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Abstract. Secure Function Evaluation (SFE) protocols are very hard to
design, and reducibility has been recognized as a highly desirable property
of SFE protocols. Informally speaking, reducibility (sometimes called
modular composition) is the automatic ability to break up the design
of complex SFE protocols into several simpler, individually secure com-
ponents. Despite much effort, only the most basic type of reducibility,
sequential reducibility (where only a single sub-protocol can be run at
a time), has been considered and proven to hold for a specific class of
SFE protocols. Unfortunately, sequential reducibility does not allow one
to save on the number of rounds (often the most expensive resource in
a distributed setting), and achieving more general notions is not easy
(indeed, certain SFE notions provably enjoy sequential reducibility, but
fail to enjoy more general ones).

In this paper, for information-theoretic SFE protocols, we

• Formalize the notion of parallel reducibility, where sub-protocols can
be run at the same time;

• Clarify that there are two distinct forms of parallel reducibility:

? Concurrent reducibility, which applies when the order of the sub-
protocol calls is not important (and which reduces the round
complexity dramatically as compared to sequential reducibility);
and

? Synchronous reducibility, which applies when the sub-protocols
must be executed simultaneously (and which allows modular
design in settings where sequential reducibility does not even
apply).

• Show that a large class of SFE protocols (i.e., those satisfying a slight
modification of the original definition of Micali and Rogaway [15])
provably enjoy (both forms of) parallel reducibility.

1 Introduction

The objective of this paper is to understand, define, and prove the implementabil-
ity of the notion of parallel reducibility for information-theoretically secure multi-
party computation. Let us start by discussing the relevant concepts.
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SFE Protocols. A secure function evaluation (SFE) is a communication pro-
tocol enabling a network of players (say, having a specified threshold of honest
players) to compute a (probabilistic) function in a way that is as correct and
as private as if an uncorruptable third party had carried out the computation
on the players’ behalf. SFE protocols were introduced by Goldreich, Micali and
Wigderson [13] in a computational setting (where the parties are computation-
ally bounded, but can observe all communication), and by Ben-Or, Goldwasser
and Wigderson [4] and Chaum, Crépeau and Damg̊ard [7] in an information-
theoretic setting (where the security is unconditional, and is achieved by means
of private channels1). We focus on the latter setting.

SFE Definitions. Together with better SFE protocols, increasingly precise def-
initions for information-theoretic SFE have been proposed; in particular, those of
Beaver [2], Goldwasser and Levin [11], Canetti [5], and Micali and Rogaway [15].
At a high-level, these definitions express that whatever an adversary can do in
the real model (i.e., in the running of the actual protocol, where no trusted party
exists) equals what an adversary can do in the ideal model (i.e., when players
give their inputs to the trusted third party, who then computes the function for
them). This more or less means that the most harm the adversary can do in the
real model consists of changing the inputs of the faulty players (but not based
on the inputs of the honest players!), and then running the protocol honestly.

All these prior definitions are adequate, in the sense that they (1) reasonably
capture the desired intuition of SFE, and (2) provide for the existence of SFE
protocols (in particular, the general protocol of [4] satisfies all of them). Were
properties (1) and (2) all one cared about, then the most “liberal” definition of
SFE might be preferable, because it would allow a greater number of reasonable
protocols to be called secure. However, if one cared about satisfying additional
properties, such as reducibility (i.e., as discussed below, the ability of designing
SFE protocols in a modular fashion), then more stringent notions of SFE would
be needed.

Reducibility and Sequential Reducibility. Assume that we have designed
a SFE protocol, F , for a function f in a so called semi-ideal model, where one
can use a trusted party to evaluate some other functions g1, . . . , gk. Assume also
that we have designed a SFE protocol, Gi, for each function g

i. The reducibility
property says that, by substituting the ideal calls to the gi’s in F with the
corresponding SFE protocols Gi’s, we are guaranteed to obtain a SFE protocol
for f in the real model.

Clearly, reducibility is quite a fundamental and desirable property to have,
because it allows one to break the task of designing a secure protocol for a com-
plex function into the task of designing secure protocols for simpler functions.
Reducibility, however, is not trivial to satisfy. After considerable effort, only the
the most basic notion of reducibility, sequential reducibility, has been proved

1 This means that every pair of players has a dedicated channel for communication,
which the adversary can listen to only by corrupting one of the players.
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to hold for some SFE notions: those of [5] and [15]. Informally, sequential re-
ducibility guarantees that substituting the ideal calls to the gi’s in F with the
corresponding Gi’s yields a SFE protocol for f in the real model only if a single
Gi is executed (in its entirety!) at a time.

2 Therefore, sequential reducibility is
not general enough to handle protocols like the expected O(1)-round Byzantine
agreement protocol of [10] (which relies on the concurrent execution of n2 specific
SFE protocols) whose security, up to now, must be proven “from scratch”.

1.1 Our Results

In this paper, we put forward the notion of parallel reducibility and show which
kinds of SFE protocols satisfy it. We actually distinguish two forms of parallel
reducibility:

• Concurrent reducibility.
This type of reducibility applies when, in the semi-ideal model, the g1, . . . , gk

can be executed in any order. The goal of concurrent reducibility is improving
the round-complexity of modularly designed SFE protocols.

• Synchronous reducibility.
This type of reducibility applies when, in the semi-ideal model, the g1, . . . , gk

must be executed “simultaneously.” The goal of synchronous reducibility is
enlarging the class of modularly designed SFE protocols (while being round-
efficient as well).

Concurrent Reducibility. There are many ways to schedule the execution of
several programs G1, . . . , Gk. Each such way is called an interleaving. The k!
sequential executions of G1, . . . , Gk are examples of interleavings. But they are
very special and “very few,” because interleavings may occur at a round-level.
For instance, we could execute the Gi’s one round at a time in a round-robin
manner, or we could simultaneously execute, in single round r, the r-th round (if
any) of all theGi’s. Saying that programsG1, . . . , Gk are concurrently executable,
relative to some specified goal, means that this goal is achieved for all of their
interleavings.

