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Abstract. This paper presents a design of authenticated encryption
(AE) focusing on minimizing the implementation size, i.e., hardware
gates or working memory on software. The scheme is called COFB, for
COmbined FeedBack. COFB uses an n-bit blockcipher as the underlying
primitive, and relies on the use of a nonce for security. In addition to the
state required for executing the underlying blockcipher, COFB needs only
n/2 bits state as a mask. Till date, for all existing constructions in which
masks have been applied, at least n bit masks have been used. Thus,
we have shown the possibility of reducing the size of a mask without
degrading the security level much. Moreover, it requires one blockcipher
call to process one input block. We show COFB is provably secure up to
O(2"%/n) queries which is almost up to the standard birthday bound.
‘We also present our hardware implementation results. Experimental im-
plementation results suggest that our proposal has a good performance
and the smallest footprint among all known blockcipher-based AE.
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1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic primitive for
providing both confidentiality and authenticity. Due to the recent rise in com-
munication networks operated on small devices, the era of the so-called Internet
of Things, AE is expected to play a key role in securing these networks.

In this paper, we study blockcipher modes for AE with primary focus on the
hardware implementation size. Here, we consider the overhead in size, thus the
state memory size beyond the underlying blockcipher itself (including the key
schedule) is the criteria we want to minimize. We observe this direction has not
received much attention until the launch of CAESAR competition (see below),
while it would be relevant for future communication devices requiring ultra low-
power operations. A general approach to reduce the entire hardware size of AE
modes is to use a lightweight blockcipher [15,17,25,48,49] or to use standard
AES implemented in a tiny, serialized core [37], where the latter is shown to be



effective for various schemes including popular CCM [5] or OCB [32] modes, as
shown in [16] and [12]. Our approach is orthogonal to these directions.

In this paper, we propose a new blockcipher AE mode which utilizes both
plaintext and ciphertext feedback. Our proposal is called COFB for COmbined
FeedBack, and we show that this enables essentially AE using the minimum
amount of state memory while keeping the security level similar to the previ-
ous schemes. Specifically, let n denote the block size in bits of the underlying
blockcipher, then our proposal needs an n/2-bit register for a mask in addition
to the registers required for holding round keys and the internal state memory
(i.e., m bits) for the blockcipher computation. Ignoring the state for the round
keys, it requires 1.5n bit state. It has provable security up to 0(2”/ 2/n) queries,
based on the standard assumption that the blockcipher is a PRP (PseudoRan-
dom Permutation). Our scheme is efficient in that the rate is 1, i.e, it makes
one blockcipher call to process one input block, meaning that it is as fast as
encryption-only modes.

CAESAR [3], started in 2012, attracted 57 AE schemes, and there are schemes
that were designed to minimize the implementation size. The most relevant one
is JAMBU [52], which can be implemented with 1.5n-bit state memory. However,
the provable security result is not published for this schemef, and the security
claim about the confidentiality in the nonce misuse scenario was shown to be
flawed [40]. We also point out that the rate of JAMBU is 1/2, i.e., it makes two
blockcipher calls to process one input block. This can be seen in our implemen-
tation results where COFB is more efficient, in terms of throughput per area,
than JAMBU by a factor of two. CLOC and SILC [28,29] have provable security
results and were designed to minimize the implementation size, however, they
do not allow the implementation with 1.5n-bit state and the rate is also 1/2.

On the downside, COFB is completely serial both for encryption and decryp-
tion. However, we argue that this is a reasonable trade-off, as tiny devices are
our primal target platform for COFB. We present Table 1 to show a comparison
of blockcipher AE modes including COFB.

In order to instantiate our efficiency claim, we implemented COFB on hard-
ware and evaluated it on FPGAs. The implementation results show the im-
pressive performance figures of COFB both for size and speed. For the sake of
completeness we also compare COFB with various schemes (not limited to block-
cipher modes) listed in the hardware benchmark framework called ATHENa [1].
We have to warn that this is a rough comparison ignoring differences in several
implementation factors (see Sect. 6). Nevertheless, we think this comparison
implies a good performance of COFB among others even using the standard
AES-128.

2 Preliminaries

Notation. We fix a positive integer n which is the block size in bits of the
underlying blockcipher Ef. Typically, we consider n = 128 and AES-128 [7] is

¥ The authenticity result was briefly presented in the latest specification [52].



Table 1. Comparison of AE modes, using an n-bit blockcipher with k-bit keys. An
inverse-free mode is a mode that does not need the blockcipher inverse (decryption)
function for both encryption and decryption. For JAMBU, the authenticity bound was
briefly presented in [52].

Scheme |State Size/Rate| Parallel |Inverse-Free|Sec. Proof| Ref
COFB 1.5n 4+ k 1 No Yes Yes This work
JAMBU 1.5n+k | 1/2 No Yes Partial [52]
CLOC/ SILC| 2n+k 1/2 No Yes Yes [28,29]
iIFEED 3n+k 1 |Only for Enc Yes Flawed [47] [54]
oCB >3n+k | 1 Yes No Yes [32,41,42]

the underlying blockcipher, where K is the 128-bit AES key. The empty string is
denoted by A. For any X € {0, 1}*, where {0,1}* is the set of all finite bit strings
(including ), we denote the number of bits of X by |X|. Note that |A| = 0. For
two bit strings X and Y, X||Y denotes the concatenation of X and Y. A bit
string X is called a complete (or incomplete) block if |X| = n (or | X| < n
respectively). We write the set of all complete (or incomplete) blocks as B (or
B< respectively). Let BS = B< U B denote the set of all blocks. For B € B, we
define B as follows:

