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Éliane Jaulmes1 and Antoine Joux2

1 SCSSI, 18 rue du Docteur Zamenhof
F-92131 Issy-les-Moulineaux cedex, France

eliane.jaulmes@wanadoo.fr
2 SCSSI, 18 rue du Docteur Zamenhof

F-92131 Issy-les-Moulineaux cedex, France
Antoine.Joux@ens.fr

Abstract. We present a chosen-ciphertext attack against the public key
cryptosystem called NTRU. This cryptosystem is based on polynomial
algebra. Its security comes from the interaction of the polynomial mixing
system with the independence of reduction modulo two relatively prime
integers p and q. In this paper, we examine the effect of feeding special
polynomials built from the public key to the decryption algorithm. We
are then able to conduct a chosen-ciphertext attack that recovers the
secret key from a few ciphertexts/cleartexts pairs with good probability.
Finally, we show that the OAEP-like padding proposed for use with
NTRU does not protect against this attack.

1 Overview

In [7], Hoffstein, Pipher and Silverman have presented a public key cryptosys-
tem based on polynomial algebra called NTRU. The security of NTRU comes
from the interaction of the polynomial mixing system with the independence
of reduction modulo p and q. In [7], the authors have studied different possible
attacks on their cryptosystem.

First the brute force attack, which can be eased by the meet-in-the-middle
principle, may be used against the private key or against a single message. How-
ever, for a suitable choice of parameters this attack will not succeed in a reason-
able time.

Then there is a multiple transmission attack, which will provide the content
of a message that has been transmitted several time. Thus multiple transmis-
sions are not advised. It is also one of the reasons why NTRU recommends a
preprocessing scheme.

Finally, several attacks make use of the LLL algorithm of Lenstra-Lenstra-
Lovász [10] which produces a reduced basis for a given lattice. They can either
recover the secret key from the public key or decipher one given message. How-
ever the authors of NTRU claim that the time required is exponential in the
degree of the polynomials. For most lattices, it is indeed very difficult to find
extremely short vectors. Thus for suitably large degrees, this attack is expected
to fail and does fail in practice. Another idea, described by Coppersmith and
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Shamir in [3] would be to use LLL to find some short vector in the lattice which
could act as a decryption key, but the authors of NTRU claim that experimen-
tal evidence suggests that the existence of such spurious keys does not pose a
security threat.

However, we show now that it is possible to break the system using a chosen-
ciphertext attack. Such attacks have already been used for example in [9] and [5].
They work as follows: The attacker constructs invalid cipher messages. If he
can know the plaintexts corresponding to his messages, he can recover some
information about the decryption key or even retrieve the private key. In [5], the
authors point out that finding the plaintext corresponding to a given ciphertext
can reasonably be achieved. This possibility is even increased if decryption is
done on a smart card. The standard defense against such attacks is to require
redundancy in the message and this is why there exists a padded version of
NTRU. The chosen-ciphertext attack we present here has a good probability
of recovering the private key from one or two well chosen ciphertexts on the
unpadded version of NTRU. It is also able to recover the key on the padded
version from a reasonable number of chosen ciphertexts.

This paper is organized as follows: we first recall the main ideas of the cryp-
tosystem without preprocessing, then we present our chosen-ciphertext attack
on the unpadded version and give an example of this attack. Finally we study
the case where the OAEP-like padding is used and explain how our attack can
still recover the private key in this situation.

2 Description of the Cryptosystem

2.1 Notations

The NTRU cryptosystem depends on three integers parameters (N, p, q) and
four sets of polynomials of degree (N − 1) with integer coefficients, called Lf ,
Lg, Lφ, Lm.

The parameters p and q are chosen with gcd(p, q) = 1 and q is much larger
than p. All polynomials are in the ring

R = Z[X]/(XN − 1).

We write ~ to denote multiplication in R. In the system, some multiplications
will be performed modulo q and some modulo p.

The sets Lf ,Lg,Lφ and Lm are chosen as follows. The space of messages Lm
consists of all polynomials modulo p. Assuming p is odd, it is most convenient
to take

Lm =

{

m ∈ R :
m has coefficients lying between

− 1
2 (p− 1) and 1

2 (p− 1)

}

.

To describe the other samples spaces, we will use sets of the form

L(d1, d2) =

{

F ∈ R :
F has d1 coefficients equal to 1

d2 coefficients equal to − 1, the rest 0

}

.
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With this notation, we choose three positive integers df , dg, d and set

Lf = L(df , df − 1), Lg = L(dg, dg), and Lφ = L(d, d).

We take Lf = L(df , df − 1) instead of L(df , df ) because we want f to be
invertible and a polynomial satisfying f(1) = 0 can never be invertible.

2.2 The Key Generation

To create an NTRU key, one chooses two polynomials f ∈ Lf and g ∈ Lg. The
polynomial f must have inverses modulo p and q. We will denote these inverses
by Fp and Fq. So we have:

Fp ~ f ≡ 1 (mod p) and Fq ~ f ≡ 1 (mod q).

The public key is then the polynomial:

h ≡ Fq ~ g (mod q).

Of course, the parameters N , p, q are public too.

The private key is the polynomial f , together with Fp.

