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Abstract. In this paper we introduce the concept of privacy preserving
data mining. In our model, two parties owning confidential databases
wish to run a data mining algorithm on the union of their databases,
without revealing any unnecessary information. This problem has many
practical and important applications, such as in medical research with
confidential patient records.
Data mining algorithms are usually complex, especially as the size of
the input is measured in megabytes, if not gigabytes. A generic secure
multi-party computation solution, based on evaluation of a circuit com-
puting the algorithm on the entire input, is therefore of no practical use.
We focus on the problem of decision tree learning and use ID3, a pop-
ular and widely used algorithm for this problem. We present a solution
that is considerably more efficient than generic solutions. It demands
very few rounds of communication and reasonable bandwidth. In our
solution, each party performs by itself a computation of the same order
as computing the ID3 algorithm for its own database. The results are
then combined using efficient cryptographic protocols, whose overhead
is only logarithmic in the number of transactions in the databases. We
feel that our result is a substantial contribution, demonstrating that se-
cure multi-party computation can be made practical, even for complex
problems and large inputs.

1 Introduction

We consider a scenario where two parties having private databases wish to co-
operate by computing a data mining algorithm on the union of their databases.
Since the databases are confidential, neither party is willing to divulge any of
the contents to the other. We show how the involved data mining problem of de-
cision tree learning can be efficiently computed, with no party learning anything
other than the output itself. We demonstrate this on ID3, an algorithm widely
used and implemented in many real applications.

Confidentiality Issues in Data Mining. A key problem that arises in any en
masse collection of data is that of confidentiality. The need for secrecy is some-
times due to law (e.g. for medical databases) or can be motivated by business
interests. However, sometimes there can be mutual gain by sharing of data. A
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key utility of large databases today is research, whether it be scientific, or eco-
nomic and market oriented. The medical field has much to gain by pooling data
for research; as can even competing businesses with mutual interests. Despite
the potential gain, this is not possible due to confidentiality issues which arise.
We address this question and show that practical solutions are possible. Our

scenario is one where two parties P1 and P2 own databases D1 and D2. The
parties wish to apply a data-mining algorithm to the joint database D1 ∪ D2

without revealing any unnecessary information about their individual databases.
That is, the only information learned by P1 aboutD2 is that which can be learned
from the output, and vice versa. We do not assume any “trusted” third party
who computes the joint output.

Very Large Databases and Efficient Computation. We have described a
model which is exactly that of multi-party computation. Therefore, there exists
a secure solution for any functionality (Goldreich et. al. in [13]). As we discuss in
Section 1.1, due to the fact that these solutions are generic, they are highly inef-
ficient. In our case where the inputs are very large and the algorithms reasonably
complex, they are far from practical.
It is clear that any reasonable solution must have the individual parties do

the majority of the computation independently. Our solution is based on this
guiding principle and in fact, the number of bits communicated is dependent on
the number of transactions by a logarithmic factor only.

Semi-Honest Parties. In any multi-party computation setting, a malicious
party can always alter his input. In the data-mining setting, this fact can be
very damaging as an adversarial party may define his input to be the empty
database. Then, the output obtained is the result of the algorithm on the other
party’s database alone. Although this attack cannot be prevented, we would
like to limit attacks by malicious parties to altering their input only. However,
for this initial work we assume that the parties are semi-honest (also termed
passive). That is, they follow the protocol as it is defined, but may record all
intermediate messages sent in an attempt to later derive additional information.
We leave the question of an efficient solution to the malicious party setting for
future work. In any case, as was described above, malicious parties cannot be
prevented from obtaining meaningful confidential information and therefore a
certain level of trust is anyway needed between the parties. We remark that the
semi-honest model is often a realistic one; that is, deviating from a specified
program which may be buried in a complex application is a non-trivial task.

1.1 Related Work

Secure two party computation was first investigated by Yao [21], and was later
generalized to multi-party computation in [13, 2, 5]. These works all use a similar
methodology: the function F to be computed is first represented as a combinato-
rial circuit, and then the parties run a short protocol for every gate in the circuit.
While this approach is appealing in its generality and simplicity, the protocols
it generates depend on the size of the circuit. This size depends on the size of
the input (which might be huge as in a data mining application), and on the
complexity of expressing F as a circuit (for example, a multiplication circuit is



39

quadratic in the size of its inputs). We stress that secure computation of small
circuits with small inputs can be practical using the [21] protocol.1

There is a major difference between the protocol described in this paper and
other examples of multi-party protocols (e.g. [3, 11, 6]). While previous protocols
were efficient (polynomial) in the size of their inputs, this property does not
suffice for data mining applications, as the input consists of huge databases. In
the protocol presented here, most of the computation is done individually by
each of the parties. They then engage in a few secure circuit evaluations on very
small circuits. We obtain very few rounds of communication with bandwidth
which is practical for even very large databases.

Outline: The next section describes the problem of classification and a widely
used solution to it, decision trees. Following this, Section 3 presents the se-
curity definition and Section 4 describes the cryptographic tools used in the
solution. Section 5 contains the protocol itself and its proof of security. Finally,

the main subprotocol that privately computes random shares of f(v1, v2)
def
=

(v1 + v2) ln(v1 + v2) is described in Section 6.