Assume now that a function f is securely evaluated by a semi-ideal protocol
F which, in a set of contiguous instructions, only makes ideal calls to functions
g1, . . . , gk, and let Gi be a SFE protocol for gi (in the real model). Then, a
fundamental question arise:

Will substituting each gi with Gi yield a (real-model) SFE
protocol for f in which the Gi’s are concurrently executable?

Let us elaborate on this question. Assume, for instance, that F calls g2 on inputs
that include an output of g1. Then we clearly cannot hope that the Gi’s are

2 This is true even if, within F , one could “ideally evaluate” all or many of the gi’s
“in parallel.”
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concurrently executable. Thus, to make sense of the question, all the inputs to
the gi’s should be determined before any of them is ideally evaluated. Moreover,
even if all the gi’s are evaluated on completely unrelated and “independent”
inputs, F may be secure only for some orders of the gi’s, but not for others,
which is illustrated by the following example.

Example 1: Let f be the coin-flipping function (that takes no inputs and outputs
a joint random bit), let g1 be the coin-flipping function as well, and let g2 be
the majority function on n bits. Let now F be the following semi-ideal protocol.
Each player Pj locally flips a random bit bj . Then the players “concurrently”
use ideal calls to g1 and g2(b1, . . . , bn), getting answers r and c respectively. The
common output of F is r ⊕ c. We claim that F is secure if we first call g2 (the
majority) and then g1 (the coin-flip), but insecure if we do it the other way
around. Indeed, irrespective of which c we get in the first ordering, since r is
random (and independent of c), then so is r⊕ c. On the other hand, assume we
first learn the random bit r and assume faulty players want to bias the result-
ing coin-flip towards 0. Then the faulty players pretend that their (supposedly
random) inputs bj for the majority are all equal to r. Provided there are enough
faulty players, this strategy will bias the outcome c of g2 (the majority) towards
r, and thus the output of F towards 0.

Clearly, in the case of the above example, we cannot hope to execute the
Gi’s concurrently: one of the possible interleavings is the one that sequentially
executes the Gi’s in the order that is insecure even in the semi-ideal model.
Thus, the example illustrates that the following condition is necessary for the
concurrent execution of the Gi’s.

Condition 1: F is secure in the semi-ideal model for any order of the gi’s.

Is this necessary condition also sufficient? Of course, the answer also depends
on the type of SFE notion we are using. But, if the answer were YES, then we
would get the “strongest possible form of concurrent reducibility.” Let us then
be optimistic and put forward the following informal definition.

Definition 1: We say that a SFE notion satisfies concurrent reducibility if,
whenever the protocols F,G1, . . . , Gk satisfy this SFE notion, Condition 1
is (both necessary and) sufficient for the concurrent execution of the Gi’s
inside F (in the real model).

Our optimism is justified in view of the following

Theorem 1: A slight modification of the SFE notion of Micali and Rog-
away [15] satisfies concurrent reducibility.

We note that the SFE notion of Micali and Rogaway is the strictest one proposed
so far, and that we have been unable to prove analogous theorems for all other,
more liberal notions of SFE. We conjecture that no such analogous theorems
exist for those latter notions. In support of our conjecture, we shall point out in
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Section 4.3 the strict properties of the definition of [15] that seem to be essential
in establishing Theorem 1.

We remark that concurrent reducibility is important because it implies sig-
nificant efficiency gains in the round-complexity (often the most expensive re-
source) of modularly designed SFE protocols. This is expressed by the following
immediate Corollary of Definition 1.

Corollary 1: Assume that F, g1, . . . , gk satisfy Condition 1, that Gi is a
protocol for gi taking Ri rounds, and that F,G1, . . . , Gk are SFE proto-
cols according to a SFE notion satisfying concurrent reducibility. Then,
there is a (real model) SFE implementation of F executing all the Gi’s
in max(R1, . . . , Rk) rounds.

This number of rounds is the smallest one can hope for, and should be contrasted
with R1 + · · ·+Rk, the number of rounds required by sequential reducibility.

Synchronous Reducibility. The need to execute several protocols in parallel
does not necessarily arise from efficiency considerations or from the fact that it
is nice not to worry about the order of the execution. A special type of parallel
execution, synchronous execution, is needed for correctness itself.

Example 2: Let f be the two-player coin-flipping function that returns a random
bit to the first two players, P1 and P2, of a possibly larger network. That is,
f(λ, λ, λ, . . . , λ) = (x, x, λ, . . . , λ), where x is a random bit (and λ is the empty
string). Consider now the following protocol F : player P1 randomly and secretly
selects a bit x1, player P2 randomly and secretly selects a bit x2, and then P1

and P2 “exchange” their selected bits and both output x = x1 ⊕ x2.
Clearly, F is a secure function evaluation of f only if the exchange of x1 and

x2 is “simultaneous”, that is, whenever P1 learns x2 only after it declares x1, and
vice versa. This requirement can be modeled as the parallel composition of two
sending protocols: g1(x1, λ, λ, . . . , λ) = (x1, x1, λ, . . . , λ) and g

2(λ, x2, λ, . . . , λ) =
(x2, x2, λ, . . . , λ). That is, we can envisage a semi-ideal protocol in which players
P1 and P2 locally flip coins x1 and x2, then simultaneously evaluate g

1 and g2,
and finally exclusive OR their outputs of g1 and g2. However, no sequential order
of the ideal calls to g1 and g2 would result in a secure two-player coin-flipping
protocol. This example motivates the introduction of a special type of parallel
composition (for security rather than efficiency considerations).