2.3 Encryption and Decryption Procedure

Encryption. The encryption works as follows. First, we select a message m
from the set of plaintexts Lm. Next we choose randomly a polynomial φ ∈ Lφ
and use the public key to compute:

e ≡ pφ~ h+m (mod q).

e is our encrypted message.

Decryption. We have received an encrypted message e and we want to de-
crypt it using our private key f . To do this, we should have precomputed the
polynomial Fp as described in 2.2. In order to decrypt e, we compute :

a ≡ f ~ e (mod q),

where we choose the coefficients of a in the interval from −q/2 to q/2. Now,
treating a as a polynomial with integer coefficients, we recover the message by
computing:

Fp ~ a (mod p).
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How Decryption Works. The polynomial a verifies

a ≡ f ~ e ≡ f ~ pφ~ h+ f ~m (mod q)

= f ~ pφ~ Fq ~ g + f ~m (mod q)

= pφ~ g + f ~m (mod q).

For appropriate parameter choices, we can ensure that all coefficients of the
polynomial pφ~ g+ f ~m lie between −q/2 and q/2. So the intermediate value
pφ~ g+ f ~m mod q is in fact the true (non modular) value of this polynomial.
This means that when we compute a and reduce its coefficients into this interval,
we recover exactly the polynomial pφ~ g + f ~m. Hence its reduction modulo
p give us f ~m mod p and the multiplication by Fp retrieves the message m.

The basic idea for the attack presented here will be to construct intermediate
polynomials such that the modular values differ from the true values.

2.4 Sets of Parameters for NTRU

The authors of NTRU have defined different sets of parameters for NTRU pro-
viding various security levels. Theses parameters are given in [12].

Name N p q Lf Lg Lφ
Case A 107 3 64 L(15, 14) L(12, 12) L(5, 5)
Case B 167 3 128 L(61, 60) L(20, 20) L(18, 18)
Case C 263 3 128 L(50, 49) L(24, 24) L(16, 16)
Case D 503 3 256 L(216, 215) L(72, 72) L(55, 55)

In the original formulation of the NTRU public key cryptosystem [7], it was
suggested that one could use N = 107 to create a cryptosystem with moderate
security. Such a system can be broken by lattice attacks in a few hours. Thus
the use of case A is not recommended anymore but we will still use it to describe
our attack in its simple version.

3 The Chosen-Ciphertext Attack

3.1 Principle

As stated in 2.3, we want to build cipher texts such that the intermediate values
in the deciphering process will differ from the true values. We first consider the
effect of deciphering a cipher text of the form ch+ c, where c is an integer and
h is the public key. The decryption algorithm first multiplies by f modulo q:

a ≡ f ~ ch+ cf (mod q)

≡ cg + cf (mod q),

where g and f both have coefficients equal to 0, 1 or −1. Hence the polynomial
cf +cg have coefficients equal to 0, c, −c, 2c or −2c. We then need to reduce the
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coefficients of a between −q/2 and q/2. If c has been chosen such that c < q/2
and 2c > q/2, we will have to reduce only the coefficients equal to 2c or −2c.

If we now suppose that a single coefficient in a is ±2c, say ai = +2c, then
the value of a mod q is cg + cf − qxi. The deciphering process outputs

cg ~ Fp + c− qxi ~ Fp (mod p)

If c has been chosen as a multiple of p, then the output is

−qxi ~ Fp (mod p).

Since gcd(p, q) = 1, we can recover xi~Fp ≡ xi/f mod p and compute its inverse
f/xi mod p. Since all the coefficients of f are 1 or −1, it is the true value of the
polynomial. We can then compute

g/xi = h~ f/xi (mod q),

which is also the true value of g/xi. Going back to the key process described in
section 2.2, we can see that (f, g) and (f/xi, g/xi) are equivalent keys.

Of course, in general, the polynomial cf + cg may have none or several coef-
ficients equal to ±2c , and then the above attack does not work anymore. In the
next section, we will analyze the attack and generalize it to make it work for all
the security parameters proposed for NTRU in [7].

3.2 Analysis of the Attack

We say that two polynomials P1 and P2 have a collision when they have the
same non zero coefficient at the same degree.

We now define the intersection polynomial k of (P1, P2) by:

k =
∑

kix
i,

where

ki =











1 if P1 and P2 both have their ith coefficient equal to 1

−1 if P1 and P2 both have their ith coefficient equal to -1
0 otherwise

Using this notation, we write again the result of the first decryption step of
c+ ch, as seen in section 3.1. a ≡ cg + cf mod q = c+ ch− qk

The decrypted message obtained is then

m ≡ cFp ~ f + cFp ~ g − qFp ~ k (mod p)

≡ c+ ch− qFp ~ k (mod p)

Since c has been chosen such that c ≡ 0 mod p,

m = −qFp ~ k (mod p).
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The private key f can then be obtained from f ≡ −qk ~m−1 mod p

When f and g have few common coefficients, the polynomial k has only a few
non zero coefficients. By testing different values for k, we can compute possible
polynomials f . The private key is likely the one that satisfies the condition
f ∈ Lf . It is then a simple matter to verify our guess by trying to decrypt a
message with f or by computing h ~ f mod q = g′. Then if g′ = ±xi ~ g, we
know we have a correct key.

Let us study the probability of success of our attack over the sets of param-
eters given in section 2.4.