2 Classification by Decision Tree Learning

This section briefly describes the machine learning and data mining problem of
classification and ID3, a well-known algorithm for it. The presentation here is
rather simplistic and very brief and we refer the reader to Mitchell [15] for an in-
depth treatment of the subject. The ID3 algorithm for generating decision trees
was first introduced by Quinlan in [19] and has since become a very popular
learning tool.
The aim of a classification problem is to classify transactions into one of a

discrete set of possible categories. The input is a structured database comprised
of attribute-value pairs. Each row of the database is a transaction and each
column is an attribute taking on different values. One of the attributes in the
database is designated as the class attribute; the set of possible values for this
attribute being the classes. We wish to predict the class of a transaction by
viewing only the non-class attributes. This can thus be used to predict the class
of new transactions for which the class is unknown.
For example, a bank may wish to conduct credit risk analysis in an attempt

to identify non-profitable customers before giving a loan. The bank then defines
“Profitable-customer” (obtaining values “yes” or “no”) to be the class attribute.
Other database attributes may include: Home-Owner, Income, Years-of-Credit,
Other-Delinquent-Accounts and other relevant information. The bank is then
interested in obtaining a tool which can be used to classify a new customer as
potentially profitable or not. The classification may also be accompanied with a
probability of error.

1 The [21] protocol requires only two rounds of communication. Furthermore, since the
circuit and inputs are small, the bandwidth is not too great and only a reasonable
number of oblivious transfers need be executed.
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2.1 Decision Trees and the ID3 Algorithm

A decision tree is a rooted tree containing nodes and edges. Each internal node is
a test node and corresponds to an attribute; the edges leaving a node correspond
to the possible values taken on by that attribute. For example, the attribute
“Home-Owner” would have two edges leaving it, one for “Yes” and one for “No”.
Finally, the leaves of the tree contain the expected class value for transactions
matching the path from the root to that leaf.
Given a decision tree, one can predict the class of a new transaction t as

follows. Let the attribute of a given node v (initially the root) be A, where A
obtains possible values a1, ..., am. Then, as described, the m edges leaving v are
labeled a1, ..., am respectively. If the value of A in t equals ai, we simply go to
the son pointed to by ai. We then continue recursively until we reach a leaf. The
class found in the leaf is then assigned to the transaction.

The following notation is used: R: a set of attributes; C: the class attribute
and T : a set of transactions. The ID3 algorithm assumes that each attribute is
categorical, that is containing discrete data only, in contrast to continuous data
such as age, height etc.

The principle of the ID3 algorithm is as follows:
The tree is constructed top-down in a recursive fashion. At the root, each

attribute is tested to determine how well it alone classifies the transactions. The
“best” attribute (to be discussed below) is then chosen and we partition the re-
maining transactions by it. We then recursively call ID3 on each partition (which
is a smaller database containing only the appropriate transactions and without
the splitting attribute). See Figure 1 for a description of the ID3 algorithm.

ID3(R, C, T )

1. If R is empty, return a leaf-node with the class value of the majority of the
transactions in T .

2. If T consists of transactions with all the same value c for the class attribute,
return a leaf-node with the value c (finished classification path).

3. Otherwise,
(a) Find the attribute that best classifies the transactions in T , let it be A.
(b) Let a1, ..., am be the values of attribute A and let T (a1), ..., T (am) be a

partition of T s.t. every transaction in T (ai) has the attribute value ai.
(c) Return a tree whose root is labeled A (this is the test attribute) and has

edges labeled a1, ..., am such that for every i, the edge ai goes to the tree
ID3(R− {A}, C, T (ai)).

Fig. 1. The ID3 Algorithm for Decision Tree Learning

What remains is to explain how the best predicting attribute is chosen. This is
the central principle of ID3 and is based on information theory. The entropy
of the class attribute clearly expresses the difficulty of prediction. We know the
class of a set of transactions when the class entropy for them equals zero. The
idea is therefore to check which attribute reduces the information of the class-
attribute by the most. This results in a greedy algorithm which searches for a
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small decision tree consistent with the database. As a result of this, decision
trees are usually relatively small, even for large databases.
The exact test for determining the best attribute is defined as follows. Let

c1, ..., c` be the class-attribute values. Let T (ci) be the set of transactions with
class ci. Then the information needed to identify the class of a transaction in T
is the entropy, given by:

HC(T ) =
∑̀

i=1

−
|T (ci)|

|T |
log

|T (ci)|

|T |

Let A be a non-class attribute. We wish to quantify the information needed to
identify the class of a transaction in T given that the value of A has been ob-
tained. Let A obtain values a1, ..., am and let T (aj) be the transactions obtaining
value aj for A. Then, the conditional information of T given A is given by:

HC(T |A) =
m∑

j=1

|T (aj)|

|T |
HC(T (aj))

Now, for each attribute A the information-gain2, is defined by

Gain(A)
def
= HC(T )−HC(T |A)

The attribute A which has the maximum gain over all attributes in R is then
chosen.

Since its inception there have been many extensions to the original ID3 al-
gorithm, the most well-known being C4.5. We consider only the simpler ID3
algorithm and leave extensions to more advanced versions for future work.

2.2 The ID3δ Approximation

The ID3 algorithm chooses the “best” predicting attribute by comparing en-
tropies that are given as real numbers. If at a given point, two entropies are
very close together, then the two (different) trees resulting from choosing one
attribute or the other are expected to have almost the same predicting capabil-
ity. Formally stated, let δ be some small value. Then, for a pair of attributes A1

and A2, we say that A1 and A2 have δ-equivalent information gains if

|HC(T |A1)−HC(T |A2)| < δ

This definition gives rise to an approximation of ID3. Denote by ID3δ the set of
all possible trees which are generated by running the ID3 algorithm, and choosing
either A1 or A2 in the case that they have δ-equivalent information gains. We
actually present a protocol for secure computation of a specific algorithm ID3δ ∈
ID3δ, in which the choice of A1 or A2 is implicit by an approximation that is
used instead of the log function. The value of δ influences the efficiency, but only
by a logarithmic factor.