The ability to evaluate several functions synchronously is very natural to de-
fine in the ideal model: the players simultaneously give all their inputs to the
trusted party, who then gives them all the outputs (i.e., no output is given be-
fore all inputs are presented). We can also naturally define the corresponding
semi-ideal model, where the players can ideally and simultaneously (i.e., within
a single round) evaluate several functions. Assume now that we have a semi-
ideal protocol F for some function f which simultaneously evaluates functions
g1, . . . , gk, and let Gi be a secure protocol for g

i. Given an interleaving I of
the Gi’s, we let F

I denote the (real-model) protocol where we substitute the
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single ideal call to g1, . . . , gk with k real executions of the protocols Gi inter-
leaved according to I. As apparent from Example 2, we cannot hope that every
interleaving I will be “good,” that is, will yield a SFE protocol F I for f . (For
instance, in the semi-ideal coin-flipping protocol F of Example 2, no matter how
we design SFE protocols G1 and G2 for g

1 and g2, any sequential interleaving
of G1 and G2 yields an insecure protocol.) Actually, the guaranteed existence of
even a single good interleaving cannot be taken for granted, therefore:

Can we be guaranteed that there is always an interleaving I
of G1, . . . , Gk such that F

I is a SFE protocol for f?

Of course, the answer to the above question should depend on the notion of SFE
we are using. This leads us to the following informal definition.

Definition 2: We say that a SFE notion satisfies synchronous reducibility
if, whenever the protocols F,G1, . . . , Gk satisfy this SFE notion, there exists
an interleaving I such that F I is a SFE protocol under this notion.

Example 2 not only shows that there are bad interleavings, but also that a
“liberal” enough definition of SFE will not satisfy synchronous reducibility. In
particular,

Lemma 2: The SFE notions of [5, 2, 11] do not support synchronous re-
ducibility.

Indeed, according to the SFE notions of [5, 2, 11], the protocol G1 consisting
of player P1 sending x1 to player P2 is a secure protocol for g

1. Similarly, the
protocol G2 consisting of player P2 sending x2 to player P1 is a secure protocol
for g2. However, there is no interleaving of G1 and G2 that will result in a secure
coin-flip. This is because the last player to send its bit (which includes the case
when the players exchange their bits in one round, due to the “rushing” ability
of the adversary; see Section 2) is completely controlling the outcome.
On the positive side, we show3

Theorem 2: A slight modification of the SFE notion of Micali and Rog-
away [15] satisfies synchronous reducibility.

Theorem 2 actually has quite a constructive form. Namely, the nature of the
definition in [15] not only guarantees that “good” interleavings I always exist,
but also that there are many of them, that they are easy to find, and that
some of them produce efficient protocols. We summarize the last property in the
following corollary.

Corollary 2:With respect to a slightly modified definition of SFE of Micali
and Rogaway [15], let F be an ideal protocol for f that simultaneously calls
functions g1, . . . , gk, and let Gi be an Ri-round SFE protocol for g

i. Then
there exists (an easy to find) interleaving I of the Gi’s, consisting of at most
2 ·max(R1, . . . , Rk) rounds, such that F

I is a SFE protocol for f .

3 As is illustrated in Section 4.3, the above “natural” protocols G1 and G2 are indeed
insecure according to the definition of [15].
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In other words, irrespective of the number of sub-protocols, we can synchronously
interleave them using at most twice as many rounds as the longest of them takes.4

Let us remark that, unlike Corollary 1 (that simply follows from the definition
of concurrent reducibility), Corollary 2 crucially depends on the very notion of
[15], as is discussed more in Section 4.3.

In Sum. We have (1) clarified the notion of parallel reducibility, (2) distilled
two important flavors of it, (3) modified slightly the SFE notion of Micali and
Rogaway, and (4) showed that there exist SFE notions (e.g., the modified notion
of [15]) as well as general SFE protocols (e.g., the one of [4]) that satisfy (both
forms of) parallel reducibility.

Enjoying (both forms of) parallel reducibility do not necessarily imply that
the definition of [15] is “preferable” to others. If the protocol one is designing
is simple enough or is unlikely to be composed in parallel with other protocols,
other definitions are equally adequate (and may actually be simpler to use).
However, understanding which SFE notions enjoy parallel reducibility is crucial
in order to simplify the complex task of designing secure computation protocols.

2 The (Modified) Micali-Rogaway Definition of SFE

Consider a probabilistic function f(x, r) = (f1(x, r), . . . , fn(x, r)) (where x =
(x1, . . . , xn)). We wish to define a protocol F for computing f that is secure
against any adversary A that is allowed to corrupt in a dynamic fashion up to t
(out of n) players.5

2.1 Protocols and Adversaries

Protocol: An n-party protocol F is a tuple (F̂ , LR,CR, I,O, f, t) where

• F̂ is a collection of n interactive probabilistic Turing machines that interact
in synchronous rounds.

• LR — the last round of F (a fixed integer, for simplicity).

• CR — the committal round (a fixed integer, for simplicity).

• I — the effective-input function, a function from strings to strings.

• O — the effective-output function, a function from strings to strings.

• f — a probabilistic function (which F is supposed to compute).

• t — a positive integer less than n (a bound on the number of players that
may be corrupted).

4 We note that the factor of 2 is typically too pessimistic. As it will be clear from the
precise statement of synchronous reducibility in Section 3, natural protocols Gi (like
the ones designed using a general paradigm of [4]) can be synchronously interleaved
in max(R1, . . . , Rk) rounds.

5 More generally, one can have an adversary that can corrupt only certain “allowable”
subsets of players. The collection of these allowable subsets is usually called the
adversary structure. For simplicity purposes only, we consider threshold adversary
structures, i.e. the ones containing all subsets of cardinality t or less. We call any
such adversary t-restricted.
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Adversary: An adversary A is a probabilistic algorithm.