The probability of f and g having one and only one collision is the following:

p = p1 + p−1,

where p1, the probability of collision of two 1, is:

min(df−1,dg)
∑

k=0

(

dg
1

)(

dg
k

)(

N − 2dg
df − 1− k

)(

N − df − dg + k
df − 1

)

(

N
df

)(

N − df + 1
df − 1

)

and p−1, the probability of collision of two −1, is:

min(df−2,dg)
∑

k=0

(

dg
1

)(

dg
k

)(

N − 2dg
df − 2− k

)(

N − df + 1− dg + k
df

)

(

N
df

)(

N − df + 1
df − 1

)

There are similar formulas for more collisions. However, they are quickly cum-
bersome to compute.

Another approach is to evaluate the expected number of collisions between
f and g. An heuristic approximation of this number is

(2df − 1)dg
N

.

In case A, we find an average number of collisions of 3.25. We can thus expect
k to have around three non zero coefficients.

The table below shows the different probabilities of collisions in the different
proposed cases. It also gives the average expected number of collisions.
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Case A Case B Case C Case D
Average number
of collisions 3.25 14.5 9.03 61.7
Probability of
0 collision 0.026 9.3 ∗ 10−9 3.1 ∗ 10−5 2 ∗ 10−36

Probability of
1 collision 0.13 5.8 ∗ 10−7 5 ∗ 10−4 1.1 ∗ 10−33

Probability of
2 collisions 0.25 9.5 ∗ 10−6 3 ∗ 10−3 1.5 ∗ 10−31

Probability of
3 collisions 0.28 8.6 ∗ 10−5 0.011 1.2 ∗ 10−29

Probability of
4 collisions 0.22 5.1 ∗ 10−4 0.028 7.3 ∗ 10−28

For example, with the parameters of NTRU 107, which has a key security
of 250 against a meet-in-the-middle attack, we have a one-collision probability
of p = 0.13. It means one over ten cipher messages will produce a polynomial
k with a single non zero coefficient and the simple case described in section 3.1
will apply. We can see that the attack, as it has currently been described, will
fail in cases B, C and D. In section 3.3, we generalize our idea to make it work
in those cases.

In general, k may have more than one coefficient, and we need to enumerate
the possible k and compute f ′ = k/m mod p, where m is our decrypted message.
When f ′ ∈ Lf , we have found a likely polynomial. We just need to verify that f ′

is able to decrypt messages. If we now analyze the number of possible polynomials
k we need to test in order to recover the private key, we can first note that the
polynomials of the form xif mod xN − 1 have as many coefficients equal to 1 and
−1 as f . As the multiplication by xi will not change the value of the coefficients
of a and as the decryption proceeding consists in multiplying and dividing by
f , the rotated key f ′ = xif mod xN − 1 can be used to decrypt any message
encrypted with f . Hence we can assume k(0) 6= 0.

So if we assume that k has n non zero coefficients, we will have to try

2n
(

N − 1
n− 1

)

different values for k.

We can see in the table below the approximate number of polynomials we
need to test function of the expected number of collisions.

Expected no of collisions Case A Case B Case C Case D
1 collision 2 2 2 2
2 collisions 29 210 210 211

3 collisions 216 217 218 220

4 collisions 222 224 226 229

The message c + ch can fail to produce the private key, if f and g have too
many collisions. We can then try again with cx + ch and more generally with
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polynomials of the form cxi + ch. This means considering collisions between g
and xif mod xN − 1. So there is a compromise between the number of possible
collisions we will test and the number of cipher texts we will need. Many ci-
phertexts are likely to produce at least a polynomial whose number of non zero
coefficient is below the average value. If we have only one ciphertext, it may take
more time to test possible polynomials before finding the key.

3.3 Extending to Higher Security Parameters

As seen in section 3.2, the parameters proposed in [7] for higher security give
us a very high number of collisions. This means that there will be an extremely
low probability of having only a few collisions. Therefore, we can no longer use
messages of the form cxi+ch. Instead, we reduce the average number of collisions
by testing messages of the form

chxi1 + · · ·+ chxin + cxj1 + cxj2 + · · ·+ cxjm ,

where c is a multiple of p that verifies

(n+m− 1)c < q/2 and (n+m)c > q/2.

We choose the numbers n andm in order to get a good probability of having only
one or two collisions. As before, we do not explicitely compute these probabilities,
but we estimate the average number of collisions. When this number is near 1,
it means that the n and m are correctly chosen. An heuristic approximation of
the number of collisions is given by:

2dmf d
n
g

Nn+m−1

4 Example

4.1 Detailed Example of Case D

In [7], it is claimed that the highest security level will be obtained with the set
of parameters D.

We now give an example that shows, with this set of parameters, that our
attack can recover the secret key.

