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5 LASEC, École Polytechnique Fédérale de Lausanne, Switzerland.

Abstract. In this article, we revisit the design strategy of PRESENT,
leveraging all the advances provided by the research community in con-
struction and cryptanalysis since its publication, to push the design up
to its limits. We obtain an improved version, named GIFT, that provides
a much increased efficiency in all domains (smaller and faster), while
correcting the well-known weakness of PRESENT with regards to linear
hulls.
GIFT is a very simple and clean design that outperforms even SIMON

or SKINNY for round-based implementations, making it one of the most
energy efficient ciphers as of today. It reaches a point where almost the
entire implementation area is taken by the storage and the Sboxes, where
any cheaper choice of Sbox would lead to a very weak proposal. In essence,
GIFT is composed of only Sbox and bit-wiring, but its natural bitslice data
flow ensures excellent performances in all scenarios, from area-optimised
hardware implementations to very fast software implementation on high-
end platforms.
We conducted a thorough analysis of our design with regards to state-
of-the-art cryptanalysis, and we provide strong bounds with regards to
differential/linear attacks.
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1 Introduction

In the past decade, the development of ubiquitous computing applications trig-
gered the rapid expansion of the lightweight cryptography research field. All these



applications operating in very constrained devices may require certain symmetric-
key cryptography components to guarantee privacy and/or authentication for
the users, such as block or stream ciphers, hash functions or MACs. Existing
cryptography standards such as AES [18] or SHA-2 [33] are not always suitable for
these strong constraints. There have been extensive research conducted in this
direction, with countless new primitives being introduced [2,4, 5, 12,15,22,39],
many of them getting broken rather rapidly (designing a cipher with strong
constraints is not an easy task). Conforming to general trend, the American
National Institute for Science and Technology (NIST) recently announced that it
will consider standardizing some lightweight functions in a few years [34]. Some
lightweight algorithms such as PRESENT [12], PHOTON [21] and SPONGENT [11] have
already been included into ISO standards (ISO/IEC 29192-2:2012 and ISO/IEC
29192-5:2016).

Comparing different lightweight primitives is a very complex task. First,
lightweight encryption encompasses a broad range of use cases, from passive
RFID tags (that require a very low power consumption to operate) to battery
powered devices (that require a very low energy consumption to maximise its
life span) or low-latency applications (for disk encryption). While it is generally
admitted that a major criterion for lightweight encryption is area minimisation,
the throughput/area ratio is also very important because it shows the ability
of the algorithm to provide good implementation trade-offs (this ratio is also
correlated to the power or energy consumption of the algorithm). Moreover, the
range of the various platforms to consider is very broad, starting from tiny RFID
tags to rather powerful ARM processors. Even high-end servers have to be taken
into account as it is likely that these very small and constrained devices will be
communicating with back-end servers [6].

While most ciphers take lightweight hardware implementations into account
to some extend, PRESENT [12] is probably one of the first candidates that was
exclusively designed for that purpose. Its design is inspired by SERPENT [7] and
is very simple: the round function is simply composed of a layer of small 4-bit
Sboxes, followed by a bit permutation layer (essentially free in hardware) and a
subkey addition. PRESENT has been extensively analysed in the past decade, and
while its security margin has eroded, it remains a secure cipher. One can note
that the weak point of PRESENT is the tendency of linear trails to cluster and to
create powerful linear hulls [10,17].

Since the publication of PRESENT, many advances have been obtained, both
in terms of security analysis and primitive design. The NSA proposed in 2013
two ciphers [4], SIMON and SPECK, that can reach much better efficiency in both
hardware and software when compared to all other ciphers. However, this comes
at the cost that proving simple linear/differential bounds for SIMON is much
more complicated than for Substitution-Permutation-Network (SPN) ciphers like
PRESENT (SIMON is based on a Feistel construction, with an internal function
that uses only a AND, some XORs and some rotations). Besides, no preliminary
analysis or rationale was provided by the SIMON authors. Last year, the tweakable
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block cipher SKINNY [5] was published to compete with SIMON’s efficiency for
round-based implementations, while providing strong linear/differential bounds.

As of today, SIMON and SKINNY seem to have a clear advantage in terms of
efficiency when compared to other designs. Yet, PRESENT remains an elegant
design, that suffers from being one of the first lightweight encryption algorithm to
have been published, and thus not benefiting from the many advances obtained
by the research community in the recent years.

