol VFE(g, g1, CA, CB , fB)(xA, rA)

(xB , rB), where they replace opening the commitments of the output tokens
by escrowing them with T . That is, in Step V3, A and B run Phase I
of the escrow scheme for each of the values si,0, si,1, ri,0, ri,1 tagged with
CA‖CB‖fB‖i for i = n − nO + 1, . . . , n in the circuit computing fB . They
interrupt Protocol VFE after Step V3. (Note that T has not been involved
so far.)
If this fails, B simply outputs ⊥ and halts.

F4. B and A invoke a modification of Protocol VFE(g, g1, CB , CA, fA)(xB , rB)
(xA, rA), where they replace opening the commitments of the output tokens
by escrowing them with T . That is, in Step V3, B and A run Phase I
of the escrow scheme for each of the values si,0, si,1, ri,0, ri,1 tagged with
CA‖CB‖fA‖i for i = n − nO + 1, . . . , n in the circuit computing fA. They
interrupt Protocol VFE after Step V3.
If this fails, A invokes Protocol abort with T . If T answers abort, then A
outputs ⊥ and halts. If T answers resolve‖transcript then A completes
the VFE protocol computing fA as read from transcript (continuing with
Step V3), outputs OA, and halts.

F5. A and B continue with Phase II of the escrow protocols started in Step F3.
According to this, A sends B the corresponding messages, B checks their
contents, and if a check fails or if some message does not arrive, B invokes
Protocol B-resolve with T . If T answers abort, then B outputs ⊥ and halts.
If T answers resolve‖transcript then B completes the VFE protocol com-
puting fB as read from transcript (continuing with Step V3), outputs OB ,
and halts.
Otherwise B resumes Protocol VFE started in Step F3 with Step V4 and
obtains OB .

F6. B and A continue with Phase II of the escrow protocols started in Step F4.
According to this, B sends A the corresponding messages. Then B outputs
OB and halts.
A checks the messages received from B, and if a check fails or if some
message does not arrive, A invokes Protocol A-resolve with T . If T answers
abort, A outputs ⊥ and halts.
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If T answers resolve‖transcript then A completes the VFE protocol com-
puting fA as read from transcript from Step V3, outputs OA, and halts.
Otherwise A resumes Protocol VFE started in Step F4 with Step V4, outputs
OA, and halts.

We now describe the sub-protocols for aborting and resolving. They also take
place in the model of Definition 1, where all parties maintain internal state (pri-
vate inputs are sometimes mentioned nevertheless). In particular, T maintains
a list of tuples internally and processes all abort and resolve requests atomi-
cally. Recall that the transcript of a party of a protocol consists of all messages
received or sent by this party.

Protocol abort is a protocol between A and T ; it is invoked by A with inputs CA

and CB .

Protocol abort(g, g1, f, yT )(CA, CB)()

1. A sends the message (abort, CA‖CB‖f) to T .
2. If T ’s internal state contains an entry of the form (CA‖CB‖f, string), then

T returns to A the message string .
3. Otherwise, T adds the tuple (CA‖CB‖f, abort) to its internal state and
returns to A the message abort.

Protocol B-resolve is a protocol between B and T ; it is invoked by B with in-
put a string transcript , containing B’s complete transcript of Steps F1–F4 in
Protocol FAIRCOMP, which includes also CA and CB .

Protocol B-resolve(g, g1, f, yT )(transcript)(zT )

1. B sends the message (B-resolve, transcript) to T .
2. If T ’s internal state contains an entry of the form (CA‖CB‖f, string), then

T returns to B the message string and halts.
3. Otherwise, B and T run Steps V1–V3 of Protocol VFE(g, g1, CB , CA, fA)
(xB , rB)(∅) unmodified with B in the role of circuit constructor (VFE-)A
and T in the role of circuit evaluator (VFE-)B. They stop after Step 1 in
Protocol VOT, before T would have to decrypt the tokens. (Thus, T ’s inputs
to the protocol may be empty.)
If T rejects any of the proofs by B, then T adds the tuple (CA‖CB‖f , abort)
to its internal state and returns to B the message abort.

4. Otherwise, T reads the transcript sent by B and carries out its part of
Phase II for the escrows of the tokens on the output wires for fB from
Step F3. T opens the escrows subject to all tags matching CA‖CB‖fB‖i. In
other words, T runs the decryption algorithm VD(CS, zT , . . . ) and returns
the outputs to B if all tags match, or ⊥ if one or more decryptions yield ⊥.
T computes the transcript t of Protocol B-resolve and adds (CA‖CB‖f ,
resolve‖t) to its internal state.

Protocol A-resolve is a protocol between A and T ; it is invoked by A with in-
put a string transcript , containing her complete transcript of Steps F1–F3 in
Protocol FAIRCOMP, which includes also CA and CB .
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Protocol A-resolve(g, g1, f, yT )(transcript)(zT )

1. A sends the message (A-resolve, transcript) to T .
2. If T ’s internal state contains an entry of the form (CA‖CB‖f, string), then

T returns to A the message string and halts.
3. Otherwise, A and T run Steps V1–V3 of Protocol VFE(g, g1, CA, CB , fB)
(xA, rA)(∅) unmodified with A in the role of circuit constructor (VFE-)A
and T in the role of circuit evaluator (VFE-)B. They stop after Step 1 in
Protocol VOT, before T would have to decrypt the tokens. (Thus, T ’s inputs
to the protocol may be empty.)
If T rejects any of the proofs by A, then T adds the tuple (CA‖CB‖f , abort)
to its internal state and returns to A the message abort.

4. Otherwise, T reads the transcript sent by A and carries out its part of
Phase II for the escrows of the tokens on the output wires for fA from
Step F4. T opens the escrows subject to all tags matching CA‖CB‖fA‖i. In
other words, T runs the decryption algorithm VD(CS, zT , . . . ) and returns
the outputs to A if all tags match, or ⊥ if one or more decryptions yield ⊥.
T computes the transcript t of Protocol A-resolve and adds (CA‖CB‖f ,
resolve‖t) to its internal state.

Remarks about the protocol.

1. Protocol FAIRCOMP as described above consists of seven rounds (14 moves).
By pipelining the execution of Steps F1–F4 one can reduce this to five rounds
(ten moves). Using non-interactive proofs in the random oracle model, this
could even be reduced further to three rounds (six moves).

2. A major difference between the resolve protocols here and those used for
optimistic fair exchange of signatures [2] is that T cannot directly replace
the other party here. Whereas in a fair exchange of digital signatures, T can
verify that the party requesting to resolve supplies a correct signature, T has
to re-run almost the complete VFE protocol here. After T has done this, the
other party is able to complete VFE and its part of the computation from
this transcript.

3. T does not have to know any secrets of the other party for re-running VFE.
For instance, in Step 3 of Protocol B-resolve, when B and T run Protocol VFE

for fA (and T plays the role of A), T does not have to know anything about
A’s secret input xA besides the commitments CA; this follows because the
VFE protocol is stopped after Step V3 and because of a special feature
of the underlying Protocol VOT, in which the commitments are used for
encryption.

It can be shown that under the DDH assumption, Protocol FAIRCOMP is an
optimistic fair secure computation protocol (omitted).
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