Here is the private key (f, g) we have used:

f = −x
502

+ x
501

+ x
500

− x
499

− x
498

+ x
497

− x
496

− x
495

− x
494

− x
493

− x
492

−x
491

+ x
490

− x
488

+ x
487

− x
486

− x
485

− x
482

+ x
481

− x
480

− x
479

+ x
477

+x
475

+ x
474

+ x
472

− x
471

+ x
470

+ x
468

− x
467

+ x
466

+ x
464

− x
463

+ x
462

+x
461

− x
460

− x
459

+ x
458

+ x
457
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455
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430
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429
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428

− x
425

+ x
424

+ x
423

−x
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− x
421

− x
420

− x
418

− x
417

− x
416

+ x
415

− x
414

+ x
412

− x
411

− x
409

−x
408

+ x
407

+ x
406

− x
405

+ x
404

− x
402

− x
401

− x
400

+ x
399

− x
398

+ x
397
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+ x
385

+ x
384

+x
383

+ x
381

− x
380

− x
379

+ x
378

− x
377

+ x
376

+ x
374

− x
373

+ x
372

+ x
371

+x
370

− x
369

+ x
368

− x
367

+ x
366

− x
365

+ x
364

− x
363

− x
362

+ x
361

− x
360

+x
359

− x
358

− x
357

+ x
356

+ x
355

− x
354

+ x
353

− x
352

+ x
350

− x
349

− x
348

−x
346

− x
345

+ x
344

− x
343

− x
342

+ x
341

− x
340

− x
339

− x
338

+ x
337

+ x
336

+x
334

+ x
333

− x
332

− x
331

− x
330

+ x
329

− x
328

+ x
327

+ x
326

+ x
325

− x
324

+x
323

− x
322

+ x
321

− x
320

− x
319

+ x
318

+ x
317

+ x
316

− x
315

− x
313

− x
311

−x
310

− x
309

+ x
308

− x
306

− x
305

+ x
304

− x
303

+ x
302

− x
301

+ x
300

− x
299

−x
298

− x
297

+ x
294

− x
293

− x
292

− x
291

− x
290

− x
288

+ x
287

− x
286

− x
285

+x
284

− x
283

+ x
282

− x
280

− x
279

+ x
277

− x
276

+ x
275

+ x
274

+ x
273

+ x
272

−x
271

+ x
270

− x
269

+ x
268

− x
267

− x
266

+ x
264

+ x
263

− x
262

+ x
261

− x
260

+x
259

− x
257

+ x
256

− x
255

− x
254

+ x
253

+ x
252

+ x
251

+ x
249

+ x
248

− x
247

+x
246

− x
245

+ x
243

− x
242

+ x
240

+ x
238

− x
237

− x
236

+ x
234

− x
233

− x
232

+x
231

− x
230

+ x
229

− x
228

− x
227

+ x
226

− x
225

+ x
223

+ x
222

− x
221

+ x
220

+x
219

+ x
218

− x
217

− x
215

− x
214

+ x
213

− x
212

+ x
210

− x
209

+ x
208

+ x
207

−x
206

− x
205

+ x
203

+ x
202

− x
201

− x
200

+ x
199

+ x
198

− x
197

+ x
196

+ x
195

−x
194

+ x
193

+ x
192

+ x
191

+ x
190

+ x
188

+ x
187

− x
186

+ x
185

− x
184

+ x
183

+x
182

+ x
181

+ x
180

− x
179

− x
178

+ x
177

− x
176

+ x
175

+ x
174

− x
173

+ x
172

−x
170

+ x
169

+ x
168

+ x
167

+ x
166

− x
165

− x
164

+ x
161

+ x
160

− x
159

+ x
158

−x
155

+ x
154

+ x
152

+ x
151

− x
150

+ x
149

+ x
148

+ x
147

− x
145

− x
142

+ x
141

−x
140

− x
139

+ x
138

+ x
137

− x
136

− x
135

+ x
133

− x
132

+ x
131

+ x
130

+ x
128

+x
127

− x
126

+ x
125

+ x
124

+ x
123

− x
121

+ x
120

+ x
118

− x
116

+ x
115

− x
114

−x
113

− x
112

+ x
110

+ x
109

+ x
108

+ x
107

− x
106

− x
105

− x
103

+ x
102

+ x
100

+x
99

+ x
98

+ x
96

+ x
95
− x

94
− x

93
− x

92
+ x

91
− x

90
− x

89
− x

88
− x

87

+x
86
− x

85
+ x

84
+ x

83
− x

82
+ x

81
− x

80
+ x

79
+ x

78
+ x

77
+ x

75
+ x

74

−x
73
− x

72
− x

71
− x

69
− x

68
− x

67
+ x

66
+ x

65
+ x

64
+ x

63
+ x

62
− x

60

−x
59

+ x
58
− x

57
+ x

56
+ x

55
+ x

54
+ x

53
− x

51
− x

50
+ x

49
+ x

48
− x

47

+x
46

+ x
45

+ x
44
− x

43
− x

42
+ x

41
+ x

40
− x

39
− x

38
+ x

37
− x

36
+ x

35

−x
34
− x

32
− x

31
+ x

30
− x

29
− x

28
+ x

27
− x

25
− x

24
− x

23
− x

21
+ x

20

−x
19

+ x
18
− x

17
− x

16
− x

15
− x

14
+ x

13
+ x

12
− x

11
− x

10
+ x

9
− x

8

−x
7
− x

6
− x

5
− x

3
+ x

2
− 1

g = −x
499

+ x
496

+ x
495

− x
487

+ x
486

+ x
484

− x
480

+ x
478

+ x
470

− x
466

+ x
465

−x
462

+ x
461

+ x
460

+ x
451

− x
446

− x
431

− x
428

+ x
421

+ x
415

+ x
412

− x
411

−x
406

− x
403

− x
402

− x
398

− x
397

− x
395

+ x
392

+ x
373

− x
371

− x
370

+ x
367

+x
366

− x
364

− x
359

− x
355

+ x
352

+ x
351

+ x
349

+ x
347

+ x
340

+ x
339

+ x
338

+x
335

+ x
328

− x
326

+ x
323

+ x
317

− x
314

− x
309

− x
308

+ x
307

+ x
306

+ x
304

−x
303

− x
302

− x
299

− x
295

− x
292

+ x
291

+ x
289

+ x
288

+ x
283

+ x
281

+ x
280

−x
277

+ x
266

+ x
264

− x
262

− x
260

− x
257

+ x
256

− x
255

− x
251

− x
250

− x
249

−x
236

− x
235

+ x
233

− x
232

+ x
230

+ x
227

+ x
226

− x
224

+ x
217

+ x
216

− x
215

−x
212

+ x
206

− x
205

+ x
203

+ x
196

− x
194

+ x
193

+ x
190

+ x
185

− x
183

− x
177

−x
172

− x
169

− x
168

+ x
165

− x
163

− x
157

+ x
156

+ x
155

− x
138

+ x
136

− x
135

+x
134

+ x
132

− x
131

− x
123

+ x
119

− x
117

− x
111

− x
102

− x
99

+ x
97
− x

95

−x
94

+ x
92

+ x
91
− x

89
− x

88
− x

86
+ x

84
+ x

83
− x

78
+ x

76
− x

66
+ x

60

−x
52

+ x
51
− x

47
+ x

46
− x

36
− x

35
− x

34
+ x

30
+ x

28
+ x

16
+ 1

We do not give here values of Fp, Fq or of the public key h since they are big and
they can easily be computed from f and g.

If we use messages of the form c + chxi1 + chxi2 + chxi3 , our heuristic estimates
the average number of collisions by 1.26.
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We want c to verify c mod p = 0, 3c < q/2 and 4c > q/2. We chose c = 33, which
satisfies this conditions.

We use the chosen ciphertext e = 33h+ 33 + 33hx+ 33hx4.
Let m be the decoded message. We find then that

(1 + x67)/m (mod p)