o if B=X\
B=<{B||10"=IBl if B# Xand |B|<n
B if | Bl=n

Given Z € {0,1}*, we define the parsing of Z into n-bit blocks as

(Z[1],2[2],...,Zz]) «+ Z, (1)
where z = [|Z]/n], |Z]i]] = n for all i < z and 1 < |Z[z]| < n such that Z =
ZIANZ12) - 1 Z]2]). It Z = X, we let z =1 and Z[1] = X\. We write ||Z|| = 2
(number of blocks present in Z). We similarly write (Z[1], Z[2],..., Z[z]) <~ Z
to denote the parsing of the bit string Z into m bit strings Z[1], Z[2],. .., Z[z —1]
and 1 < |Z][z]| < m. Given any sequence Z = (Z[1],...,Z[s]) and 1 < a < b < s,
we represent the subsequence (Z[al, ..., Z[b]) by Z[a..b]. Similarly, for integers

a < b, we write [a..b] for the set {a,a + 1,...,b}. For two bit strings X and Y
with | X| > |Y]|, we define the extended xor-operation as
XoY =X[1..[Y]|®Y and
XBY =X (Y]olXI=V
where (X[1], X[2],...,X[z]) +~ X and thus X[1..]Y]|] denotes the first |Y| bits

of X. When |X| = |Y|, both operations reduce to the standard X &Y.
Let v = (y[1], .. .,7[s]) be a tuple of equal-length strings. We define meoll(y) =

r if there exist distinct i1, ...,4, € [l..s] such that y[i;] = --- = 7[iy] and r is
the maximum of such integer. We say that {iy,...,.} is an r-multi-collision set
for ~.



Authenticated Encryption and Security Definitions. An authenticated
encryption (AE) is an integrated scheme that provides both privacy of a plaintext
M € {0,1}* and authenticity of M as well as associate data A € {0,1}*. Taking
anonce N (which is a value never repeats at encryption) together with associated
date A and plaintext M, the encryption function of AE, £k, produces a tagged-
ciphertext (C,T) where |C| = |M| and |T| = t. Typically, t is a fixed length and
we assume n = t throughout the paper. The corresponding decryption function,
Dk, takes (N, A, C,T) and returns a decrypted plaintext M when the verification
on (N, A, C,T) is successful, otherwise returns the atomic error symbol denoted
by L.

Privacy. Given an adversary A, we define the PRF-advantage of A against £ as
Adv(A) = | Pr[A®% = 1] — Pr[A® = 1]|, where $ returns a random string of
the same length as the output length of £k, by assuming that the output length
of £k is uniquely determined by the query. The PRF-advantage of £ is defined
as

Advgmc(q7 o,t) = max AdVIg)rf(.A) ,

where the maximum is taken over all adversaries running in time ¢ and making
q queries with the total number of blocks in all the queries being at most o. If
&k is an encryption function of AE, we call it the privacy advantage and write
as Advy"V(q,0,t), as the maximum of all nonce-respecting adversaries (that
is, the adversary can arbitrarily choose nonces provided all nonce values in the
encryption queries are distinct).

Authenticity. We say that an adversary A forges an AE scheme (£,D) if A
is able to compute a tuple (N, A, C,T) satisfying D (N, A,C,T) # L, without
querying (N, A, M) for some M to £k and receiving (C,T), i.e. (N, A,C,T) is
a non-trivial forgery.

In general, a forger can make gy forging attempts without restriction on NV in
the decryption queries, that is, /N can be repeated in the decryption queries and
an encryption query and a decryption query can use the same N. The forging
advantage for an adversary A is written as Adv2'*™"(A) = Pr[A¢ forges|, and
we write

AQvE"™((g,7), (0, 77), 1) = max AdvE"™ (A)

to denote the maximum forging advantage for all adversaries running in time
t, making ¢ encryption and g¢ decryption queries with total number of queried
blocks being at most ¢ and oy, respectively.

Unified Security Notion for AE. The privacy and authenticity advantages
can be unified into a single security notion as introduced in [23,43]. Let A be
an adversary that only makes non-repeating queries to Dk . Then, we define the
AE-advantage of A against £ as

AdvE®(A) = [PrlATPE = 1] — Pr[A% = 1],

where |-oracle always returns | and $-oracle is as the privacy advantage. We
similarly define Adve®((q,qy), (0,07),t) = max4 Adve®(A), where the maxi-
mum is taken over all adversaries running in time ¢, making ¢ encryption and



qs decryption queries with the total number of blocks being at most o and oy,
respectively.

Blockcipher Security. We use a blockcipher F as the underlying primitive, and
we assume the security of E as a PRP (pseudorandom permutation). The PRP-
advantage of a blockcipher E is defined as Advh?(A) = | Pr[AFx = 1]-Pr[AF =
1]|, where P is a random permutation uniformly distributed over all permutations
over {0,1}". We write

AdvhP(g,t) = max AdviP(A),

where the maximum is taken over all adversaries running in time ¢ and making
q queries. Here, o does not appear as each query has a fixed length.

3 Combined Feedback Mode

Let Ex be the underlying primitive, a blockcipher, with key K. Depending on
how the next input block of Fx is determined from the previous output of E,
a plaintext block, or a ciphertext block, we can categorize different types of
feedback modes. Some of the feedback modes are illustrated in Fig. 3.1. The
first three modes are known as the message feedback mode, ciphertext feedback
mode, and output feedback mode, respectively. The examples using the first three
modes can be found in the basic encryption schemes [4] or AE schemes [5, 28,
29,54]. The fourth mode, which uses additional (linear) operation G : B — B,
is new. We call it combined feedback. In the combined feedback mode, the next
input block X[i] of the underlying primitive Ex depends on at least two of the
following three values: (i) previous output Ex (X[i —1]), (ii) plaintext M|[i], and
(iii) ciphertext C[i]. With an appropriate choice of G, this feedback mode turns
out to be useful for building small and efficient AE schemes. We provide a unified
presentation of all types of feedback functions below.