Executing F and A: Adversary A interacts with protocol F as a traditional
adaptive adversary in the rushing model. Roughly, this is explained below.

The execution of F with an adversary A proceeds as follows. Initially, each
player j has an input xj (for f) and an auxiliary input aj , while A has an
auxiliary input α. (Auxiliary inputs represent any a-priori information known
to the corresponding party like the history of previous protocol executions. An
honest player j should ignore aj , but aj might be useful later to the adversary.)
At any point during the execution of F , A is allowed to corrupt some player j
(as long as A corrupts no more than t players overall). By doing so, A learns
the entire view of j (i.e., xj , aj , j’s random tape, and all the messages sent and
received by j) up to this point input. From now on, A can completely control
the behavior of j and thus make j deviate from F in any malicious way. At the
beginning of each round, A first learns all the messages sent from currently good
players to the corrupted ones.6 Then A can adaptively corrupt several players,
and only then does he send the messages from bad players to good ones. Without
loss of generality, A never sends a message from a bad player to another bad
player.

At the end of F , the view of A, denoted View(A,F ) consists of α, A’s random
coins and the views of all the corrupted players. The traffic of a player j up to
round R consists of all the messages received and sent by j up to round R. Such
traffic is denoted trafficj(R) (or by trafficj(R,F [A]) whenever we wish to stress
the protocol and the adversary executing with it).

Effective Inputs and Outputs of a Real Execution: In an execution of
F with A, the effective input of player j (whether good or bad), denoted x̂Fj , is
determined at the committal round CR by evaluating the effective-input function
I on j’s traffic at round CR: x̂Fj = I(trafficj(CR,F [A])). The effective output

of player j, denoted ŷFj , is determined from j’s traffic at the last round LR via

the effective output function O: ŷFj = O(trafficj(LR,F [A])). Note that, for now,

the effective inputs x̂F and outputs ŷF are unrelated to computing f .

History of a Real Execution: We let the history of a real execution, denoted
History(A,F ), to be 〈View(A,F ), x̂F , ŷF 〉. Intuitively, the history contains all
the relevant information of what happened when A attacked the protocol F : the
view of A, i.e. what he “learned”, and the effective inputs and outputs of all the
players.

2.2 Simulators and Adversaries

Simulator: A simulator is a probabilistic, oracle-calling, algorithm S.
6 We can even let the adversary schedule the delivery of good-to-bad messages and let
him adaptively corrupt a new player in the middle of this process. For simplicity, we
stick to our version.
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Executing S with A: Let A be an adversary for a protocol F for function
f . In an execution of S with A, there are no real players and there is no real
network. Instead, S interacts with A in a round-by-round fashion, playing the
role of all currently good players in an execution of A with the real network,
i.e.: (1) (makes up and) sends to A a view of a player j immediately after A
corrupts j, (2) sends to A the messages of currently good players to currently
bad players7 and (3) receives the messages sent by A (on behalf of the corrupted
players) to currently good players. In performing these tasks, S makes use of the
following oracle O(x,a)8:

• Before CR. When a player j is corrupted by A before the committal round,
O immediately sends S the input values xj and aj . In particular, S uses
these values in making up the view of j.

• At CR. At the end of the committal round CR, S sends O the value
x̂Sj = I(trafficj(CR)) for each corrupted player j.

9 In response, O randomly

selects a string r, sets x̂Sj = xj for all currently good players j, computes

ŷS = f(x̂S , r), and for each corrupted player j sends ŷSj back to S.

• After CR. When a player j is corrupted by A after the committal round, O
immediately sends S the input values xj and aj , as well as the computed
value ŷSj . In particular, S uses these values in making up the view of j.

We denote by View(A,S) the view of A when interacting with S (using O).

Effective Inputs and Outputs of a Simulated Execution: Consider an
execution of S (using oracle O(x,a)) with an adversary A. Then, the effective
inputs of this execution consist of the above defined values xS . Namely, if a
player j is corrupted before the committal round CR, then its effective input
is x̂Sj = I(trafficj(CR,S[A])); otherwise (j is never corrupted, or is corrupted

after the committal round) its effective input is x̂Sj = xj . The effective outputs

are the values yS defined above. Namely, ŷS = f(x̂S , r), where r is the random
string chosen by O right after the committal round.

History of a Simulated Execution: We let the history of a simulated execu-
tion, denoted History(A,S), to be 〈View(A,S), x̂S , ŷS〉. Intuitively, the history
contains all the relevant information of what happened when A was communi-
cating with S (and O): the view of A, i.e. what he “learned”, and the effective
inputs and outputs of all the players.

7 Notice that S does not (and cannot) produce the messages from good players to
good players.

8 Such oracle is meant to represent the trusted party in an ideal evaluation of f . Given
this oracle, S’s goal is making A believe that it is executing F in a real network in
which the players have inputs x and auxiliary inputs a.

9 Here trafficj(R) = trafficj(R, S[A]) of a corrupted player j denotes what A “thinks”
the traffic of j after round R is.
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2.3 Secure Computation

Definition 3: An n-party protocol F is a SFE protocol for a probabilistic n-
input/n-output function f(x, r), if there exists a simulator S such that for any
input x = (x1, . . . , xn), auxiliary input a = (a1, . . . , an), and any adversary A

with some auxiliary input α, the histories of the real and the simulated executions
are identically distributed:

History(A,F ) ≡ History(A,S) (1)

Equivalently, 〈View(A,F ), x̂F , ŷF 〉 ≡ 〈View(A,S), x̂S , ŷS〉.

2.4 Remarks

Let us provide a minimal discussion of the above definition of SFE.