is a possible value f ′.
That gives us the following value for f ′

f
′

= x
501

− x
500

− x
499

+ x
498

− x
497

+ x
496

− x
495

− x
494

+ x
493

− x
492

+ x
490

+x
489

− x
488

+ x
487

+ x
486

+ x
485

− x
484

− x
482

− x
481

+ x
480

− x
479

+ x
477

−x
476

+ x
475

+ x
474

− x
473

− x
472

+ x
470

+ x
469

− x
468

− x
467

+ x
466

+ x
465

−x
464

+ x
463

+ x
462

− x
461

+ x
460

+ x
459

+ x
458

+ x
457

+ x
455

+ x
454

− x
453

+x
452

− x
451

+ x
450

+ x
449

+ x
448

+ x
447

− x
446

− x
445

+ x
444

− x
443

+ x
442

+x
441

− x
440

+ x
439

− x
437

+ x
436

+ x
435

+ x
434

+ x
433

− x
432

− x
431

+ x
428

+x
427

− x
426

+ x
425

− x
422

+ x
421

+ x
419

+ x
418

− x
417

+ x
416

+ x
415

+ x
414

−x
412

− x
409

+ x
408

− x
407

− x
406

+ x
405

+ x
404

− x
403

− x
402

+ x
400

− x
399

+x
398

+ x
397

+ x
395

+ x
394

− x
393

+ x
392

+ x
391

+ x
390

− x
388

+ x
387

+ x
385

−x
383

+ x
382

− x
381

− x
380

− x
379

+ x
377

+ x
376

+ x
375

+ x
374

− x
373

− x
372

−x
370

+ x
369

+ x
367

+ x
366

+ x
365

+ x
363

+ x
362

− x
361

− x
360

− x
359

+ x
358

−x
357

− x
356

− x
355

− x
354

+ x
353

− x
352

+ x
351

+ x
350

− x
349

+ x
348

− x
347

+x
346

+ x
345

+ x
344

+ x
342

+ x
341

− x
340

− x
339

− x
338

− x
336

− x
335

− x
334

+x
333

+ x
332

+ x
331

+ x
330

+ x
329

− x
327

− x
326

+ x
325

− x
324

+ x
323

+ x
322

+x
321

+ x
320

− x
318

− x
317

+ x
316

+ x
315

− x
314

+ x
313

+ x
312

+ x
311

− x
310

−x
309

+ x
308

+ x
307

− x
306

− x
305

+ x
304

− x
303

+ x
302

− x
301

− x
299

− x
298

+x
297

− x
296

− x
295

+ x
294

− x
292

− x
291

− x
290

− x
288

+ x
287

− x
286

+ x
285

−x
284

− x
283

− x
282

− x
281

+ x
280

+ x
279

− x
278

− x
277

+ x
276

− x
275

− x
274

−x
273

− x
272

− x
270

+ x
269

− x
267

− x
266

+ x
265

+ x
264

− x
263

− x
262

+ x
261

−x
260

− x
259

− x
258

− x
257

− x
256

− x
255

+ x
254

− x
252

+ x
251

− x
250

− x
249

−x
246

+ x
245

− x
244

− x
243

+ x
241

+ x
239

+ x
238

+ x
236

− x
235

+ x
234

+ x
232

−x
231

+ x
230

+ x
228

− x
227

+ x
226

+ x
225

− x
224

− x
223

+ x
222

+ x
221

− x
219

+x
218

− x
217

− x
215

− x
214

+ x
213

+ x
212

+ x
211

+ x
210

+ x
209

− x
208

− x
207

+x
206

+ x
205

+ x
204

− x
203

+ x
202

− x
201

− x
200

− x
199

+ x
198

+ x
197

− x
194

−x
193

+ x
192

− x
189

+ x
188

+ x
187

− x
186

− x
185

− x
184

− x
182

− x
181

− x
180

+x
179

− x
178

+ x
176

− x
175

− x
173

− x
172

+ x
171

+ x
170

− x
169

+ x
168

− x
166

−x
165

− x
164

+ x
163

− x
162

+ x
161

+ x
160

− x
158

+ x
157

− x
155

+ x
154

+ x
153

+x
152

− x
151

− x
150

+ x
149

+ x
148

+ x
147

+ x
145

− x
144

− x
143

+ x
142

− x
141

+x
140

+ x
138

− x
137

+ x
136

+ x
135

+ x
134

− x
133

+ x
132

− x
131

+ x
130

− x
129

+x
128

− x
127

− x
126

+ x
125

− x
124

+ x
123

− x
122

− x
121

+ x
120

+ x
119

− x
118

+x
117

− x
116

+ x
114

− x
113

− x
112

− x
110

− x
109

+ x
108

− x
107

− x