Our contributions. In this article, we revisit the PRESENT construction, 10
years after the original publication of PRESENT. This led to the creation of GIFT,
a new lightweight block cipher, improving over PRESENT in both security and
efficiency. Interestingly, our cipher GIFT offers extremely good performances and
even surpasses both SKINNY and SIMON for round-based implementations (see
Table 1). This indicates that GIFT is probably the cipher the most suited for
the very important low-energy consumption use cases. Due to its simplicity and
natural bitslice organisation of the inner data flow, our cipher is very versatile
and performs also very well on software, reaching similar performances as SIMON,
the current fastest lightweight candidate on software.

Table 1. Hardware performances of round-based implementations of PRESENT,
SKINNY, SIMON and our new cipher GIFT, synthesized with STM 90nm Standard
cell library.

Area Delay Cycles TPMAX Power (µW) Energy
(GE) (ns) (MBit/s) (@10MHz) (pJ)

GIFT-64-128 1345 1.83 29 1249.0 74.8 216.9
SKINNY-64-128 1477 1.84 37 966.2 80.3 297.0
PRESENT 64/128 1560 1.63 33 1227.0 71.1 234.6
SIMON 64/128 1458 1.83 45 794.8 72.7 327.3

GIFT-128-128 1997 1.85 41 1729.7 116.6 478.1
SKINNY-128-128 2104 1.85 41 1729.7 132.5 543.3
SIMON 128/128 2064 1.87 69 1006.6 105.6 728.6

In more details, we have revisited the PRESENT design strategy and pushed it
to its limits, while providing special care to the known weak point of PRESENT:
the linear hulls. The diffusion layer of PRESENT being composed of only a bit
permutation, most of the security of PRESENT relies on its Sbox. This Sbox
presents excellent cryptographic properties, but is quite costly. Indeed, it is trivial
to see that the PRESENT Sbox needs to have a branching number of 3, or very
good differential paths would exist otherwise (with only a single active Sbox
per round). We managed to remove this constraint by carefully crafting the bit
permutation in conjunction with the Difference Distribution Table (DDT)/Linear
Approximation Table (LAT) of the Sbox. We remark that, to the best of the
authors knowledge, this is the first time that the linear layer and the Sbox are
fully intricate in a SPN cipher.
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In terms of performances, removing this Sbox constraint allowed us to choose
a much cheaper Sbox, which is actually what composes most of the overall
area cost in PRESENT. GIFT is not only much smaller, but also much faster than
PRESENT. As can be seen in Table 2, GIFT is by far the cipher that uses the least
total number of operation per bit up to now. In terms of security, we are able
to provide strong security bounds for simple differential and linear attacks. We
can even show that GIFT is very resistant against linear hulls, and the clustering
effect is greatly reduced when compared to PRESENT, thus correcting its main
weak point. We have conducted a thorough security analysis of our candidate
with state-of-the-art cryptanalysis techniques.

Table 2. Total number of operations and theoretical performance of GIFT and
various lightweight block ciphers. N denotes a NOR gate, A denotes a AND gate,
X denotes a XOR gate.