Definition 1 (Feedback Function). A function p: Bx B — B x B is called a
feedback function (for an encryption) if there exists a function p' : BxB — Bx B
(used for decryption) such that

WY, M € B, p(Y,M)=(X,C)=p(V,C) = (X,M). 2)

p is called a plaintext or output feedback if X depends only on M orY, respec-
tively (e.g., the first and third mode in Fig. 8.1). Similarly, it is called ciphertext
feedback if X depends only on C in the function p' (e.g., the second mode in
Fig. 3.1). All other feedback functions are called combined feedback.

The condition stated in Eq. (2) is sufficient for inverting the feedback computa-
tion from the ciphertext. Given the previous output block Y = Ex (X[i—1]) and
a ciphertext block C = C[i — 1], we are able to compute (X, M) = (X[é], M[i])
by using p’'(Y, C).

In particular, when G is not the zero function nor the identity function, the
combined feedback mode using this G is not reduced to the remaining three
modes. It can be described as p(Y, M) = (X,C) = (G(Y)® M.,Y & M).



Fig. 3.1. Different types of feedback modes. We introduce the last feedback mode
(called the combined feedback mode) in our construction.

4 COFB: a Small-State, Rate-1, Inverse-Free AE Mode

In this section, we present our proposal, COFB, which has rate-1 (i.e. needs one
blockeipher call for one input block), and is inverse-free, i.e., it does not need a
blockcipher inverse (decryption). In addition to these features, this mode has a
quite small state size, namely 1.5n 4 k bits, in case the underlying blockcipher
has an n-bit block and k-bit keys. We first specify the basic building blocks and
parameters used in our construction.

Key and Blockcipher. The underlying cryptographic primitive is an n-bit
blockcipher, Fx. We assume that n is a multiple of 4. The key of the scheme
is the key of the blockcipher, i.e. K. As mentioned we typically assume that
FEx is AES-128 with n = k = 128, however, COFB can be instantiated with any
blockcipher of any n-bit block size by appropriately defining other components.

Masking Function. We define the masking function mask : {0,1}"/2 x N2 —
{0,117/2 as follows:

mask(4,a,b) = a®- (1 +a)’- A (3)

We may write maska(a,b) to mean mask(A4, a,b). Here, - denotes the multipli-
cation over GF(2"/2), and « denotes the primitive element of the field. For the
primitive polynomial defining the field, we choose the lexicographically first one,
that is, p(z) = x% + x* + x3 + x + 1 following [6,27]. Rogaway [41] showed
that for all (a,b) € {0,...,2°'} x {0,...,219}, the values of a® - (1 + a)® are
distinct$. For other values of n, we need to identify the primitive element a of
the primitive polynomial and an integer L such that a® - (1 + «)® are distinct

5 If we follow the notations of [41], the right hand side of Eq. (3) could be written as
23" A.



mask (1,0) mask (2, 0) mask (2,84)
On/2 || N

Y[3]

maska(3,54)  maska(4,54) maska(4,54 + o)

D

Fig. 4.1. Encryption of COFB for 3-block associated data and plaintext.

for all (a,b) € {0,...,L} x {0,...,4}. Then the total allowed size of a message
and associated data would be at most nL bits. We need this condition to prove
the security claim. In particular we have the following properties of the masking
function.

Lemma 1. For any (a,b) # (a’,b) chosen from the set {0,...,L} x {0,...,4}
(as described above), ¢ € {0,1}"/? and a random n/2 bit string A, we have

and Pr[maska(a,b) =] =

1
Primaska(a, b) & maska(a',b) = d = o5,

2n/2 :
Proof of the first equation trivially follows from the fact that a® - (1 + «)®
are distinct for all (a,b) € {0,..., L} x {0,...,4}.

Similar masking functions are frequently used in other modes, such as [9,
35,41], however, the masks are full n bits. The use of n-bit masking function
usually allows to redefine the AE scheme as a mode of XE or XEX tweakable
blockcipher [41], which significantly reduces the proof complexity. In our case,
to reduce the state size, we decided to use the n/2-bit masking function, and as
a result the proof is ad-hoc and does not rely on XE or XEX.



n/4

Feedback Function. Let Y € {0,1}" and (Y[1],Y[2],Y[3],Y[4]) +— Y, where
Y[i] € {0,1}"/4. We define G : B — B as G(Y) = (Y[2],Y[3],Y[4], Y[4] @ Y[1]).
We also view G as the n x n non-singular matrix, so we write G(Y) and G- Y
interchangeably. For M € BS and Y € B, we define p1(Y,M) = G-Y @& M. The
feedback function p and its corresponding p’ are defined as

p(Y, M) = (p1(Y,M),Y & M),
P(Y,0)=(m(Y,)Y&C),Y®&O).

Note that when (X, M) = p/(Y,C) then X = (G & )Y@ C. Our choice of G
ensures that I @& G is also invertible matrix. So when Y is chosen randomly for
both computations of X (through p and p’), X also behaves randomly. We need
this property when we bound probability of bad events later.

Tweak Value for The Last Block. Given B € {0,1}*, we define 65 € {1,2}
as follows:

1 if B# X\ and n divides |B

2 otherwise.