Simulators and Oracles vs. Ideal Adversaries. A standard benchmark
in determining if a SFE notion is “reasonable” is the fact that for every real
adversary A there exists an “ideal adversary” A′ that can produce (in the ideal
model with the trusted party) the same view as A got from the real network.10

We argue that the existence of a simulator S in Definition 3 indeed implies the
existence of such an adversary A′. A′ simply runs A against the simulator S. If A
corrupts a player j before the committal round, A′ corrupts j in the ideal model,
and gives the values xj and aj (that it just learned) to S on behalf of the oracle O.
Right after the committal round of F has been simulated by S, A′ computes from
the traffic of A the effective inputs x̂Sj of currently corrupted players j, hands
them to the trusted party, and returns the outputs of the corrupted players to
S on behalf of O. Finally, if A corrupts a player j after the committal round,
A′ corrupts j in the ideal model, and gives the values xj , aj and the output of
j (that it just learned) to S on behalf of the oracle O. At the end, A′ simply
outputs the resulting view of A in the simulation.11

We notice, however, that the “equivalent” ideal adversary A′ implied by our
definition is much more special than the possible ideal adversary envisaged by
other definitions (e.g., [5]).12

Our Modifications of the Original SFE Notion of Micali and Rogaway.
We contribute a slightly cleaner and more powerful version of the SFE notion
of [15]. Their original original notion was the first to advocate and highlight the
importance of blending together privacy and correctness, a feature inherited by
all subsequent SFE notions. We actually use a stronger (and more compactly
expressed) such blending by demanding the equality of the joint distributions

10 In fact, this requirement is more or less the SFE definition of [5].
11 The construction of A′ intuitively explains the definition of effective inputs x̂S and ef-
fective outputs ŷS of the simulated execution, as they are exactly the inputs/outputs
in the run of A′ in the ideal model.

12 For instance, such A′ is constrained to run A only once and in a black-box manner.
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of “view, inputs and outputs” in the real and in the simulated executions —
a suggestion of [11], which was followed by other SFE notions as well. We also
extend the original SFE notion of [15] to include probabilistic functions.

Simulator Complexity. Because we are in an information-theoretic setting, we
certainly do not want to impose any computational restrictions on the adversary.
However, even though we chose not to do it for simplicity, we could demand
that the simulator to be efficient (i.e., polynomial-time in the running time of
the protocol13). Indeed, (1) the natural simulator for the general protocol of
[4] is efficient, and (2) our parallel-reducibility theorems would hold even if we
required simulators to be efficient.

3 The Notion of Parallel Reducibility

First, let us define the semi-ideal model which generalizes the real model with
the ability to ideally evaluate some functions. More precisely, in addition to
regular rounds (where each player sends messages to other players), the semi-
ideal model allows players to have ideal rounds. In such a round, the players can
simultaneously evaluate several functions g1, . . . , gk using a trusted third party.
More specifically, at the beginning of this round each player gives the k-tuple of
his inputs to a trusted party. At the end of the round, each player gets back from
the trusted party the corresponding k-tuple of outputs. (Note, these k-tuples are
parts of players’ traffic.)

Our definition of security of a protocol F in the semi-ideal model is the same
as that of a real model protocol with the following addition:

• The simulator S has to simulate all the ideal rounds as well, since they are
part of what the adversary A expects. S has to do this using no special “g-
oracle”. In other words, given the g-inputs of corrupted players in an ideal
round, S has to generate the corresponding outputs of corrupted players and
give them back to A. Also, when A corrupts a player j, S has to produce
on its own the g-inputs/outputs of player j during all the ideal rounds that
happened so far (as these are parts of j’s traffic, and therefore j’s view).

Let F be a SFE protocol for f in the semi-ideal model, and let us fix our at-
tention on any particular ideal round R that evaluates some functions g1, . . . , gk.
We say that the ideal round R is order-independent if for any sequential order-
ing π of g1, . . . , gk, semi-ideal protocol F remains secure if we replace the ideal
round R with k ideal rounds evaluating a single gi at a time in the order given
by π (we denote this semi-ideal protocol by F π).

13 Some other SFE notions (e.g., that of [5]) demand that, for each adversary A, there
is a simulator SA that is efficient compared to the running time of A. Note that such
a requirement is meaningless in our definition. Indeed, our simulator is universal:
it must reply “properly” and “on-line” to the messages it receives, without any
knowledge of which adversary might have generated them.
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Let G1, . . . , Gk be SFE protocols for g
1, . . . , gk. We would like to substitute

the ideal calls to the gi’s with the corresponding protocols Gi’s and still get a
secure protocol for f . As we informally argued before, there are many ways to
substitute (or to interleave) the Gi’s, which is made precise by the following
definition.

Definition 4:

• An interleaving of protocols G1, . . . , Gk is any schedule I of their execution.
Namely, a single round of an interleaving may execute in parallel one round
of one or more of the Gi’s with the only restriction that the rounds of each
Gi are executed in the same order as they are in Gi.

• A synchronous interleaving of protocols G1, . . . , Gk with committal rounds
CR1, . . . , CRk is any interleaving I such that for any 1 ≤ i, ` ≤ k, round
CRi of Gi strictly precedes round CR` + 1 of G`. We call the place after
all the “pre-committal” rounds but before all the “post-committal” rounds
the synchronization point of I.

• Given an interleaving I of G1, . . . , Gk, we let F
I be a protocol obtained

by substituting the ideal round R with the execution of the protocols
G1, . . . , Gk in the order specified by I. The committal round of F I , its
effective input and output functions are defined in a straightforward man-
ner from those of F and G1, . . . , Gk. More specifically, given the traffic of
player j in F I , we replace all j’s traffic inside Gi (if any) with the effective
inputs and outputs of player j in Gi, and apply the corresponding effective
input/output function of F to the resulting traffic. We also remark that
when we run Gi, we let the auxiliary input of player j to be its view of the
computation so far.

The fundamental question addressed by parallel reducibility is

Assuming F,G1, . . . , Gk are SFE protocols, under which conditions is F
I a

SFE protocol as well?