2 Note that the gain measure biases attributes with many values and another measure
called the Gain Ratio is therefore sometimes used. We present the simpler version
here.
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3 Security Definition – Private Computation of Functions

The model for this work is that of general multi-party computation, more specifi-
cally between two semi-honest parties. Our formal definitions here are according
to Goldreich in [12]. We now present in brief the definition for general two-
party computation of a functionality with semi-honest parties only. We present
a formalization based on the simulation paradigm (this is equivalent to the ideal-
model definition in the semi-honest case).

Formal Definition. The following definitions are taken from [12]. We begin with
the following notation:

– Let f : {0, 1}∗×{0, 1}∗ 7→ {0, 1}∗×{0, 1}∗ be a functionality where f1(x, y)
(resp., f2(x, y)) denotes the first (resp., second) element of f(x, y) and let
Π be a two-party protocol for computing f .

– The view of the first (resp., second) party during an execution of Π on
(x, y), denoted viewΠ1 (x, y) (resp., view

Π
2 (x, y)), is (x, r,m1, ...,mt) (resp.,

(y, r,m1, ...,mt)) where r represents the outcome of the first (resp., second)
party’s internal coin tosses, and mi represents the i’th message it has re-
ceived.

– The output of the first (resp., second) party during an execution of Π on
(x, y) is denoted outputΠ1 (x, y) (resp., output

Π
2 (x, y)), and is implicit in the

party’s view of the execution.

We note that in the case of ID3δ itself, we have f1 = f2 = ID3δ (however, in the
subprotocols that we use it is often the case that f1 6= f2).

Definition 1 (privacy w.r.t. semi-honest behavior): For a functionality f , we
say that Π privately computes f if there exist probabilistic polynomial time algo-
rithms, denoted S1 and S2, such that

{(S1(x, f1(x, y)), f2(x, y))}x,y∈{0,1}∗
c
≡
{
(viewΠ

1 (x, y), outputΠ2 (x, y))
}
x,y∈{0,1}∗

(1)

{(f1(x, y), S2(y, f2(x, y)))}x,y∈{0,1}∗
c
≡
{
(outputΠ1 (x, y), viewΠ

2 (x, y))
}
x,y∈{0,1}∗

(2)

where
c
≡ denotes computational indistinguishability.

Equations (1) and (2) state that the views of the parties can be simulated by
a polynomial time algorithm given access to the party’s input and output only.
We emphasize that the parties here are semi-honest and the view is therefore
exactly according to the protocol definition. We note that it is not enough for the
simulator S1 to generate a string indistinguishable from view

Π
1 (x, y). Rather, the

joint distribution of the simulator’s output and f2(x, y) must be indistinguish-
able from (viewΠ1 (x, y), output

Π
2 (x, y)). See [12] for a discussion on why this is

essential.

Composition of Private Protocols. The protocol for privately computing ID3δ is
composed of many invocations of smaller private computations. In particular,
we reduce the problem to that of privately computing smaller subproblems and
show how to compose them together in order to obtain a complete ID3δ solution.
This composition is shown to be secure in Goldreich [12].



43

3.1 Secure Computation of Approximations

Our work takes ID3δ as the starting point and security is guaranteed relative
to the approximated algorithm, rather than to ID3 itself. We present a secure
protocol for computing ID3δ. That is, P1 can compute his view given D1 and
ID3δ(D1 ∪D2) only (likewise P2). However, this does not mean that ID3δ(D1 ∪
D2) reveals the “same” information as ID3(D1 ∪ D2) does. In fact, it is clear
that although the computation of ID3δ is secure, different information is revealed
(intuitively though, no “more” information is revealed)3.
The problem of secure distributed computation of approximations was in-

troduced and discussed by Feigenbaum et. al. [10]. Their main motivation is a
scenario in which the computation of an approximation to a function f might be
considerably more efficient than the computation of f itself. The security def-
inition requires that the approximation does not reveal more about the inputs
than f does. In addition, the paper presents several general techniques for com-
puting approximations, and efficient protocols for computing approximations of
distances.

4 Cryptographic Tools

4.1 Oblivious Transfer

The notion of 1-out-2 oblivious transfer (OT 2
1 ) was suggested by Even, Goldre-

ich and Lempel [8], as a generalization of Rabin’s “oblivious transfer” [20]. This
protocol involves two parties, the sender and the receiver. The sender has two
inputs 〈X0, X1〉, and the receiver has an input σ ∈ {0, 1}. At the end of the
protocol the receiver should learn Xσ and no other information, and the sender
should learn nothing. Very attractive non-interactive OT 2

1 protocols were pre-
sented in [1]. More recent results in [17] reduce the amortized overhead of OT 2

1 ,
and describe non-interactive OT 2

1 of strings whose security is not based on the
“random oracle” assumption. Oblivious transfer protocols can be greatly simpli-
fied if the parties are assumed to be semi-honest, as they are in the application
discussed in this paper.

4.2 Oblivious Evaluation of Polynomials

In the oblivious polynomial evaluation problem there is a sender who has a poly-
nomial P of degree k over some finite field F and a receiver with an element
x ∈ F . The receiver obtains P (x) without learning anything else about the poly-
nomial P and the sender learns nothing about x. This primitive was introduced
in [16]. For our solution we use a new protocol [7] that requires O(k) exponenti-
ations in order to evaluate a polynomial of degree k (where the ‘O’ coefficient is
very small). This is important as we work with low-degree polynomials. Following
are the basic ideas of this protocol.

3 Note that although our implementation approximates many invocations of the ln
function, none of these approximations is revealed. The only approximation which
becomes known to the parties is the final result of ID3δ.
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Let P (y) =
∑k

i=0 aiy
i and x be the sender and receiver’s respective inputs.