Cipher nb. of gate cost (per bit per round) nb. of op. nb. of op. round-based

rds int. cipher key sch. total w/o key sch. w/ key sch. impl. area

GIFT
28

1 N 1 N 3× 28 3× 28 1 + 2.67× 2

-64-128 2 X 2 X = 84 = 84 = 6.34

SKINNY
36

1 N 1 N 3.25× 36 3.875× 36 1 + 2.67× 2.875

-64-128 2.25 X 0.625 X 2.875 X = 117 = 139.5 = 8.68

SIMON
44

0.5 A 0.5 A 2× 44 3.5× 44 0.67 + 2.67× 3

-64/128 1.5 X 1.5 X 3.0 X = 88 = 154 = 8.68

PRESENT
31

1 A 0.125 A 1.125 A 4.75× 31 5.22× 31 1.5+ 2.67× 4.094

-128 3.75 X 0.344 X 4.094 X = 147.2 = 161.8 = 12.43

GIFT
40

1 N 1 N 3.0× 40 3.0× 40 1 + 2.67× 2

-128-128 2 X 2 X = 120 = 120 = 6.34

SKINNY
40

1 N 1 N 3.25× 40 3.25× 40 1 + 2.67× 2.25

-128-128 2.25 X 2.25 X = 130 = 130 = 7.01

SIMON
68

0.5 A 0.5 A 2× 68 3× 68 0.67 + 2.67× 2.5

-128/128 1.5 X 1 X 2.5 X = 136 = 204 = 7.34

AES
10

4.25 A 1.06 A 5.31 A 20.25× 10 24.81× 10 7.06+ 2.67× 19.5

-128 16 X 3.5 X 19.5 X = 202.5 = 248.1 = 59.12

We end up with a very natural and clean cipher, with a simple round function
and key schedule (composed of only a bit permutation, thus essentially free in
hardware). The cipher can be seen in three different representations (classical 1D,
bitslice 2D, and 3D), each offering simple yet different perspective on the cipher’s
security and opportunities for implementation improvements. GIFT comes in two
versions, both with a 128-bit key: one 64-bit block version GIFT-64 and one
128-bit block version GIFT-128. The only difference between these two versions
is the bit permutation to accommodate twice more state bits for GIFT-128.

In our hardware implementations of GIFT the storage composes about 75% of
the total area, and the (very cheap) Sbox about 20%. Since any weaker choice of
the Sbox would lead to a very insecure design, we argue that GIFT is probably
very close to reaching the area limit of lightweight encryption.
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Outline. We first specify GIFT in Section 2, and we provide the design rationale
in Section 3. A thorough security analysis is performed in Section 4, while
performances and implementation strategies are given in Section 5 and Section 6
for hardware and software respectively. All details are provided in the full version
of the paper.

2 Specifications

In this work, we propose two versions of GIFT, GIFT-64-128 is a 28-round SPN
cipher and GIFT-128-128 is a 40-round SPN cipher, both versions have a key
length of 128-bit. For short, we call them GIFT-64 and GIFT-128 respectively.

GIFT can be perceived in three different representations. In this paper, we
adopt the classical 1D representation, describing the bits in a row like PRESENT.
It can also be described in bitslice 2D, a rectangular array like RECTANGLE [44],
and even in 3D cuboid like 3D [32]. These alternative representations are detailed
in the full version.

Round function. Each round of GIFT consists of 3 steps: SubCells, PermBits,
and AddRoundKey, which is conceptually similar to wrapping a gift:

1. Put the content into a box (SubCells);
2. Wrap the ribbon around the box (PermBits);
3. Tie a knot to secure the content (AddRoundKey).

Figure 1 illustrates 2 rounds of GIFT-64.
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Fig. 1. 2 Rounds of GIFT-64.

Initialization. The cipher receives an n-bit plaintext bn−1bn−2...b0 as the cipher
state S, where n = 64, 128 and b0 being the least significant bit. The cipher
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state can also be expressed as s many 4-bit nibbles S = ws−1||ws−2||...||w0,
where s = 16, 32. The cipher also receives a 128-bit key K = k7||k6||...||k0 as
the key state, where ki is a 16-bit word.

SubCells. Both versions of GIFT use the same invertible 4-bit Sbox, GS. The
Sbox is applied to every nibble of the cipher state. wi ← GS(wi), ∀i ∈
{0, ..., s − 1}. The action of this Sbox in hexadecimal notation is given in
Table 3.

Table 3. Specifications of GIFT Sbox GS.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

PermBits. The bit permutation used in GIFT-64 and GIFT-128 are given in
Table 4 and 5 respectively. It maps bits from bit position i of the cipher state
to bit position P (i). bP (i) ← bi, ∀i ∈ {0, ..., n− 1}.

Table 4. Specifications of GIFT-64 Bit Permutation.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P64(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