This will be used to differentiate the cases that the last block of B is n bits or
shorter, for B being associated data or plaintext or ciphertext. We also define a
formatting function Fmt for a pair of bit strings (A, Z), where A is associated
data and Z could be either a message or a ciphertext. Let (A[1],..., Ala]) < A
and (Z[1],...,Z[z]) + Z. We define t[i] as follows:

(i,0) ifi<a

tfi] = (a—1,04) ifi=a
(i—1,04) ifa<i<a+z
(a+2z—2,04+6z) fi=a+z

Now, the formatting function Fmt(A4, Z) returns the following sequence:

((A[1],t[1]), - .., (Afa], t[a]), (Z[1], t[a + 1]),. .., (Z[z], t]a + z])),

where the first coordinate of each pair specifies the input block to be processed,
and the second coordinate specifies the exponents of a and 1 + a to determine
the constant over GF(2"/2). Let Zq be the set of non-negative integers and X
be some non-empty set. We say that a function f : X — (B X Z>o X Z>o)" is
prefiz-free if for all X # X', f(X) = (Y[1],...,Y[¢]) is not a prefix of f(X') =
(Y'[1],...,Y'[¢')) (in other words, (Y[1],...,Y[{]) # (Y'[1],...,Y'[{])). Here, for
aset S, ST means SUS?U---, and we have the following lemma.

Lemma 2. The function Fmt(-) is prefiz-free.

The proof is more or less straightforward and hence we skip it.



Module Mask-Gen(K, N) Algorithm COFB-Dx (N, A,C,T)
1. Y[0] < Ex(0"2 | N) 1. (4,Y]0]) + Mask-Gen(K, N)
2. (Y0],...,Y*[0) <2 Yo] 2. (A[l],..., Ala) < A
i' AHYQ[OA]HE);%O] i ;C;[I]G,+C,C[c]) «— C
- revurn (4. 70) 5. ((B1 (1)), .., (BIf],t[1)) « Fmt(4,0)
Algorithm COFB-Ex (N, A, M) 6. fori=1to/
1. (A,Y][0]) + Mask-Gen(K, N) T 0= o then
- (4, ¢« Mask-Gen(X, 8. X[i] < (Bli] ® G- Y[i — 1])@maska(t[i])
2. (AfL],..., Ala]) = A 9. else X[i] « (Blil®@Y[i—1a&G - ?[z —1)
3. (M[1],..., Mm]) <= M @ maska(t[i))
4 latm 10. Y] « Ex(X[i])
5. ((BIL],t[1)),..., (B, t[4) « Fmt(A, M) 11 fori—1toc
6. fori=1to¢ ‘ _ ‘ 12 M)« Y[i+a—1] & C[]
7. X[i] < (Bli] G -Y[i —1]) & maska(t[z]) 13. M « (M[1],..., Ml[d)
8. Y[i] + Ex(X[i]) 14. T' « Y[(]
9. ifi>athen 15. if 7" =T then return M
10. Cli—a« Y[i—1] & M[i — q] 16. else return L
11 T« Y[4
12. return (C,T)

Fig. 4.2. The encryption and decryption algorithms of COFB.

Now we present the specifications of COFB in Fig. 4.2. The encryption and
decryption algorithms are denoted by COFB-Ex and COFB-Dg. We remark that
the nonce length is n/2 bits, which is enough for the security up to the birthday
bound. The nonce is processed as E (0™/2 || N) to yield the first internal chaining
value. The encryption algorithm takes non-empty A and non-empty M, and
outputs C' and T such that |C| = |M| and |T| = n. The decryption algorithm
takes (N, A,C,T) with |A|,|C| # 0 and outputs M or L.

We remark that the pseudocodes of Fig. 4.2 are for clarity and not necessarily
memory-efficient due to (say) the use of Fmt and caching multiple Y[i] values at
decryption. In fact, the encryption and decryption of COFB can be done with
keeping one input/output state for the blockcipher and sequentially updating
the n/2-bit mask. See Fig. 4.1 for an illustration.

5 Security of COFB

We present the security analysis of COFB in Theorem 1.
Theorem 1 (Main Theorem).

. 0.5(¢")? 40 +0.5nq
AdvégFB((Q» qf)? (U’ O-f)’ t) S AdeISS (ql7 tl) + on 2n/2 :

g+ (q+o+oy)- oy
27L

+

where, ¢ = q+qy+ 0+ 0y, which corresponds to the total number of blockcipher
calls through the game, and t' =t + O(¢').



Proof. Without loss of generality, we can assume ¢’ < 22!, since otherwise the
bound obviously holds as the right hand side becomes more than one. The first
transition we make is to use an n-bit (uniform) random permutation P instead of
E, and then to use an n-bit (uniform) random function R instead of P. This two-
step transition requires the first two terms of our bound, from the standard PRP-
PRF switching lemma and from the computation to the information security
reduction (e.g., see [13]). Then what we need is a bound for COFB using R,
denoted by COFB-R. That is, we prove

40 + 0.5n +(gq+o+o0f) -0
e Qf+Qf (q - f) f' (5)

Fori=1,...,q, we write (N;, A;, M;) and (C;,T;) to denote the i-th encryption
query and response. Here, A; = (A;[1],..., Ai[a;]), M; = (M;[1],..., M;[m;]),
and C; = (Ci[1],...,Cimy]). Let ¢; = a; + m;, which denotes the total in-
put block length for the i-th encryption query. We write X;[j] (resp. Y;[j]) for
i=1,...,g and j = 0,...,¢; to denote the j-th input (resp. output) of the
internal R invoked at the i-th encryption query, where the order of invocation
follows the specification shown in Fig. 4.2. We remark that X;[0] = 0"/2||N;
and Y;[¢;] = T; for all i = 1,...,q. Similarly, we write A; to denote Y;?[0]||Y;3[0]
where Y [0][| - - [|Y;*[0] <= Y;[0].