The following protocol enables the receiver to compute gP (x), where g is a gen-
erator of a group in which the Decisional Diffie-Hellman assumption holds. The
protocol is very simple since it is assumed that the parties are semi-honest. It can
be converted to one which computes P (x) using the the methods of Paillier [18],
who presented a trapdoor for computing discrete logs. Security against malicious
parties can be obtained using proofs of knowledge. The protocol consists of the
following steps:

– The receiver chooses a secret key s, and sends gs to the sender.
– For 0 ≤ i ≤ k, the receiver computes ci = (g

ri , gs·rigx
i

), where ri is random.
The receiver sends c0, . . . , ck to the sender.

– The sender computes C = Πk
i=0(ci)

ai = (gR, gsRgP (x)), whereR =
∑k

i=0 riai.

It then chooses a random value r and computes C ′ = (gR · gr, gsRgP (x) · gsr)
and sends it to the receiver.

– The receiver divides the second element of C ′ by the first element of C ′

raised to the power of s, and obtains gP (x).

By the DDH assumption, the sender learns nothing of xi from the messages
c0, . . . , ck sent by the receiver to the sender. On the other hand, the receiver
learns nothing of P from C ′.

4.3 Oblivious Circuit Evaluation

The two party protocol of Yao [21] solves the following problem. There are two
parties, a party A which has an input x, and a party B which has as input
a function f and a combinatorial circuit that computes f . At the end of the
protocol A outputs f(x) and learns no other information about f , while B learns
nothing at all. We employ this protocol for the case that f depends on two inputs
x and y, belonging to A and B respectively. This is accomplished by having B
simply hardwire his input y into the circuit (that is, B’s input is a function
f(·, y) and A obtains f(x, y) from the circuit).4

The overhead of the protocol involves (1) B sending to A tables of size linear
in the size of the circuit, (2) A and B engaging in an oblivious transfer protocol
for every input wire of the circuit, and (3) A computing a pseudo-random func-
tion a constant number of times for every gate. Therefore, the number of rounds
of this protocol is constant (namely, two rounds using non-interactive oblivious
transfer), and the main computational overhead is that of running the oblivious
transfers.

Computing Random Shares. Note that by defining r1 = F (x, (y, r2))
def
= f(x, y)−

r2, A and B obtain random shares summing to f(x, y).

5 The Protocol

The central idea of our protocol is that all intermediate values of the computation
seen by the players are uniformly distributed. At each stage, the players obtain

4 In the case that f is known and the parties are semi-honest, Yao’s evaluation con-
stitutes a secure protocol for the described problem.
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random shares v1 and v2 such that their sum equals an appropriate intermediate
value. Efficiency is achieved by having the parties do most of the computation
independently.
We assume that there is a known upper bound on the size of the union of

the databases, and that the attribute-value names are public.5

Solution Outline. The “most difficult” step in privately computing ID3δ reduces
to oblivious evaluation of the x lnx function (Section 5.1). (A private protocol
for this task is presented separately in Section 6.) Next, we show how given a
protocol for computing x lnx, we can privately find the next attribute in the
decision tree (Section 5.2). Finally, we describe how the other steps of the ID3δ
algorithm are privately computed and show the complete private protocol for
computing ID3δ (Section 5.3).

5.1 A Closer Look at ID3δ

The part of ID3δ which is hardest to implement in a private manner is step
3(a). In this step the two parties must find the attribute A that best classi-
fies the transactions T in the database, namely the attribute that provides the
maximum information gain. This step can be stated as: Find the attribute A
which minimizes the conditional information of T given A, HC(T |A). Exam-
ine HC(T |A) for an attribute A with m possible values a1, . . . , am, and a class
attribute C with l possible values c1, . . . , c`.

HC(T |A) =

m∑

j=1

|T (aj)|

|T |
HC(T (aj))

=
1

|T |

m∑

j=1

|T (aj)|

`∑

i=1

−
|T (aj , ci)|

|T (aj)|
· log(

|T (aj , ci)|

|T (aj)|
)

=
1

|T |

(
−

m∑

j=1

`∑

i=1

|T (aj , ci)| log(|T (aj , ci)|) +

m∑

j=1

|T (aj)| log(|T (aj)|)

)
(3)

Note that since the algorithm is only interested in finding the attribute A which
minimizes HC(T |A), the coefficient 1/|T | can be ignored. Also, natural loga-
rithms can be used instead of logarithms to the base 2.
The database is a union of two databases, D1 which is known to P1 and

D2 which is known to P2. The number of transactions for which attribute A
has value aj can therefore be written as |T (aj)| = |T1(aj)| + |T2(aj)|, where
|Tb(aj)| is the number of transactions with attribute A set to aj in database
Db (likewise T (aj , ci) is the number of transaction with A = aj and the class
attribute set to ci). The values |T1(aj)| and |T1(aj , ci)| can be computed by
party P1 independently, and the same holds for P2. Therefore the expressions
that should be compared can be written as a sum of expressions of the form

(v1 + v2) · ln(v1 + v2),

5 It is clear that the databases must have the same structure with previously agreed
upon attribute names.
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where v1 is known to P1 and v2 is known to P2. The main task is, therefore, to
privately compute x lnx and a protocol for this task is described in Section 6.
The exact definition of this protocol is provided in Figure 2.

5.2 Finding the Attribute with Maximum Gain

Given the above protocol for privately computing shares of x lnx, the attribute
with the maximum information gain can be determined. This is done in two
stages: first, the parties obtain shares of HC(T |A) · |T | · ln 2 for all attributes
A and second, the shares are input into a very small circuit which outputs the
appropriate attribute. In this section we refer to a field F which is defined so
that |F| > HC(T |A) · |T | · ln 2.