AddRoundKey. This step consists of adding the round key and round con-
stants. An n/2-bit round key RK is extracted from the key state, it is further
partitioned into 2 s-bit words RK = U ||V = us−1...u0||vs−1...v0, where
s = 16, 32 for GIFT-64 and GIFT-128 respectively.
For GIFT-64, U and V are XORed to {b4i+1} and {b4i} of the cipher state
respectively. b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi, ∀i ∈ {0, ..., 15}.
For GIFT-128, U and V are XORed to {b4i+2} and {b4i+1} of the cipher
state respectively. b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, ∀i ∈ {0, ..., 31}.
For both versions of GIFT, a single bit “1” and a 6-bit round constant
C = c5c4c3c2c1c0 are XORed into the cipher state at bit position n− 1, 23,
19, 15, 11, 7 and 3 respectively. bn−1 ← bn−1 ⊕ 1, b23 ← b23 ⊕ c5, b19 ←
b19 ⊕ c4, b15 ← b15 ⊕ c3, b11 ← b11 ⊕ c2, b7 ← b7 ⊕ c1, b3 ← b3 ⊕ c0.
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Table 5. Specifications of GIFT-128 Bit Permutation.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P128(i) 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P128(i) 4 37 70 103 100 5 38 71 68 101 6 39 36 69 102 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P128(i) 8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P128(i) 12 45 78 111 108 13 46 79 76 109 14 47 44 77 110 15

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
P128(i) 16 49 82 115 112 17 50 83 80 113 18 51 48 81 114 19

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
P128(i) 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
P128(i) 24 57 90 123 120 25 58 91 88 121 26 59 56 89 122 27

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
P128(i) 28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31

Key schedule and round constants. The key schedule and round constants
are the same for both versions of GIFT, the only difference is the round key
extraction. A round key is first extracted from the key state before the key state
update.
For GIFT-64, two 16-bit words of the key state are extracted as the round key
RK = U ||V . U ← k1, V ← k0.
For GIFT-128, four 16-bit words of the key state are extracted as the round key
RK = U ||V . U ← k5||k4, V ← k1||k0.
The key state is then updated as follows, k7||k6||...||k1||k0 ← k1 ≫ 2||k0 ≫
12||...||k3||k2, where ≫ i is an i bits right rotation within a 16-bit word.

The round constants are generated using the same 6-bit affine LFSR as
SKINNY, whose state is denoted as (c5, c4, c3, c2, c1, c0). Its update function is
defined as: (c5, c4, c3, c2, c1, c0)← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1). The six bits are
initialized to zero, and updated before being used in a given round. The values of
the constants for each round are given in the table below, encoded to byte values
for each round, with c0 being the least significant bit.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

Remark: GIFT aims at single-key security, so we do not claim any related-key
security (even though no attack is known in this model as of today). In case one
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wants to protect against related-key attacks as well, we advice to double the
number of rounds.

3 Design Rationale

First, let us propose a subclassification for SPN ciphers.

Definition 1. Substitution-bitPermutation network (SbPN) is a subclassification
of Substitution-Permutation network, where the permutation layer (p-layer) only
comprises of bit permutation. An m/n-SbPN cipher is an n-bit cipher in which
substitution layer (s-layer) comprises of m-bit (Super-)Sboxes.

For SPN ciphers like AES and SKINNY, we can shift the XOR components
from the p-layer to the s-layer to form Super-Sboxes, leaving the p-layer with
only bit permutation. For example, PRESENT is a 4/64-SbPN cipher, SKINNY-64
is a 16/64-SbPN cipher, and SKINNY-128 and AES are 32/128-SbPN ciphers.

Having that said, GIFT-64 is a 4/64-SbPN cipher while GIFT-128 is (probably
the first of its kind) a 4/128-SbPN cipher.

3.1 The Designing of GIFT

Before we discuss the design rationale of GIFT, we would like to share some
background story about GIFT, its design approach, and its comparison with
another PRESENT-like ciphers.

The origin of GIFT. It all started with a casual remark “What if the Sboxes
in PRESENT are replaced with some smaller Sboxes, say the PICCOLO Sbox? It
will be extremely lightweight since the core cipher only has some Sboxes and
nothing else...”. We quickly tested it but only to realise that the differential
bounds became very low because the Sbox does not have differential branching
number of 3. That is when we started analyzing the differential characteristics
and studying the interaction between the linear layer and the Sbox. Surprisingly,
we found that by carefully crafting the linear layer based on the properties of the
Sbox, we were able to achieve the same differential bound as PRESENT without
the constraint of differential branching number of 3. In addition, this result can
also be applied to the improve linear cryptanalysis resistance which was lacking
in PRESENT. Eventually, a small present—GIFT was created.