106

+ x
105

−x
104

− x
103

− x
102

+ x
101

+ x
100

+ x
98

+ x
97
− x

96
− x

95
− x

94
+ x

93

−x
92

+ x
91

+ x
90

+ x
89
− x

88
+ x

87
− x

86
+ x

85
− x

84
− x

83
+ x

82
+ x

81

+x
80
− x

79
− x

77
− x

75
− x

74
− x

73
+ x

72
− x

70
− x

69
+ x

68
− x

67
+ x

66

−x
65

+ x
64
− x

63
− x

62
− x

61
+ x

58
− x

57
− x

56
− x

55
− x

54
− x

52
+ x

51

−x
50
− x

49
+ x

48
− x

47
+ x

46
− x

44
− x

43
+ x

41
− x

40
+ x

39
+ x

38
+ x

37

+x
36
− x

35
+ x

34
− x

33
+ x

32
− x

31
− x

30
+ x

28
+ x

27
− x

26
+ x

25
− x

24

+x
23
− x

21
+ x

20
− x

19
− x

18
+ x

17
+ x

16
+ x

15
+ x

13
+ x

12
− x

11
+ x

10

−x
9

+ x
7
− x

6
+ x

4
+ x

2
− x − 1

This value is different from the original one (we have f = x236
~ f ′), but it can be

used to decrypt messages nonetheless.
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4.2 Choice of Parameters and Running Times Table

Here we give estimation of the running times for the different sets of parameters and
the values chosen for m, n and c.

Case A B C D

m 1 4 1 1 4 1
n 1 1 2 2 2 3
c 18 15 24 24 24 33

Avg no of collisions 3.36 0.712 1.75 0.832 0.7 1.27

No of ciphertexts
(testing 1 collision) − 4.5 − 2.2 2.25 −

No of ciphertexts
(testing 2 collisions) 7 − 2 2 − 2

Time to test
for 1 collision − 1s − 6s 85s −

Time to test
for 2 collisions 25s − 135s 4mn − 1h

These running times have been obtain on a single PC, using GP/PARI CALCULATOR

Version 2.0.14.

5 Plaintext Awareness with our Chosen-Ciphertext

Attack

The attack described in the previous sections uses the fact that one can build a ci-
phertext without knowing the corresponding plaintext. A cryptosystem is said to be
plaintext aware if it is infeasible for an attacker to construct a valid ciphertext without
knowing the corresponding plaintext (see [2] which first introduced this notion and [1]
which had a corrected definition). So in [11] Silverman proposed to use a system similar
to OAEP to make NTRU plaintext aware. OAEP stands for Optimal Asymmetric En-
cryption Padding. It has been proposed by Mihir Bellare and Phillip Rogaway in [2] and
describes an embedding scheme using an hash and a generating function that achieves
plaintext-aware encryption. However, since OAEP applies only to a one-way trapdoor
function, it had to be adapted to work for NTRU.

5.1 A Description of the Embedding Scheme Proposed for NTRU.

We let

Pp(N) = {polynomials of degree at most N − 1 with mod p coefficients},

and we write

[g]p =

{

g with its coefficients reduced
modulo p into the range ]− p/2, p/2].

We need a generating function and a hash function

G : Pp(N)→ Pp(N) and H : Pp(N)× Pp(N)→ Pp(K).
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To encrypt a message, one chooses a plaintext m from the set of plaintexts Pp(N −
K) and a polynomial φ ∈ Lφ. One computes

e ≡ pφ~ h+ [m+H(m, [pφ~ h]p)X
N−K +G([pφ~ h]p)]p (mod q). (1)

To decrypt the message, the receiver uses his private key f and the standard NTRU
decryption method to recover a polynomial

n = [Fp ~ [f ~ e]q]p ∈ Pp(N).