Stage 1 (computing shares) : For every attribute A, for every attribute-value
aj ∈ A and every class ci ∈ C, P1 and P2 use the x lnx protocol in order to
obtain wA,1(aj), wA,2(aj), wA,1(aj , ci) and wA,2(aj , ci) ∈R F such that

wA,1(aj) + wA,2(aj) = |T (aj)| · log(|T (aj)|) mod |F|

wA,1(aj , ci) + wA,2(aj , ci) = |T (aj , ci)| · log(|T (aj , ci)|) mod |F|

Now, define ĤC(T |A)
def
= HC(T |A) · |T | · ln 2. Then,

ĤC(T |A) = −

m∑

j=1

`∑

i=1

|T (aj , ci)| · ln(|T (aj , ci)|) +

m∑

j=1

|T (aj)| · ln(|T (aj)|)

Then, P1 (and likewise P2) computes his share in ĤC(T |A) as follows:

SA,1 = −

m∑

j=1

`∑

i=1

wA,1(aj , ci) +

m∑

j=1

wA,1(aj) mod |F|

It is clear that SA,1+SA,2 = ĤC(T |A) mod |F| and we therefore have that for

every attribute A, P1 and P2 obtain shares in ĤC(T |A) (this last step involves
local computation only).

Stage 2 (finding the attribute): It remains to find the attribute with the minimum

ĤC(T |A) (and therefore the minimum HC(T |A)). This is done via a Yao circuit

evaluation [21]. We note that since ĤC(T |A) < |F|, it holds that either SA,1 +

SA,2 = ĤC(T |A) or SA,1 + SA,2 = ĤC(T |A) + |F|.
The parties run an oblivious evaluation of a circuit with the following func-

tionality. The circuit input is the shares of both parties for each ĤC(T |A). The

circuit first computes each ĤC(T |A) (by subtracting |F| if the sum is larger
than |F| − 1 or leaving it otherwise), and then compares the results to find the
smallest among them. This circuit has 2|R| inputs of size log |F| and its size
is O(|R| log |F|). Note that |R| log |F| is a small number and thus this circuit
evaluation is efficient.
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Privacy: Stage 1 is clearly private as it involves many invocations of a private
protocol that outputs random shares, followed by a local computation. Stage 2 is
also private as it involves a single invocation of Yao’s oblivious circuit evaluation
and nothing more.

Note the efficiency achieved above. Each party has to compute the same set of
values |T (aj , ci)| as it computes in an individual computation of ID3. For each
of these values it engages in the x lnx protocol. (We stress that the number of
values here does not depend on the number of transactions, but rather on the
number of different possible values for each attribute, which is usually smaller
by orders of magnitude.) It sums the results of all these protocols together, and
engages in an oblivious evaluation of a circuit whose size is linear in the number
of attributes.

5.3 The Private ID3δ Protocol

In the previous subsection we showed how each node can be privately computed.
The complete protocol for privately computing ID3δ can be seen below. The steps
of the protocol correspond to those in the original algorithm (see Figure 1).

Protocol 1 (Protocol for Private Computation of ID3δ:)

Step 1: If R is empty, return a leaf-node with the class value of the majority of
the transactions in T .
Since the set of attributes is known to both parties, they both publicly know
if R is empty. If yes, the parties do an oblivious evaluation of a circuit whose
inputs are the values 〈|T1(c1)|, . . . , |T1(c`)|〉 and 〈|T2(c1)|, . . . , |T2(c`)|〉, and
whose output is i such |T1(ci)|+ |T2(ci)| is maximal. The size of this circuit
is linear in ` and in log(|T |).

Step 2: If T consists of transactions with all the same class c, return a leaf-node
with the value c.
In order to compute this step privately, we must determine whether both
parties remain with the same single class or not. We define a fixed symbol
⊥ symbolizing the fact that a party has more than one remaining class. A
party’s input to this step is then ⊥, or ci if it is its one remaining class. All
that remains to do is check equality of the two inputs. The value causing the
equality can then be publicly announced as ci (halting the tree on this path)
or ⊥ (to continue growing the tree from the current point).
The equality check can be executed in one of two ways: (1) Using the “com-
paring information without leaking it” protocols of Fagin, Naor, and Win-
kler [9]. This solution requires the execution of log(`+1) oblivious transfers.
(2) Using a protocol suggested in [16] and which involves the oblivious eval-
uation of linear polynomials. The overhead of this solution is O(1) oblivious
transfers, using the oblivious polynomial evaluation protocol of [7].

Step 3: (a) Determine the attribute that best classifies the transactions in T ,
let it be A.
For every value aj of every attribute A, and for every value ci of the class
attribute C, the two parties run the x lnx protocol of Section 6 for T (aj)
and T (aj , ci). They then continue as described in Section 5.2 by computing
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independent additions and inputting the results into a small circuit. Finally,
they perform an oblivious evaluation of the circuit with the result being the
attribute with the highest information gain, A. This is public knowledge as
it becomes part of the output.
(b,c) Recursively call ID3δ for the remaining attributes on the transaction

sets T (a1), . . . , T (am) (where a1, . . . , am are the values of attribute A).
The result of 3(a) and the attribute values of A are public and therefore
both parties can individually partition the database and prepare their input
for the recursive calls.

Although each individual step of the above protocol has been shown to be pri-
vate, we must show that the composition is also private. The central issue in the
proof involves showing that the control flow can be predicted from the input and
output only.