Design approach. It is natural to ask how GIFT is different from the other
lightweight primitives, especially the recent SKINNY family of block ciphers that
was proposed at CRYPTO2016. One of the main difference is the design approach.
SKINNY was designed with a high-security-reduce-area approach, that is to have a
strong security property, then try to remove/reduce various components as much
as possible. While GIFT adopts a small-area-increase-security approach, starting
from a small area goal, we try to improve its security as much as possible.
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Other PRESENT-like ciphers. Besides PRESENT, one may also compare GIFT-64

with RECTANGLE since both are 4/64-SbPN ciphers and an improvement on
the design of PRESENT. RECTANGLE was designed to be software friendly and
to achieve a better resistance against the linear cryptanalysis as compared to
PRESENT. However, although its bit permutation (ShiftRow) was designed to
be software friendly, little analysis was done on the how differential and linear
characteristics propagate through the cipher. Whereas for GIFT, we study the
interplay of the Sbox and the bit permutation to achieve better differential and
linear bounds. In addition, the ShiftRow of RECTANGLE achieves full diffusion in 4
rounds at best. Whereas GIFT-64 achieves full diffusion in 3 rounds like PRESENT,
which can be proven to be the optimal for 4/64-SbPN ciphers.

3.2 Designing of GIFT Bit Permutation

To better understand the design rationale of the linear layer, we first look at the
permutation layer of PRESENT to analyze the issue when the Sbox is replaced
with another Sbox that does not have branching number of 3. Next, we show
how we can solve this issue by carefully designing the bit permutation.

Linear layer of PRESENT. The bit permutation of PRESENT is given in Table 6.

Table 6. Bit Permutation of PRESENT.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

It is known that the bit permutation can be partitioned into 4 independent
bit permutations, mapping the output of 4 Sboxes to the input of 4 Sboxes in
the next round.

For convenience, we number the Sboxes in ith round as Sbi0, Sb
i
1, ..., Sb

i
s−1,

where s = n/4. These Sboxes can be grouped in 2 different ways - the Quotient
and Remainder groups, Qx and Rx, defined as

• Qx = {Sb4x, Sb4x+1, Sb4x+2, Sb4x+3},
• Rx = {Sbx, Sbq+x, Sb2q+x, Sb3q+x}, where q = s

4 , 0 ≤ x ≤ q − 1.

In PRESENT, n = 64 and output bits of Qxi = {Sbi4x, Sbi4x+1, Sb
i
4x+2, Sb

i
4x+3}

map to input bits of Rxi+1 = {Sbi+1
x , Sbi+1

4+x, Sb
i+1
8+x, Sb

i+1
12+x}, this group mapping

is defined in Table 7, where the entry (l,m) at row rw and column cl denotes
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Table 7. PRESENT group mapping from Qxi to Rxi+1.

PPPPPPPQxi
Rxi+1

Sbi+1
x Sbi+1

4+x Sb
i+1
8+x Sb

i+1
12+x

Sbi4x (0, 0) (1, 0) (2, 0) (3, 0)

Sbi4x+1 (0, 1) (1, 1) (2, 1) (3, 1)

Sbi4x+2 (0, 2) (1, 2) (2, 2) (3, 2)

Sbi4x+3 (0, 3) (1, 3) (2, 3) (3, 3)

that the lth output bit of the Sbox corresponding to the row rw at ith round will
map to the mth input bit of the Sbox corresponding to the column cl at (i+ 1)th

round. For example, suppose x = 2, row and column start at 0, then the entry
(3, 2) at row 2 and column 3 means that the 3rd output bit of Sbi10 maps to 2nd

input bit of Sbi+1
14 , thus P (43) = 58 (see Table 6).

PRESENT bit permutation can be realised in hardware with wires only (no
logic gates required). Further, full diffusion is achieved in 3 rounds; from 1 bit
to 4, then 4 to 16 and then 16 to 64. But, if there exists Hamming weight 1 to
Hamming weight 1 differential transition, or 1− 1 bit differential transition, then
there exists consecutive single active bit transitions.

We define 1 − 1 bit DDT as a sub-table of the DDT containing Hamming
weight 1 differences. Consider some Sbox with the following 1− 1 bit DDT (see
Table 8). ∆x and ∆y denote the differential in the input and output of Sbox
respectively. It is evident that this Sbox has differential branch number 2.