We introduce the following relaxations in the game, which only gain the ad-
vantage. First, after completing all queries and forging attempts (i.e. decryption
queries), let the adversary learn all the Y-values for all encryption queries only.
We remark that any X-values computed at the message processing phase (not
the AD processing phase) of the i-th encryption query are immediately deter-
mined by the i-th query-response tuple, (N;, A;, M;, C;,T;) and Y; values from
the property of feedback function, and A-values (it is a part of Y[0]).

In case of the ideal oracle, all these variables corresponding to Y will be cho-
sen uniformly and independently, where at the plaintext encryption phase Y;[j] is
randomly chosen and used to determine C;[j] as C;[j] = Y;[j — 1] © M;[j], and at
AD processing phase it is a dummy and has no influence to the response (C;, T5).
For decryption queries, the ideal oracle always returns L (here we assume that
the adversary makes only fresh queries).

Advé&FB—R((Q) qf)a (0.7 Uf)7 OO) S

Coefficients-H Technique. We outline the Coefficients-H technique developed
by Patarin, which serves as a convenient tool for bounding the advantage (see
[39,50]). We will use this technique (without giving a proof) to prove our main
theorem. Consider two oracles Op = ($, L) (the ideal oracle for the relaxed game)
and Oy (real, i.e. our construction in the same relaxed game). Let V denote the
set of all possible views an adversary can obtain. For any view 7 € V, we will
denote the probability to realize the view as ip,e,(7) (O ipigeq (7)) When it is in-
teracting with the real (or ideal respectively) oracle. We call these interpolation
probabilities. Without loss of generality, we assume that the adversary is deter-
ministic and fixed. Then, the probability space for the interpolation probabilities
is uniquely determined by the underlying oracle. As we deal with stateless ora-
cles, these probabilities are independent of the order of query responses in the

10



view. Suppose we have a set of views, Vyo0oa € V, which we call good views, and
the following conditions hold:

1. In the game involving the ideal oracle Oy (and the fixed adversary), the
probability of getting a view in Vgoq is at least 1 — €;.
2. For any view T € Vgo0d, We have ip,e,(7) > (1 — €2) - iPigeal (7)-

Then we have | Pr[A%0 = 1] — Pr[A®" = 1]| < €; + €2. The proof can be found
at (say) [50]. Now we proceed with the proof of Theorem 1 by defining certain
Vsood for our games, and evaluating the bounds, €; and €.

Views. In our case, a view 7 is defined by the following tuple:
T = ((Nia Ai7 Mia Yi)ie{l,...,q}v (N;.;v A;‘H Cz*/7 1_1;‘) Z:’)i’e{l,...,qf})7

where Z}, denotes the output of the decryption oracle D (it is always L when we
interact with the ideal oracle) for the i#’-th decryption query (N3, A%, Ch,T5).
Note that Y; denotes (Y;[0],...,Y;[¢;]) = Y;]0..4;], where ¢; = a; + m;, and q;
(resp. m;) denotes the block length of A; (resp. M;). Here we implicitly use the
fact that given a complete block M;[j], the mapping from Y;[j] to C;[j] is bijective
and hence keeping those Y;[j] values instead of C;[j] is sufficient. Similarly we
define ¢}, and a},, and write £}, = a}, +c}.

Let (L;[5], Rs[j]) <2 X;[j] for all i € [1..q] and j € [1..¢;]. For any 4, let p;
denote the length of the longest common prefix of Fmt(A}, C}) and Fmt(A4;, C;)
where IV; = N;°. If there is no such j, we define p; = —1. Since Fmt is prefix-free,
it holds that p; < min{¢;,¢;}. We observe that p; is unique for all i = 1,..., ¢y,

as there is at most one encryption query that uses the same nonce as N;.

Bad Views. Now we define a bad view. The complement of the set of bad views
is defined to be the set of good views. A view is called bad if one of the following
events occurs:

B1: L;[j] = 0"/2 for some i € [1..q] and j > 0.

B2: X;[j] = Xy[j'] for some (i,7) # (i',j") where j,5" > 0.

B3: mcoll(R) > n/2, where R is the tuple of all R;[j] values. Recall that
(Lilj], Bali]) = Xilj].

B4: X*[p; + 1] = X;,[j1] for some i,i1,71 with p; as defined above. Note that
when p; > 0, X*[p; + 1] is determined from the values of Y.

B5: For some Z; # L. This clearly cannot happen for the ideal oracle case.

We add some intuitions on these events. When B1 does not hold, then X, [j] #
X;/[0] for all 4,4, and j > 0. Hence A; will be completely random. When B2 does
not hold, then all the inputs for the random function are distinct for encryption
queries, which makes the responses from encryption oracle completely random in
the “real” game. When B3 does not hold, then at the right half of X;[j] we see at
most n/2 multi-collisions. A successful forgery is to choose one of the n/2 multi-
collision blocks and forge the left part so that the entire block collides. Forging
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the left part has 2=™/2 probability due to randomness of masking. Finally, when
B4 does not hold, then the (p; + 1)-st input for the i-th forging attempt will be
fresh with a high probability and so all the subsequent inputs will remain fresh
with a high probability.

A view is called good if none of the above events hold. Let Vy04 be the set of
all such good views. The following lemma bounds the probability of not realizing
a good view while interacting with a random function (this will complete the
first condition of the Coefficients-H technique).

Lemma 3.