We highlight two kinds of sufficient conditions: (1) special properties of the
protocol F making F I secure irrespective of I (which will lead us to concurrent
reducibility), and (2) restrictions on the interleaving I such that mere security
of F and G1, . . . , Gk is enough (which will lead us to synchronous reducibility).
The following Main Theorem restates Theorem 1 and 2 of the introduction.

Parallel-Reducibility Theorem: Consider the SFE notion of Definition 3. Let
F be a semi-ideal SFE protocol for f evaluating g1, . . . , gk in an ideal round R;
let Gi be a SFE protocol for g

i; and let I be an interleaving of G1, . . . , Gk. Then
F I is a SFE protocol for f if either of the following conditions holds:

1. (Concurrent-Reducibility Theorem) Round R is order-independent.

2. (Synchronous-Reducibility Theorem) Interleaving I is synchronous.

As we argued in the introduction, if we want F I to be secure for all I, round R
must be order-independent. Thus, the modified definition of Micali and Rogaway
achieves the strongest form of concurrent reducibility. On the other, hand, we
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also argued that if we do not put any extra conditions on F and G1, . . . , Gk (aside
from being SFE protocols), not all interleavings I necessarily result in a SFE
protocol. In fact, we showed in Lemma 2 that under a “too liberal” definition of
SFE (which includes all SFE definitions other than Micali-Rogaway), it could be
that no interleaving I will result in a secure protocol F I . The stringent definition
of Micali-Rogaway (in particular, the existence of a committal round) not only
shows that such an interleavingmust exist, but also allows us to define a rich class
of interleavings which guarantee the security of F I : the only thing we require
is that all the “pre-committal” rounds precede all the “post-committal” rounds.
In other words, players should first “declare” all their inputs to gi’s, and only
then proceed with the “actual computation” of any of the gi’s. The intuition
behind this restriction is clear: this is exactly what happens in the semi-ideal
model when the players simultaneously evaluate g1, . . . , gk in F .

Remark 1: In the parallel-reducibility theorem we do not allow the adversary
choose the interleaving I adaptively in the process of the computation. This is
only done for simplicity. For example, synchronous reducibility will hold provided
the adversary is restricted to select a synchronous interleaving I. And concurrent
reducibility holds if the semi-ideal protocol F remains secure if we allow the
semi-ideal adversary adaptively order the ideal calls to g1, . . . , gk.

4 Proof of the Parallel-Reducibility Theorem

For economy and clarity of presentation, we shall prove both concurrent and
synchronous reducibility “as together as possible”. Let S be the simulator for
F , let π be the order of committal rounds of the Gi’s in the interleaving I (if
several committal rounds of Gi’s happen in one round, order them arbitrarily),
and let Si be the simulator for Gi. We need to construct the simulator S

I for
F I . The proofs for the concurrent and synchronous reducibility are going to be
very similar, the main differences being the following:

• Concurrent Reducibility. Since R is an order-independent round of F , the
protocol F π is also secure, i.e. has a simulator Sπ. We will use Sπ instead
of S (together with S1 . . . Sk) in constructing SI . In particular, Sπ will
simulate the ideal call to gi right after the committal round of Gi, which
is exactly the order given by π.

• Synchronous Reducibility. Here we must use S itself. In particular, at some
point S will have to simulate the simultaneous ideal call to g1, . . . , gk, and
expects to see all the inputs of the corrupted players. Since the interleaving
I is a synchronous interleaving, it has a synchronization point where all
the effective inputs of the corrupted players are defined before any of the
Gi’s went on “with the rest of the computation.” It is at this point where
we let S simulate the ideal call, because we will be able to provide S with
all the (effective) inputs.

To simplify matters, we can assume without loss of generality that each round of
I executes one round of a single Gi. Indeed, if we can construct a simulator for
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any such interleaving, we can do it for any interleaving executing in one round a
round of several Gi’s: arbitrarily split this round into several rounds executing a
single Gi and use the simulator for this new interleaving to simulate the original
interleaving.14

4.1 The Simulator SI

As we will see in Section 4.2, the actual proof will construct SI in k stages,
that is, will construct k simulators S1, . . . , Sk, where Sk will be SI . However,
we present the final SI right away because it provides a good intuition of why
the proof “goes through”.

For concreteness, we concentrate on the concurrent reducibility case. As one
can expect, SI simply runs Sπ and uses S1, . . . , Sk to simulate the interleaving
of G1, . . . , Gk.

• Run Sπ up to round R (can do it since F I and F π are the same up to
round R).

• Tell each Si to corrupt all the players already corrupted by the adversary
(it is irrelevant what we give to Si as their inputs).

• Assume we execute some round of protocol Gi in the interleaving I. SI

then uses Si to produce the needed messages from good-to-bad players and
gives back to Si the response of the adversary.

• Right after the committal round CRi of Gi has been simulated, use the
effective input function of Gi and the traffic of the adversary in the simu-
lation of Gi to determine the effective input w

i
j of each corrupted player j

to gi.

• We notice that at this stage Sπ is exactly waiting to simulate the ideal
call to gi for the adversary. So SI gives Sπ the effective inputs wi

j as the

adversary’s inputs to gi, and learns from Sπ the output zij of each corrupted
player j.

• We notice that after round CRi has been simulated, the simulator Si ex-
pects to see the outputs of all the corrupted players from the gi-oracle that
does not exist in our simulation. Instead, we give Si the values z

i
j that we

just learned from Sπ.

• We keep running the above simulation up to the end of the interleaving I.
We note that at this stage Sπ has just finished simulating the ideal calls
to all the gi’s, and waits to keep the simulation of F π starting from round
R+ 1. And we just let Sπ do it intil the end of F I (we can do it since F I

and F π are the same again from this stage).