Table 8. 1− 1 bit DDT Example 1

HHH
HH∆x
∆y

1000 0100 0010 0001

1000 2 0 0 0

0100 0 0 0 0

0010 0 0 0 0

0001 0 0 0 0

Table 9. 1− 1 bit DDT Example 2

HHH
HH∆x
∆y

1000 0100 0010 0001

1000 0 2 2 0

0100 0 0 0 0

0010 0 0 0 0

0001 0 2 2 0

It is trivial to see that there exists a single active bit path which results in a
differential characteristic with single active Sboxes in each round. Let the input

differences be at 3rd bit of Sb
(i)
15 . According to 1− 1 bit DDT (Table 8), there

exists a transition from 1000 to 1000. From the group mapping (Table 7), 3rd

output bit of Sb
(i)
15 maps to 3rd input bit of Sb

(i+1)
15 . And then the differential

continues from 3rd output bit of Sb
(i+1)
15 to 3rd input bit of Sb

(i+2)
15 and so on. Not

only that, if there exists any 1− 1 bit transition (not necessarily 1000→ 1000),
one can verify that there always exists some differential characteristic with single
active Sbox per round for at least 4 consecutive rounds.
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To overcome this problem, we propose a new construction paradigm, “Bad
Output must go to Good Input” or BOGI in short. We explain this in the context
of the differential of an Sbox, but the analysis is same for linear case also.

Bad Output must go to Good Input (BOGI). The existence of the single
active bit path is because the bit permutation allows 1− 1 bit transition from
some Sbox in ith round to propagate to some Sbox in (i+ 1)th round that again
would produce 1−1 bit transition. To overcome such problem, it must be ensured
that such path does not exist. In 1 − 1 bit DDT, let us define ∆x = x3x2x1x0
be a good input if the corresponding row has all zero entries, else a bad input.
Similarly, we define ∆y = y3y2y1y0 be a good output if the corresponding column
has all zero entries, else a bad output. In Table 8, 1000 is both bad input and
bad output, rest are good.

Consider another 1 − 1 bit DDT in Table 9. Let GI,GO,BI,BO denote
the set of good inputs, good outputs, bad inputs and bad outputs respectively.
Then, in Table 9, GI = {0100, 0010}, GO = {1000, 0001}, BI = {1000, 0001}
and BO = {0100, 0010}. Or, if we represent these binary strings by integers
considering the position of the “1” (rightmost position is 0) in these strings, we
may rewrite GI = {2, 1}, GO = {3, 0}, BI = {3, 0} and BO = {2, 1}.

An output belonging to BO (bad ouput) could potentially come from a single
bit transition through some Sbox in this round. Thus we want to map this active
output bit to some GI (good input) in the next round, which guaranteed that it
will not propagate to another 1− 1 bit transition. As a result, it avoids single
active bit path in 2 consecutive rounds.

BOGI: Let |BO| ≤ |GI| and π1 : BO → GI be an injective map. To ensure
that π1 is an injective map, it is required that |BO| ≤ |GI| (the cardinality of
the set BO must be less than or equal to the cardinality of the set GI). Let
π2 : GO → π1(BO)C (the complement of π1(BO)) be another injective map.
The map π1 ensures that “Bad Output must go to Good Input”. A combined
map π : BO ∪GO → BI ∪GI is defined as π(e) = π1(e) if and only if e ∈ BO,
otherwise π(e) = π2(e). For example, consider the Table 9. The injective maps
π1 : {2, 1} → {2, 1} and π2 : {3, 0} → {3, 0} both have 2 choices which altogether
make 4 choices for the combined map π. An example BOGI mapping would be
π(0) = 0, π(1) = 1, π(2) = 2, π(3) = 3, which happens to be an identity mapping.

Any choice of π may be used to define the bit permutation. We call these πs
differential BOGI permutations as derived from 1− 1 bit DDT.

Remark: Similar analysis is done for linear case also. Analogous to 1 − 1 bit
DDT, analysis is done on the basis of 1 − 1 bit LAT and BOGI permutations
are found for linear case too. We call them linear BOGI permutations. We can
now choose any common permutation from the set of both differential and linear
BOGI permutations.
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BOGI bit permutation for GIFT. Let π : {0, 1, 2, 3} → {0, 1, 2, 3} be a com-
mon permutation from the set of both differential and linear BOGI permutations.
Table 10 shows the group mapping.

Table 10. BOGI Bit Permutation mapping from Qxi to Rxi+1.