40 + 0.5ngy
Sl # Veood] < =5
Proof (of Lemma 3). Throughout the proof, we assume all probability notations
are defined over the ideal game. We bound all the bad events individually and
then by using the union bound, we will obtain the final bound. We first de-
velop some more notation. Let (Yi[j], Y2[j], Y[j], Y[j]) <2 Y;[j]. Similarly,

we denote (M}[j], M2[j]) <2 M;]j).
(1) Pr[B1] < 0/2"/2: We fix a pair of integers (i,;) for some i € [1..g] and
J € [1..4;]. Now, L;[j] can be expressed as

(VP =Y = 1) @ (o - (1 + o) - A)) @ M{[j]

for some a and b. Note that when j > 1, A; and Y;[j — 1] are independently
and uniformly distributed, and hence for those j, we have Pr[L;[j] = 0"/2] =
27"/2 (apply Lemma 1 after conditioning Y;[j — 1]). Now when j = 1, we
have the following three possible choice: (i) L;[1] = (1 + «) - A; & Cons if
a; > 2, (i) L;[1] = a- A; @ Cons if a; = 1 and the associated data block
is full, and (iii) L;[1] = o? - A; ® Cons if a; = 1 and the associated data
block is not full, for some constant Cons. In all cases by applying Lemma 1,
Pr[B1] < o /22

(2) Pr[B2] < 0/2"/2: For any (i,7) # (i',4') with 7,5’ > 1, the equality event
X;[j] = Xir[j'] has a probability at most 27" since this event is a non-trivial
linear equation on Y;[j — 1] and Y;/[j' — 1] and they are independent to each
other. Note that 02/2" < ¢/2"/? as we are estimating probabilities.

(3) Pr[B3] < 20/2™?%: The event B3 is a multi-collision event for randomly
chosen ¢ many n/2-bit strings as Y values are mapped in a regular manner
(see the feedback function) to R values. From the union bound, we have

prB3] < ¢ 1 < o"/2 < o \M?_ 20
r[ ] - n/2 2(n/2)-((n/2)=1) — 9(n/2)-((n/2)-1) — (2(”/2)—1) — 9on/2’

where the last inequality follows from the assumption (o < 2(/2)~1),

(4) Pr[B4 A B1° A B3] < 0.5ng;/2"/?: We fix some i and want to bound the
probability Pr[X[p; + 1] = X;, [j1] A B1¢ A B3] for some i1, j1. If p; = —1
(i.e., N does not appear in encryption queries), then N} is fresh as left
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n/2 bits of all X;[j] is non-zero for all j > 0 (since we also consider B1
does not hold). So the probability is zero. Now we consider p; > 0. The
event B3¢ implies that at most n/2 possible values of (i1,j1) are possible
for which X}[p; + 1] = X, [j1] can hold. Fix any such (i1,j1). Now it is
sufficient to bound the probability for equality for the left n/2 bits. We
first consider the case where j; = p; + 1. Now from the definition of p;,
(Cflpi + 10,5 [pi + 1)) # (Ciy[pi + 1), tiy [pi + 1]). T tips + 1] = ti, [pi + 1]
then the bad event cannot hold with probability one. Otherwise, we obtain
a non-trivial linear equation in A;, and apply Lemma 1, and we also use
the fact that G + I is non singular. A similar argument holds for the other
choices of j;. Therefore, the probability for the atomic case is at most 2-"/2,
and because we have at most ¢y -n/2 chances, Pr[B4 AB1° AB3“] is at most
(n/2) - a5 - 1/2"2.

Summarizing, we have

Pr[7 & Vgooa) < Pr[B1] + Pr[B2]| + Pr[B3] + Pr[B4 A B1° A B3|

ideal
o o 20 0.5nqy 40 +0.5nqy
< =
— 9n/2 + on/2 + on/2 on/2 on/2 ’
which concludes the proof. a

Lower Bound of ip,., (7). We consider the ratio of ip, (7) and ipge, (7). In
this paragraph we assume that all the probability space, except for ip;yes (%), is
defined over the real game. We fix a good view

T = ((Ni7Ai7Mi?}/;)i€{1 ..... q}v(NiyivAr’? iﬁvT;aZ:’)i’E{l ..... qf}>7

where Z7 = 1. We separate 7 into

Te = (Niy Aiy M, Yi)iequ,...qy and 7a = (N}, A7 OO T30, Z0 )i (1, ap s
and we first see that for a good view 7, ipye,(7) equals to 1/27(4F7),

Now we consider the real case. Since B1 and B2 do not hold with 7, all
inputs of the random function inside 7. are distinct, which implies that the
released Y-values are independent and uniformly random. The variables in 7.
are uniquely determined given these Y-values, and there are exactly ¢+o distinct
input-output of R. Therefore, Pr[r.] is exactly 2-(4+),

We next evaluate

1

iPreal (1) = Pr[7e, 7a] = Pr[re] - Pr[ra|7e] = onla+o) |

Pr[rq|7e)- (6)
We observe that Pr[rq|7.] equals to Pr[L|7.], where L, denotes the event
that Z = 1 for all ¢ =1,...,qf, as other variables in 74 are determined by ..
Let 1 denote the event that, for alli =1,...,qf, X/ [j] for p; < j < £f is not
colliding to X-values in 7. and X/[j'] for all j* # j. For j = p; + 1, the above
condition is fulfilled by B4, and thus Y;*[p; + 1] is uniformly random, and hence
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X7 [pi + 2] is also uniformly random, due to the property of feedback function
(here, observe that the mask addition between the chain of Y;*[j] to X}[j + 1]
does not reduce the randomness).