• It remains to describe how SI handles the corruption requests of the ad-
versary. This will depend on where in F I the corruption request happens.
But in any case SI tells Sπ that the adversary asked to corrupt player j
and learns from Sπ the view Vj of j in (the simulation of) F

π.

14 Here we use the fact that non-corrupted players execute all the Gi’s independently
from each other, so the adversary can only benefit by executing one round of a single
Gi at a time.
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? If the corruption request happens before round R, simply return Vj
to the adversary.

? Otherwise, the adversary expects to see (possibly partial) transcript
of j inside every Gi, which Vj does not contain. However, Vj still
contains the supposed inputs wi

j of player j to each g
i.

? For each i we now ask the simulator Si to corrupt player j in order to
learn its view inside Gi. To answer this request, Si needs help from the
gi-oracle (that does not exist in our simulation), which SI provides
as follows.

- If the corruption happened before the committal round CRi, Si
only expects to see the input and the auxiliary input of player j
to gi. We give him wi

j as the actual input and extract from Vj
the view of j prior to round R as j’s auxiliary input.

- If the corruption happened after round CRi,
15 Si also expects

to see the output zij of player j in g
i. However, in this case such

an output is also contained in Vj , since right after the (already
elapsed) round CRi, we have simulated the ideal call to gi in
Fπ. Thus, zij is part of j’s view in F π, and as such should be
included by Sπ in Vj .

? We see that in any of the above two cases we can provide Si with the
information it expects. Therefore, we get back the view W i

j of j in Gi

so far.

? SI now simply combines Vj with W 1
j , . . . ,W

k
j to get the final simu-

lated view of j, and gives it back to the adversary (we will argue later
that the security of the Gi’s implies that these views “match”).

We remark that the simulator for synchronous reducibility is very similar. We
essentially need to replace Sπ by S and let S simulate the single ideal call to
g1, . . . , gk at the synchronization point of I, when the traffic of the adversary
will simultaneously give S the (effective) inputs of the corrupted players to all
the gi’s.

4.2 Proof Outline

While we have already constructed the simulator SI , in the proof we will need to
use the security of some particular Gi. Therefore, we will need “to move slowly”
from the assumed secure protocol F or F π (evaluating all the g1, . . . , gk ideally)
to the protocol F I (whose security we need to establish and which runs k real
protocols G1, . . . , Gk). Roughly, we need to “eliminate” one ideal call (to some
gi) at a time, by “replacing” it with the protocol Gi. Using the security of Gi, we

15 This includes the case when the corruption happened “after the end” of Gi. We
treat this corruption as having the adversary corrupt player j at the very end of the
computation of Gi. This kind of “post-executuion” corruption has caused a lot of
problems preventing some other SFE notions to satisfy reducibility. In our situation,
this case presents no special problems due to the universality of the simulator and
the information-theoretic security.
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will then argue that this “substitution” still leaves the resulting protocol a SFE
protocol for f . To make the above idea more precise, we need some notation.16

First, from the interleaving I of G1, . . . , Gk, we define the “projection inter-
leaving” Ii (for each i ≤ k). This is the interleaving of the protocols G1, . . . , Gi

intermixed with the ideal calls to gi+1, . . . , gk. More precisely, we remove from
I the rounds of all G` for ` > i. For concurrent reducibility, we add the ideal
calls to g` (for every ` > i) right after the place where we previously had the
committal round of G`. We notice that this order of the ideal calls is consistent
with the permutation π. In particular, we will identify the “base” interleaving
I0 of g1, . . . , gk with the permutation π. For synchronous reducibility, we add
a single ideal call to gi+1, . . . , gk right at the synchronization point of I, and
still call the resulting interleaving I i of G1, . . . , Gi, g

i+1, . . . , gk a synchronous
interleaving. Notice that I i−1 is also a “projection” of I i.

Slightly abusing the notation, we now define (in a straighforward way) “inter-

mediate” semi-ideal protocols F i = F Ii

, which essentially replace the ideal calls
to g1, . . . , gi with G1, . . . , Gi (but leave the ideal calls to g

i+1, . . . , gk). We note
that F k = F I and F 0 is either F π (the concurrent case) or F (the synchronous
case). We know by the assumption of the theorem that F 0 is secure, and need
to show that F k is secure. Naturally, we show it by induction by showing that
the security of F i−1 implies that of F i. Not surprisingly, this inductive step will
follow from the security of Gi.

To summarize, the only thing we need to establish is the following. Assume
F i−1 is a SFE protocol for f with the simulator Si−1. We need to construct a
simulator Si for F i such that for all inputs of the players and for any adversary
Ai in F i, we get

History(Ai, F i) ≡ History(Ai, Si) (2)

We construct Si from Si−1 and the simulator Si for Gi. Essentially, S
i will run

Si−1 in F i and use Si (together with S
i−1’s simulation of the ideal call to gi) to

answer the adversary inside the Gi. In the “other direction”, given adversary A
i

in F i, we define the adversary Ai−1 in F i−1. This adversary will run Ai in F i−1,
and will also use Si (together with the ideal call to g

i in F i−1) to interact with
Ai inside Gi. Informally, we will say that “S

i = Si−1+Si” and “A
i−1 = Ai+Si”.