Theorem 2 The protocol for computing ID3δ is private.

Proof. In this proof the simulator is described in generic terms as it is identical
for P1 and P2. Furthermore, we skip details which are obvious Recall that the
simulator is given the output decision tree.

We need to show that any information learned by the computation can be learned
directly from the input and output. This is done by showing how the views can
be correctly simulated based solely on the input and output. The computation
of the tree is recursive beginning at the root. For each node, a “splitting” class
is chosen (due to it having the highest information gain) developing the tree to
the next level. Any implementation defines the order of developing the tree and
this order is used by the simulator to write the messages received in the correct
order. Therefore according to this order, at any given step the computation is
based on finding the highest information gain for a known node (for the proof
we ignore optimizations which find the gain for more than one node in parallel).
We differentiate between two cases: (1) a given node is a leaf node and (2) a
given node is not a leaf.

1. The Current Node in the Computation is a Leaf-Node: The simulator
checks, by looking at the input, if the set of attributes R at this point is empty
or not. If it is not empty (this can be deduced from the tree and the attribute-
list which is public), then the computation proceeds to Step (2). In this case,
the simulator writes that the oracle-answer from the equality call in Step (2) is
equal (or else it would not be a leaf). On the other hand, if the list of attributes
is empty, the computation is executed in Step (1) and the simulator writes the
output of the majority evaluation to be the class appearing in the leaf.

2. The Current Node in the Computation is not a Leaf-Node: In this case
Step (1) is skipped and the oracle-answer of Step (2) must be not-equal; this
is therefore what the simulator writes. The computation then proceeds to Step
(3) which involves many invocations of the x lnx protocol, returning values uni-
formly distributed in F . Therefore, the simulator simply chooses the correct
number of random values (based on the public list of attribute names, values
and class values) and writes them. The next step of the algorithm is a local
computation (not included in the view) and an oblivious circuit evaluation. The
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simulator simply looks to see which class is written in the tree at this node and
writes the class name as the output from the circuit evaluation.
The computation then continues to the next node in the defined order of

traversal. This completes the proof.

Remark. It is both surprising and interesting to note that if Steps (1) and
(2) of the protocol are switched (as the algorithm is in fact presented in [15]),
then it is no longer private. This is due to the equality evaluation in Step (2),
which may leak information about the other party’s input. Consider the case
of a computation in which at a certain point the list of attributes is empty and
P1 has only one class c left in his remaining transactions. The output of the
tree at this point is a leaf with a class, assume that the class is c. From the
output it is impossible for P1 to know if P2’s transactions also have only one
remaining class or if the result is because the majority of both together is c. The
majority circuit of Step (1) covers both cases and therefore does not reveal this
information. However, if P1 and P2 first execute the equality evaluation, this
information is revealed.

Complexity. A detailed analysis of the complexity of the protocol is presented
in Appendix A. The overhead is dominated by the x lnx protocol.

6 A Protocol for Computing x lnx

This section describes an efficient protocol for privately computing the x lnx
function, as defined in Figure 2.

– Input: P1’s input is a value v1; P2’s input is v2.
– Auxiliary input: A large enough field F , the size of which will be discussed
later.

– Output: P1 obtains w1 ∈ F and P2 obtains w2 ∈ F such that:
1. w1 + w2 = (v1 + v2) · ln(v1 + v2) mod |F|
2. w1 and w2 are uniformly distributed in F when viewed independently of

one another.

Fig. 2. Definition of the x lnx protocol.

There are several difficulties in the design of such a protocol. Firstly, it is not
clear how to obliviously compute the natural logarithm efficiently. Furthermore,
the protocol must multiply two values together. An initial idea is to use Yao’s
generic two party circuit evaluation protocol [21] and construct a multiplication
circuit. However, the size of this circuit is of the order of the multiplication of
the sizes of its inputs. This subprotocol is to be repeated many times throughout
the complete ID3δ protocol and its efficiency is, therefore, crucial.
The solution requires a linear size circuit and a small number of simple oblivi-

ous evaluation protocols. The problem is divided into two parts: First it is shown
how to compute shares of lnx from shares of x. Secondly, we show how to obtain
shares of the product x lnx given separate shares of x and lnx.
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6.1 Computing Shares of lnx

We now show how to compute random shares u1 and u2 such that u1+u2 = lnx.
The starting point for the solution is the Taylor series of the natural logarithm,
namely:

ln(1 + ε) =

∞∑

i=1

(−1)i−1εi

i
= ε−

ε2

2
+
ε3

3
−
ε4

4
+ · · · for − 1 < ε < 1

It is easy to verify that the error for a partial evaluation of the series is as follows:
∣∣∣∣∣ln(1 + ε)−

k∑

i=1

(−1)i−1εi

i

∣∣∣∣∣ <
|ε|k+1

k + 1
·

1

1− |ε|
(4)

As is demonstrated in Section 6.3, the error shrinks exponentially as k grows.
Now, given an input x, let 2n be the power of 2 which is closest to x (in

the ID3δ application, note that n < log |T |). Therefore, x = 2n(1 + ε) where
−1/2 ≤ ε ≤ 1/2. Consequently,

ln(x) = ln(2n(1 + ε)) = n ln 2 + ε−
ε2

2
+
ε3

3
−
ε4

4
+ · · ·

Our aim is to compute this Taylor series to the k’th place. Let N be a predeter-
mined (public) upper-bound on the value of n (N > n always). Now, we use a
small circuit that receives v1 and v2 as input (the value of N is hardwired into
it) and outputs shares of 2N ·n ln 2 (for computing the first element in the series
of lnx) and ε · 2N (for computing the remainder of the series). This circuit is
easily constructed: notice that ε · 2n = x − 2n, where n can be determined by
looking at the two most significant bits of x, and ε · 2N is obtained simply by
shifting the result by N − n bits to the left. The possible values of 2Nn ln 2 are
hardwired into the circuit. As we have described, random shares are obtained
by having one of the parties input random values α1, β1 ∈R F into the circuit
and having the circuit output α2 = ε · 2N − α1 and β2 = 2