Now we have Pr[La|7] = 1 —Pr[(Lai)¢|7], and we also have Pr[(Lay)¢|7e] =
Pr[(Lan)¢, n|7e] + Pr[(Lan)®, n°|7e]). Here, Pr[(L.)¢, n|7e] is the probability that
at least one T} for some i = 1,...,qy is correct as a guess of Y;*[(f]. Here Y;*[(;]
is completely random from 7, hence using the union bound we have

Pr{(Lan) 7] < 22

For Pr[(Lan)¢ n°|7e] which is at most Pr[n°|7.], the above observation suggests
that this can be evaluated by counting the number of possible bad pairs (i.e. a
pair that a collision inside the pair violates 7) among the all X-values in 7.
and all X*-values in 74, as in the same manner to the collision analysis of e.g.,
CBC-MAC using R. For each i-th decryption query, the number of bad pairs is
at most (¢+ o+ £5) - £f < (q+ 0 +o0y)-L;. Therefore, the total number of bad
pairs is Z1gigqf(q +o+o0y)-lf <(g+0+0yf)- 0y, and we have

(g+o+oyf)-of
on '

Pr((Lan)® n°|7e] <

Combining all, we have

. 1
iPreal(7) = onlato) ’

2 iPigeal (7) - (1 = (Pr{(Lan)®, ml7e] + Pr{(Lan), n°|7e]))

) gr+(q+o+of)-0
IpideaI(T) : (1 -4 on ! f) :

Pr7a|7e] = ipigeal (7) - PrlLan|7e]

V

v

6 Hardware Implementation of COFB

6.1 Overview

COFB primarily aims to achieve a lightweight implementation on small hardware
devices. For such devices, the hardware resource for implementing memory is
often the dominant factor of the size of entire implementation, and the scalability
by parallelizing the internal components is not needed. In this respect, COFB’s
small state size and completely serial operation is quite desirable.

For implementation aspects, COFB is simple, as it consists of a blockcipher
and several basic operations (bitwise XOR, the feedback function, and the con-
stant multiplications over GF(2"/2)). Combined with the small state size, this
implies that the implementation size of COFB is largely dominated by the un-
derlying blockcipher.

We also provide the number of clock cycles needed to process input bytes,
as a conventional way to estimate the speed. Here, COFB taking a-block AD
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Table 2. Clock cycles per message byte for COFB using a 128-bit blockcipher.

Message length (Bytes)
16 | 32 | 64 | 128256 |512|1024|2048|4096|16384|32768
cpb|2.93|2.22|1.86(1.68|1.59|1.54|1.52|1.51|1.50| 1.50 | 1.50

(associated data) and an m-block message needs 12(a +m) + 23 cycles. Table 2
shows the number of average cycles per input message bytes, which we call cycles
per byte (cpb), assuming AD has the same length as message and the underlying
blockcipher has 128-bit block. That is, the table shows (12 - 2m + 23)/16m.

6.2 Hardware Architecture

We describe the hardware implementation of COFB using AES-128. This is a
basic implementation without any pipelining, and employs a module architec-
ture. We primary focus on the encryption-only circuit, however, the combined
encryption and decryption circuit should have very small amount of overhead
thanks to the inverse-freeness (i.e. no AES decryption routine is needed) and
simplicity of the mode. Due to the similarity between the associated data and
the message processing phase, the same hardware modules are used in the both
phases. A single bit switch is used to distinguish between the two types of in-
put data. The main architecture consists of the modules described below. We
remark that, there is also a Finite State Machine (FSM) which controls the flow
by sending signal to these modules. The FSM has a rather simple structure, and
will be described in the full version. Then, the overall hardware architecture is
described in Fig. 6.1.

1. State Registers: The state registers are used to store the intermediate
states after each iteration. We use a 128-bit State register to store the 128-
bit AES block state, a 64-bit A register to store the 64-bit mask applied to
each AES input, and a 128-bit Key register to store the 128-bit key. The
round key of AES is stored in the additional 128-bit register (Round Key),
however, this is included in the AES module.

2. AES Round: AES round function module runs one AES round computation
and produces a 128-bit output, using two 128-bit inputs, one from the State
and the other from (internal) Round Key registers. The latter register is
initialized by loading the master key, stored in the Key register, each time
the AES function is invoked. The output of AES module is stored into the
State register, which is the input for the next round. The entire operation
is serial, while the internal round computation and the round key generation
run in parallel, and needs 11 cycles to perform full AES-128 encryption.

3. Feedback Function p: The p module is to compute the linear feedback
function p on the 128-bit data block and the 128-bit intermediate state value
(output from the AES computation). The output is a 128-bit ciphertext and
a 128-bit intermediate state (to be masked and stored to the State register).

15



AD/M 064N 128 128 11064 )
128 128
128 64 1128
chop
> <~
State Key A
|
D 64
128 128
1
AES, » P uMask
128 128% 644
128 C
T

Fig. 6.1. Hardware circuit diagram

4. Mask Update: uMask module updates the mask stored in A register.
uMask receives the current mask value and updates it by multiplying with
aor (1+a) or (1+ «)? based on the signals generated by the FSM, where
signals are to indicate the end of the message and the completeness of the
final block process.

Basic Implementation: We describe a basic flow of our implementation of
COFB, which generally follows the pseudocode of Fig. 4.2. Prior to the initializa-
tion, State register is loaded with 0% || N. Once State register is initialized, the
initialization process starts by encrypting the nonce (0% | N) with AES. Then,
64 bits of the encrypted nonce is chopped by the “chop” function as in Fig. 6.1,
and this chopped value is stored into the A register (this is initialization of A).
After these initializations, 128-bit associated data blocks are fetched and sent to
the p module along with the previous AES output to produce a 128 bit interme-
diate state. This state is partially masked with 64-bit A for every AES call. After
all the associated data blocks are processed, the message blocks are processed in
the same manner, except that the p function produces 128-bit ciphertext blocks
in addition to the intermediate state values. Finally, after the message processing
is over, the tag is generated using an additional AES call.