We observe that the security of F i−1 implies that

History(Ai−1, F i−1) ≡ History(Ai−1, Si−1) (3)

which is the same as

〈View(Ai−1, F i−1), x̂F
i−1

, ŷF
i−1

〉 ≡ 〈View(Ai−1, Si−1), x̂S
i−1

, ŷS
i−1

〉 (4)

Now, since Ai−1 essentially runs Ai in the background, the view of Ai−1 (against
both F i−1 and Si−1) will naturally “contain” the view of Ai. We denote these

16 Below, we will try to use superscripts when talking about the notions related to
computing f , like F i, Si, Ai. And we will use subscripts for the notions related to
computing some gi, like Gi, Si, Ai.
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views by View(Ai, F i−1 + Si) and View(A
i, Si−1 + Si), and let

History(Ai, F i−1 + Si)
def

= 〈View(Ai, F i−1 + Si), x̂
F i−1

, ŷF
i−1

〉 (5)

History(Ai, Si−1 + Si)
def

= 〈View(Ai, Si−1 + Si), x̂
Si−1

, ŷS
i−1

〉 (6)

Thus, Equation (3) (i.e., assumed security of F i−1) implies that

History(Ai, F i−1 + Si) ≡ History(A
i, Si−1 + Si) (7)

However, from the definition of Si = Si−1+Si and the definitions of the effective
inputs/outputs of F i based on those of F i−1, it will immediately follow that the
latter distribution is syntactically the same as History(Ai, Si)! That is,

History(Ai, Si−1 + Si) ≡ History(A
i, Si) (8)

Therefore, Equation (7) and Equation (8) imply that what remains to prove in
order to show Equation (2) is that

History(Ai, F i) ≡ History(Ai, F i−1 + Si) (9)

We remark that the “environments” F i and F i−1 + Si are identical except
the former runs the actual protocol Gi, while the latter evaluates g

i ideally
and uses the simulator Si to deal with Ai inside Gi. Not surprisingly, the last
equality (whose verification is the main technical aspect of the proof) will follow
from the security of Gi. Namely, assuming that the last equality is false, we will
construct an adversary Ai for Gi such that History(Ai, Gi) 6≡ History(Ai, Si),
a contradiction. Roughly, Ai will simulate the whole network of players in F i

(both the adversary Ai and the honest players!), except when executing Gi.

This completes a brief outline of the proof. Additional details can be found in [9].

4.3 The Definitional Support of Parallel Reducibility

Since at least synchronous reducibility provably does not hold for other SFE
definitions, one may wonder what specific features of our modified definition of
[15] are “responsible” for parallel reducibility. While such key features can be
properly appreciated only from the full proof of the parallel-reducibility theorem,
we can already informally highlight two such features on the basis of the above
proof outline.

On-line Simulatability. The simulator S not only is universal (i.e., indepen-
dent of the adversary A) and not only interacts with A in a black-box manner,
but must also interact with A “on-line”. In other words, S runs with A only once:
each time that S sends a piece of information to A, this piece becomes part of
A’s final view. This is in contrast with traditional simulators, which would be
allowed to interact with A arbitrarily many times, to “rewind” A in the middle
of an execution, and to produce any string they want as A’s entire view.
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The ability to generate A’s final view on-line is probably the most crucial
for achieving any kind of parallel reducibility. For example, an adversary A of
the composed protocol might base it actions in sub-protocol G1 depending on
what it sees in sub-protocol G2 and vice versa. Therefore, the resulting views
of A inside G1 and G2 are very inter-dependent. It thus appears crucial that, in
order to simulate these inter-dependent views, the simulator Si for Gi should be
capable of extending A’s view inside Gi incrementally “in small pieces” (as it
happens with A’s view in the real execution) that should never “be taken back”.
If, instead, we were only guaranteed that the simulator could simulate the entire
(as opposed to “piece-by-piece”) view of A in each of the Gi’s separately, there
is no reason to expect that these separate views would be as inter-dependent
as A can make them in the real model. As demonstrated in Section 4.1, on the
other hand, having on-line “one-pass” simulation makes it very easy to define
the needed on-line simulator for A.

Committal Rounds. Intuitively, the committal round corresponds to the “syn-
chronization point” in the ideal function evaluation: when all the players have
sent their inputs to the trusted party, but have not received their corresponding
outputs yet. Not surprisingly, the notion of the committal round plays such a cru-
cial role in synchronous reducibility. In particular, the very existence of “good”
interleavings (i.e., synchronous interleaving, as stated in Theorem 2) is based on
the committal rounds. Committal rounds also play a crucial role in Corollary
2. Indeed, the greedy concurrent execution of all the “pre-committal” rounds of
any number of sub-protocols G1, . . . , Gk (which takes at most max(R1, . . . , Rk)
rounds), followed by the greedy concurrent execution of all the “post-committal”
rounds of G1, . . . , Gk (which also takes at most max(R1, . . . , Rk) rounds), yields
a synchronous interleaving of G1, . . . , Gk with the claimed number of rounds.

The Price of Parallel Reducibility. The definitional support of parallel re-
ducibility “comes at a price”: it rules out some reasonable protocols from being
called secure. For example, having P1 simply send x1 to P2 is not a secure pro-
tocol (in the sense of [15] and Definition 3) for the function g1(x1, λ, λ, . . . , λ) =
(x1, x1, λ, . . . , λ) of Example 2. Indeed, assume the adversary A corrupts player
P2 before the protocol starts and does not corrupt anyone else later on. Then
A will learn x1 in the real execution. Therefore, for the simulator S to match
the view of A, it must also send x1 to A in round 1. For doing so, S must learn
x1 from its oracle before round 1. Since A does not corrupt player 1, this can
only happen when S learns the output of corrupted player P2 (which is indeed
x1) after the committal round. Unfortunately, the committal round is round 1
itself, because only then does P1 manifest its input x1 via its own message traffic.
Thus, S will learn x1 only after round 1, which is too late.

In sum, a reasonable protocol for function g1 is excluded by the Definition
3 from being secure, but this “price” has a reason: Example 2 proves that such
(individually) reasonable protocol is not synchronously reducible.

Parallel Reducibility in Other Settings. We have examined the concept of
parallel reducibility in the information-theoretic setting. In particular, our proof
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of the parallel-reducibility theorem strongly uses information-theoretic security.
It is a very interesting open question to examine parallel reducibility in the
statistical and computational settings.
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