N · n ln 2− β1 to the
other party. The parties therefore have shares α1, β1 and α2, β2 such that

α1 + α2 = ε2N and β1 + β2 = 2
Nn ln 2

The second stage of the protocol involves computing shares of the Taylor series
approximation. In fact, it computes shares of

lcm(2, ...k) · 2N
(

n ln 2 + ε−
ε2

2
+

ε3

3
− · · ·

εk

k

)
≈ lcm(2, ...k)2N lnx (5)

(where lcm(2, ..., k) is the lowest common multiple of {2, . . . , k}, and we multiply
by it to ensure that there are no fractions). In order to do this P1 defines the
following polynomial:

Q(x) = lcm(2, . . . , k) ·

k∑

i=1

(−1)i−1

2N(i−1)

(α1 + x)i

i
− w1



51

where w1 ∈R F is randomly chosen. It is easy to see that

w2
def
= Q(α2) = lcm(2, ..., k) · 2

N ·

(
k∑

i=1

(−1)i−1εi

i

)
− w1

Therefore by a single oblivious polynomial evaluation of the k-degree polyno-
mial Q(·), P1 and P2 obtain random shares w1 and w2 to the approximation in
Equation (5). Namely P1 defines u1 = w1+ lcm(2, . . . , k)β1 and likewise P2. We
conclude that

u1 + u2 ≈ lcm(2, . . . , k)2
N · lnx

This equation is accurate up to an approximation error which we bound, and
the shares are random as required. Since N and k are known to both parties, the
additional multiplicative factor of 2N ·lcm(2, . . . , k) is public and can be removed
at the very end. Notice that all the values in the computation are integers (except
for 2Nn ln 2 which is given as the closest integer number).

The size of the field F . It is necessary that the field be chosen large enough so
that the initial inputs in each evaluation and the final output be between 0 and
|F| − 1. Notice that all computation is based on ε2N . This value is raised to
powers up to k and multiplied by lcm(2, . . . , k). Therefore a field of size 2Nk+2k

is clearly large enough, and requires (N + 2)k bits for representation.

We now summarize the lnx protocol:

Protocol 2 (Protocol lnx)

1. P1 and P2 input their shares v1 and v2 into an oblivious evaluation protocol
for a circuit outputting: (1) Random shares α1 and α2 of ε2

N (i.e. α1+α2 =
ε2N mod|F|). (2) Random shares β1,β2 such that β1 + β2 = 2

N · n ln 2.
2. P1 chooses w1 ∈R F and defines the following polynomial

Q(x) = lcm(2, . . . , k) ·

k∑

i=1

(−1)i−1

2N(i−1)

(α1 + x)i

i
− w1

3. P1 and P2 then execute an oblivious polynomial evaluation with P1 inputting
Q(·) and P2 inputting α2, in which P2 obtains w2 = Q(α2).

4. P1 and P2 define u1 = lcm(2, . . . , k)β1 + w1 and u2 = lcm(2, . . . , k)β2 + w2

respectively. We have that u1 + u2 ≈ 2
N lcm(2, . . . , k) · lnx

Proposition 3 Protocol 2 constitutes a private protocol for computing random
shares of c · lnx in F , where c = 2N lcm(2, . . . , k).

Proof. We first show that the protocol correctly computes shares of c lnx. In
order to do this, we must show that the computation over F results in a correct
result over the reals. We first note that all the intermediate values are integers. In
particular, ε2n equals x−2n and is therefore an integer as is ε2N (since N > n).
Furthermore, every division by i (2 ≤ i ≤ k) is counteracted by a multiplication
by lcm(2, . . . , k). The only exception is 2Nn ln 2. However, this is taken care of
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by having the original circuit output the closest integer to 2Nn ln 2 (although the
rounding to the closest integer introduces an additional approximation error, it
is negligible compared to the approximation error of the Taylor series).
Secondly, the field F is defined to be large enough so that all intermediate

values (i.e. the sum of shares) and the final output (as a real number times
2N · lcm(2, . . . , k)) are between 0 and |F|− 1. Therefore the two shares uniquely
identify the result, which equals the sum (over the integers) of the two random
shares if it is less than |F|, or the sum minus |F| otherwise.
The proof of privacy appears in the full version of the paper.

6.2 Computing Shares of x lnx

We begin by briefly describing a simple multiplication protocol that on private
inputs a1 and a2 outputs random shares b1 and b2 (in some finite field F) such
that b1 + b2 = a1 · a2.

Protocol 3 (Protocol Mult(a1, a2))

The protocol is very simple and is based on an oblivious evaluation of a linear
polynomial. The protocol begins by P1 choosing a random value b1 ∈ F and
defining a linear polynomial Q(x) = a1x − b1. P1 and P2 then engage in an
oblivious evaluation of Q, in which P2 obtains b2 = Q(a2) = a1 ·a2−b1. We define
the respective outputs of P1 and P2 as b1 and b2 giving us that b1+ b2 = a1 · a2.

Proposition 4 Protocol 3 constitutes a private protocol for computing Mult as
defined above.

We are now ready to present the complete x lnx protocol:

Protocol 4 (Protocol x lnx)

1. P1 and P2 use Protocol 2 for privately computing shares of lnx in order to
obtain random shares u1 and u2 such that u1 + u2 = lnx.