Next he computes

b ≡ e− n (mod p) and c ≡ n−G(b) (mod p).

and he writes c in the form

c = c′ + c′′XN−K with deg(c′) < N −K and deg(c′′) < K.

Finally, he compares the quantities

c′′ and H(c′, b).

If they are the same, he accepts c′ as a valid decryption. Otherwise he rejects the
message as invalid.

An attacker who does not know the underlying plaintext of a cipher message will
have a probability of p−K of producing a valid ciphertext.

We are now going to show how our attack is modified with this encapsulation.

5.2 Adaptation of our Attack

Principle. With this embedding, an attacker can detect when a message is valid or
invalid. Our goal is to produce special messages that may be either valid or invalid and
learn information from their acceptance or rejection.

As in the unpadded version, this is achieved by replacing pφ ~ h by a well chosen
polynomial. We add to this polynomial the correct encapsulation of a message m, so
that the ciphertext will be accepted when there is no collision in the polynomial and
rejected otherwise.

The principle of our attack is close to what Hall, Goldberg and Schneier call a
reaction attack in [6]. It is a chosen-ciphertext attack but does not require that the
attacker sees the decrypted plaintext. He only needs to know whether the ciphertext
was correctly decrypted or rejected for errors.

Such attacks have been studied on NTRU by Hoffstein and Silverman in [8] but
they applied on the unpadded version of the cryptosystem.

Choice of a Polynomial P . Let

P ≡ xi1 + · · ·+ xin + h~ (xj1 + · · ·xjm) (mod q), ik, jl ∈ N.

and choose n andm such that the average number of collisions, as defined in section 3.3,
in P is near 1, and preferably a little smaller, so that we can expect P to have no more
than one collision. If there is no collision, there will be no decryption failure, and we
will know we need to change P . We will have to try different P , till we found a suitable
one.

Now, since multiplying by ±xi does not change the propriety of f and h to act
as private and public key, we can assume the collision happens at degree 0 and is a
collision of 1. This will simplify the presentation of the attack.
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Information Obtained from Decryption Failure. Now if we can ask the
decryption of messages of the form cxi + cP , for i ranging from 0 to N − 1, with c
such that c ≡ 0 mod P , (n + m)c < q/2 and (n + m + 1)c > q/2, we can discover
all coefficients equal to 1 in f . Indeed let us assume that we send a message of the
above form and that we expect the decrypted message to be 0. If the answer of the
decryption is not 0, then the decryption process will send an error since we cannot
know the plaintext.

Now, as we have seen in section 3.1, decryption will be different from 0 if and if
only there is collision between the (N − i)th coefficient of f and the unique collision
in P . So if decryption is 0, the (N − i)th coefficient in f will be a 0 or a −1 and if
decryption is different than 0, that is if we have a decryption error, we know that the
(N − i)th coefficient of f is a 1. Similarly, with messages cxi − cP , a decryption error
indicates that the (N − i)th coefficient of f is a −1. By testing those 2N messages, we
can reconstruct a key f ′ equivalent to f .

Influence of the Encapsulation. But, as stated above, we now have to add some
valid encapsulated message to our test cipher cxi± cP (otherwise all our test messages
will be rejected and we will not learn anything), so we do not send cxi ± cP , but
cxi ± cP + m′. The message m′ can be chosen as the correct encapsulation of any
message m, where pφ~ h has been replaced by cxi ± cP in the formula (1).

After multiplication by f , we obtain cxi ~ f ± cP ~ f +m′ ~ f . The coefficients
of m′ ~ f may be of size q/4 and thus can produce a wrong decryption where we
should have had a good one according only to cxi ~ f ± cP ~ f . It is not possible
to get rid of the influence of m′ ~ f , but we can reduce it. It is indeed possible to
take for m the value −G([cxi ± cP ]p) mod p truncated to degree N − K, so that
m′ = [m + H(m, [cxi ± cP ]p)X

N−k + G([cxi ± cP ]p)]p will have all its coefficients of
degree less than N −K equal to zero. m′ has now only approximately 2K/3 non zero
coefficients, and m′ ~ f will have coefficients whose absolute value may be less than
min((5c− q/2), (q/2− 4c)). Then hopefully cP +m′ will have the same property than
cP , that is produce a wrong message when added to cxi if and if only the (N − i)th
coefficient of f is 1. Note that if cP+m′ verify this, we can proceed exactly as described
above to recover the private key. The problem is that m′ should be recalculated each
time, for each value of cxi ± cP . But, since m′ comes from [[cP ]q]p, let us see what
happens when we add cxi to cP : in the majority of cases, the addition of cxi to [cP ]q
will not induce a new reduction modulo q so that [[cP ]q + cxi]p = [[cP ]q]p (recall that
c ≡ 0 mod p), and m′ will stay the same. For such i, we can use the system described
above to determine the corresponding coefficients of f . For the other coefficients, we
cannot be really sure of the coefficients we obtain, even if there is a good probability
for them to be right. It is then possible to use either LLL algorithm to find the missing
coefficients or choose another value for P and repeat the process.