Combined Encryption and Decryption: As mentioned earlier, we here fo-
cus on the encryption-only circuit. However, due to the similarity between the
encryption and the decryption modes, the combined hardware for encryption
and decryption can be built with a small increase in the area, with the same
throughput. This can be done by adding a control flow to a binary signal for
mode selection.

6.3 Implementation Results

We implemented COFB on Xilinx Virtex 6 and Virtex 7, using VHDL and Xilinx
ISE 13.4. AES-128 is used as the internal blockcipher. Table 3 presents the im-
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Table 3. Implementation results of COFB on FPGAs.

# Slice . Frequency Mbps/|Mbps/
Platform Registers # LUTs|# Slices (MHz) Gbps LUT  |Slice
Virtex 6 722 1075 442 267.20 2.85 2.24 6.45
Virtex 7 722 1456 555 264.24 2.82 2.22 5.08

plementation results of COFB on Virtex 7 with the target device xc7vx330t and
Virtex 6 with the target device xcbvIx760. We employ RTL approach and a basic
iterative type architecture. The areas are listed in the number of Slice Registers,
Slice LUTs and Occupied Slices. We also report frequency (MHz), Throughput
(Gbps), and throughput-area efficiency. In the full version, we will show the area
utilization for this basic AES-based implementation.

For AES, we use the implementation available from Athena [1] maintained
by George Mason University. This implementation stores all the round subkeys
in a single register to make the AES implementation faster and parallelizable.
However, the main motivation of COFB is to reduce hardware footprint. Hence,
we change the above implementation to a sequential one such that it processes
only one AES round in a single clock cycle. This in turn eliminates the need to
store all the round subkeys in a single register and reduces the hardware area
consumed by the AES module.

6.4 Comparison with ATHENa Database

We compare our implementation of COFB with the results published in ATHENa,
Database [2], taking Virtex 6 and Virtex 7 as our target platforms. We first warn
that this is a rough comparison. Here, we ignore the overhead to support the
GMU API and the fact that ours is encryption-only while the others are (to
the best of our knowledge) supporting both encryption and decryption, and the
difference in the achieved security level, both quantitative and qualitative. We
acknowledge that supporting GMU API will require some additional overhead to
the current figures of COFB. Nevertheless, we think the current figures of COFB
suggest that small hardware implementations are possible compared with other
blockcipher AE modes shown in the table, using the same AES-128, even if we
add a circuit for supporting GMU API and decryption.

We also remark that it is basically hard to compare COFB using AES-128 with
other non-block-cipher-based AE schemes in the right way, because of the differ-
ence in the primitives and the types of security guarantee. For example, ACORN
is built from scratch and does not have any provable security result, and is sub-
jected to several cryptanalysis [20, 45,44, 34]. Joltik and JAMBU-SIMON employ
lightweight (tweakable) blockciphers allowing smaller implementation than AES,
and Sponge AE schemes (ASCON, Ketje, NORX, and PRIMATES-HANUMAN)
use a keyless permutation of a large block size to avoid key scheduling circuit
and have the provable security relying on the random permutation model. In
Table 4, we provide the comparison table only on the Vertex 6 platform. The
comparison table on the Vertex 7 platform will be provided in the full version.
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Table 4. Comparison on Virtex 6 [2]. In the “Primitive” column, SC denotes Stream
cipher, (T)BC denotes (Tweakable) blockcipher, and BC-RF denotes the blockcipher’s
round function.

Scheme Primitive |#LUT|#Slices|Gbps Mbps / LUT|Mbps / Slices

ACORN [51] SC 455 135 3.112 6.840 23.052
AEGIS [53] BC-RF 7592 2028 |70.927 9.342 34.974
AES-COPA [10] BC 7754 2358 | 2.500 0.322 1.060
AES-GCM [22] BC 3175 1053 | 3.239 1.020 3.076
AES-OTR [36] BC 5102 1385 | 2.741 0.537 1.979
AEZ [26] BC-RF 4597 1246 | 8.585 0.747 2.756
ASCON [21] Sponge 1271 413 3.172 2.496 7.680
CLOC [29] BC 3145 891 2.996 0.488 1.724
DEOXYS [31] TBC 3143 951 2.793 0.889 2.937
ELmD [19] BC 4302 1584 | 3.168 0.736 2.091
JAMBU-AES [52] BC 1836 652 1.999 1.089 3.067
JAMBU-SIMON [52] BC (non-AES)| 1222 453 0.363 0.297 0.801
Joltik [30] TBC 1292 442 0.853 0.660 0.826

Ketje [14] Sponge 1270 456 7.345 5.783 16.107

Minalpher [46] BC (non-AES)| 2879 1104 |1.831 0.636 1.659
NORX [11] Sponge 2964 1016 [11.029 3.721 10.855
PRIMATES-HANUMAN (8] Sponge 1012 390 0.964 0.953 2.472

OCB [33] BC 4249 1348 |3.122 0.735 2.316
SCREAM ([24] TBC 2052 834 1.039 0.506 1.246

SILC [29] BC 3066 921 4.040 1.318 4.387
Tiaoxin [38] BC-RF 7123 2101 |52.838 7.418 25.149
TriviA-ck [18] SC 2118 687 [15.374 7.259 22.378

COFB [ BC [ 1075 | 442 [2.850]  2.240 6.450

7 Conclusion

This paper presents COFB, a blockcipher mode for AE focusing on the state
size. When instantiated with an n-bit blockcipher, COFB operates at rate-1,
and requires state size of 1.5n bits, and is provable secure up to O(2"/2/n)
queries based on the standard PRP assumption on the blockcipher. In fact this
is the first scheme fulfilling these features at once. A key idea of COFB is a new
type of feedback function combining both plaintext and ciphertext blocks. We
have also presented the hardware implementation results, which demonstrate
the effectiveness of our approach.
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