2. P1 and P2 use two invocations of Protocol 3 in order to obtain shares of
u1 · v2 and u2 · v1.

3. P1 (resp., P2) then defines his output w1 (resp., w2) to be the sum of the
two Mult shares and u1 · v1 (resp., u2 · v2).

4. We have that w1+w2 = u1v1+u1v2+u2v1+u2v2 = (u1+u2)(v2+v2) = x lnx
as required.

Theorem 5 Protocol 4 is a protocol for privately computing random shares of
x lnx.

The correctness of the protocol is straightforward. The proof of the privacy
properties appears in the full version of the paper.

Complexity The detailed analysis of the complexity is presented in Appendix A.
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6.3 Choosing the Parameter k

Recall that the parameter k defines the accuracy of the Taylor approximation
of the “ln” function. Given δ and the database, we analyze which k we need to
take in order to ensure that the defined δ-approximation is correctly estimated6

From here on we denote an approximation of the value z by z̃.
The approximation definition of ID3δ requires that for all A1, A2

HC(T |A1) > HC(T |A2) + δ ⇒ H̃C(T |A1) > H̃C(T |A2)

This is clearly fulfilled if
∣∣∣HC(T |Ab)− H̃C(T |Ab)

∣∣∣ < δ
2 for b = 1, 2.

We now bound the difference on each | lnx − l̃nx| in order that the above

condition is fulfilled. By replacing log x by 1
ln 2 | lnx− l̃nx| in Equation (3) com-

puting HC(T |A), we obtain a bound on the error of
∣∣∣HC(T |A1)− H̃C(T |A1)

∣∣∣.
A straightforward algebraic manipulation gives us that if 1

ln 2 | lnx − l̃nx| <
δ
4 ,

then the error is less than δ
2 as required. As we have mentioned (Equation (4)),

the lnx error is bounded by |ε|k+1

k+1
1

1−|ε| and this is maximum at |ε| =
1
2 (recall

that − 1
2 ≤ ε ≤ 1

2 ). Therefore, given δ, we set
1

2kk+1
< δ

4 · ln 2 or k+ log(k+1) >

log
[

4
δ ln 2

]
(for δ = 0.0001, it is enough to take k > 12). Notice that the value of

k is not dependent on the input database.
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A Complexity

The communication complexity is measured by two parameters: the number of
rounds and the bandwidth of all messages sent. As for the computation overhead,
it is measured by the number of exponentiations and oblivious transfers (ignoring
evaluations of pseudo-random functions, since they are more efficient by a few
orders of magnitude).
Parameters: The overhead depends on the following parameters:

– T , the number of transactions.
– k, the length of the Taylor series, which affects the accuracy.
– F , the field over which the computation is done. This is set as a function of
the above two parameters, namely log |F| = (k + 2) log |T |

– |R|, the number of attributes.
– m, the number of possible values for each attribute (to simplify the notation
assume that this is equal for all attributes).

– `, the number of possible values for the class attribute.
– |E|, the length of an element in the group in which oblivious transfers and
exponentiations are implemented. To simplify the notation we assume that
|E| > log |F| = k log |T |.

– |S|, the length of a key for a pseudorandom function used in the circuit
evaluation (say, 80 or 100 bits long).

– |D|, the number of nodes in the decision tree.

A very detailed analysis of the complexity is given in the full version of
the paper. The lnx protocol (Protocol 2) affects the complexity the most. Its
overall overhead is O(max(log |T |, k)) oblivious transfers. Since |T | is usually
large (e.g. log |T | = 20), and on the other hand k can be set to small values
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(e.g. k = 12), the overhead can be defined as O(log |T |) oblivious transfers.
The main communication overhead is incurred by the circuit evaluation and is
O(k log |T | · |S|) bits.

Finding the best attribute for a node. This step requires running the
lnx protocol for every attribute and for every combination of attribute-value
and class-value, and evaluating a small circuit. The communication overhead
is O(|R|m`k log |T | · |S|) bits and the computation overhead is O(|R|m` log |T |)
oblivious transfers. The number of rounds is O(1).

Computing all nodes of the decision tree. All nodes on the same level
of the tree can be computed in parallel. We therefore have that the number of
rounds equals O(d) where d is the depth of the tree. The value of d is upper
bound by |R| but is expected to be much smaller.
Overall complexity:

– Parameters: For a concrete example, assume that there are a million trans-
actions |T | = 220, |R| = 15 attributes, each attribute has m = 10 possible
values, the class attribute has ` = 4 values, and k = 10 suffices to have the
desired accuracy. Say that the depth of the tree is d = 7, and that it uses
private keys of length |S| = 80 bits.

– Rounds: There are O(d) rounds.
– Communication: The communication overhead is O(|D| · |R|m`k log |T | ·
|S|). In our example, this is |D| · 15 · 10 · 4 · 10 · 20 · 80 = 9, 600, 000|D| bits
times a very small constant factor. We conclude that the communication per
node can be transmitted in a matter of seconds using a fast communication
network (e.g. a T1 line with 1.5Mbps bandwidth, or a T3 line with 35Mbps).

– Computation: The computation overhead is O(|D| · |R|m` log |T |). In our
example, this is an order of |D| · 15 · 10 · 4 · 20 = 12, 000|D| exponentiations
and oblivious transfers. Assuming that a modern PC can compute 50 expo-
nentiations per second, we conclude that the computation per node can be
completed in a matter of minutes.

In the full paper we present a comparison to generic solutions that shows
that our protocol achieves a considerable improvement (both in comparison to
the complete ID3 protocol and to the x lnx protocol).