5.3 Example

Algorithm. We give first a brief description of the resulting algorithm to attack
NTRU.

1. Choose appropriate values for m and n such that the heuristic number of collisions
2dn

f d
m
g

Nn+m−1 will be near 1.
2. Select a suitable c with c ≡ 0 mod p, (m+ n)c < q/2 and (m+ n+ 1)c > q/2.
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3. Select a value of a polynomial P.

P = xi1 + · · ·+ xin + h~ (xj1 + · · ·+ xjm) (mod q)

4. Produce m′ corresponding to cP : m′ = [m+H(m, [cP ]p)X
N−k +G([cP ]p)]p with

m = [−G([cP ]p)]p mod XN−K .
5. Ask the decryption of cP +m′. The answer should be m. If not, go back to 3.
6. For all i such that [[cxi+ cP ]q]p = [[cP ]q]p, ask decryption of cxi+ cP +m′. If the

answer is a decryption error, the (N-i)th coefficient of f ′ is a 1, else we know it is
not a 1. For all other i, the (N-i)th coefficient of f ′ may be a 1.

7. At the same time, for all i such that [[−cxi + cP ]q]p = [[cP ]q]p, ask decryption of
−cxi + cP +m′. If the answer is a decryption error, the (N-i)th coefficient of f ′ is
a −1, else we know it is not a −1. Note that if we had [[cxi + cP ]q]p 6= [[cP ]q]p,
then [[−cxi + cP ]q]p = [[cP ]q]p. So a coefficient can not both possibly be a 1 and
−1.

8. Note also that if cxi+cP +m′ gave a decryption error, then −cxi+cP +m′ should
not. If this is the case, we know that m′ introduced decryption errors and we go
back to step 3.

9. If after a few messages there is still no decryption failure, there is no collision in
P . Go back to step 3.

10. Count the minimal and maximal number of 1 and −1 in f ′. If this number is not
consistent with the value of df , go back to step 3.

11. Merge with preceeding informations obtained on f ′. Eventually repeat with another
P (step 3).

Application. Here is an example of the attack with the following set of parameters:

– (N, p, q) = (503, 3, 256)
– nf = 216
– ng = 72
– K = 107

Those are the parameters proposed in [11] to offer the highest security.
For n = 1 and m = 3, we find an average number of collisions equal to 1.267.
We want c ≡ 0 mod 3, 4c < 128, 5c > 128. We choose c = 27.
We tested the following polynomials P :

– P = 1 + h~ (x+ x2 + x3)
– P = 1 + h~ (x+ x2 + x4)
– P = 1 + h~ (x+ x2 + x5)
– P = 1 + h~ (x+ x2 + x6)
– P = 1 + h~ (x+ x2 + x7)

The good ones where:

– P = 1 + h~ (x+ x2 + x4)
– P = 1 + h~ (x+ x2 + x7)

The other ones failed at step 8 or 9.
After merging the informations gained from these two polynomials, we had only 15

possible keys left. It is then easy to find the good one by trying to decipher a ciphertext
or by testing whether h~ f ′ ≡ ±xi ~ g mod q for some i.
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We were able to recover the private key with less than 5N calls to the decryption
oracle.

We give now a few statistics of our algorithm with the different sets of parameters.

Case A B B C D

Value for K 17 49 49 65 107
Avg no of ciphertexts 230 310 620 950 2100
Avg running time 11s 17mn 2mn 6mn 36mn

Remark: even for the highest security parameters, two successful polynomials were
enough to recover sufficient information on the secret key.

5.4 Protection against this Attack.

Hoffstein and Silverman described in [8] a similar attack but did not take into account
the digital envelope. However he proposed different ways of countering it:

– Change the key very often. This solution requires that one send the actual public
key to the receiver before each communication. Each time, we will need to have
the new public key signed with a digital certificate, proving the origin of the key.
Under these conditions, there cannot be off-line communication.

– Track decryption failure. Decryption failure should occur rarely under normal cir-
cumstances. While under a ciphertext attack, this will happens quite often. One
can detect an undergoing attack and change the key. The attacker has still the
power of forcing someone to change its public key when he wants.

– Induce randomness. This solution consist in adding some random pxi to the mes-
sage before its decryption. This can lead to produce invalid messages from goods
messages when OAEP is used. It may also produce errors in our attack, but suffi-
cient information might still be obtained.

– Coefficient distribution analysis. The number of coefficients of the polynomial pφg+
fm falling into ranges close to q/2 or −q/2 will be larger than usual when the
attack takes place. So one can discover the attack by looking counting the number
of coefficients in such ranges and simply not respond to inflated polynomial.

In fact, the easiest protection against this attack is to replace the padding described
in [11] by the construction from [4]. This construction works in the random oracle model
and provably turns any asymmetric system into a system resistant to adaptative chosen-
ciphertext attacks.

6 Conclusion

The NTRU cryptosystem makes use of the independence of reduction modulo two
relatively prime integers p and q. This cryptosystem have proved secure against different
attacks, such as the brute force attack, the meet-in-the-middle attack and lattice based
attacks. Unfortunately, the structure of the private keys f and g opens a way to the
chosen-ciphertext attack that was described here, even when the padding in [11] is
used; so alternative padding/hashing methods such as those described in [4] should be
used to avoid the attacks described in this paper.
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