PPPPPPPQxi
Rxi+1

Sbi+1
x Sbi+1

q+x Sbi+1
2q+x Sbi+1

3q+x

Sbi4x (0, π(0)) (1, π(1)) (2, π(2)) (3, π(3))

Sbi4x+1 (1, π(1)) (2, π(2)) (3, π(3)) (0, π(0))

Sbi4x+2 (2, π(2)) (3, π(3)) (0, π(0)) (1, π(1))

Sbi4x+3 (3, π(3)) (0, π(0)) (1, π(1)) (2, π(2))

Note that we made some left rotations to the rows of the bit mapping, this is
because we need the inputs to each Sbox in (i+ 1)th round to be coming from 4
different bit positions.

In GIFT, we chose an Sbox that has a common BOGI permutation that is an
identity mapping, that is π(i) = i. Figure 2 illustrates the group mapping from
Q0 to R0 in GIFT-64. The same BOGI permutation is applied to all the q group
mappings to form the final n-bit bit permutation for both version of GIFT.
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Fig. 2. Group mapping from Q0 to R0 in GIFT-64.

Some results about our bit permutation. To be concise, we leave the proofs
for our results in the full version. Let Q0, Q1, · · · , Q(q−1) be q different Quotient
groups and R0, R1, · · · , R(q − 1) be q different Remainder groups. Then, for
0 ≤ x ≤ q − 1,

1. The input bits of an Sbox in Rx come from 4 distinct Sboxes in Qx.
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2. The output bits of an Sbox in Qx go to 4 distinct Sboxes in Rx.
3. The input bits of 4 Sboxes from the same Qx come from 16 different Sboxes.
4. The output bits of 4 Sboxes from the same Rx go to 16 different Sboxes.

Lemma 1. When the number of Sboxes in a round is 16 or 32, the proposed
bit permutation achieves an optimal full diffusion which is achievable by a bit
permutation.

Lemma 2. In the proposed bit permutation, there does not exist any single
active bit transition for two consecutive rounds in both differential and linear
characteristics.

Definition 2. The differential (resp. linear) score of an Sbox is |GI|+|GO|
observed from 1− 1 bit DDT (resp. LAT).

Lemma 3. There exists differential (resp. linear) BOGI permutation for an Sbox
if and only if the differential (resp. linear) score of an Sbox is at least 4.

It is essential that our Sbox has at least score 4 for both differential and linear,
and has some common BOGI permutation. These are 2 of the main criteria for
the selection of GIFT Sbox.

Remark: BOGI permutation is a group mapping that is independent of the
number of groups. Thus, this permutation design is scalable to any bit permutation
size that is multiple of 16. This allows us to potentially design larger state size
like 256-bit that is useful for designing hash functions.

3.3 Selection of GIFT Sbox

We first recall some Sbox properties and introduce a metric to estimate the
hardware implementation cost of Sboxes.

Properties of Sbox. For the differential property, let S : F4
2 → F4

2 denote a
4-bit Sbox. Let ∆I , ∆O ∈ F4

2 be the input and output differences, DS(∆I , ∆O) =
]{x ∈ F4

2|S(x)⊕ S(x⊕∆I) = ∆O}, and Dmax(S) = max∆I ,∆O 6=0DS(∆I , ∆O).
For the linear property, let α, β ∈ F4

2 be the input and output masking, LS(α, β) =
|]{x ∈ F4

2|x • α = S(x) • β} − 8|, and Lmax(S) = maxα,β 6=0 LS(α, β).

Definition 3 ( [36]). Let Mi and Mo be two invertible matrices and ci, co ∈ F4
2.

The Sbox S′ defined by S′(x) = MoS(Mi(x ⊕ ci)) ⊕ co belongs to the affine
equivalence (AE) set of S.

It is known that both Dmax and Lmax are preserved under the AE class.

Definition 4 ( [36]). Let Pi and Po be two bit permutation matrices and ci, co ∈
F4
2. The Sbox S′ defined by S′(x) = PoS(Pi(x⊕ci))⊕co belongs to the permutation-

xor equivalence (PE) set of S.

One is to note that the 1− 1 bit differential and linear transition is preserved
only under the PE class. That is to say that the score of an Sbox is preserved
under the PE class but not the AE class.
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Heuristic Sbox implementation. We use a simplified metric to estimate the
implementation cost of Sboxes. We denote {NOT, NAND, NOR} as N-operations1 and
{XOR, XNOR} as X-operations, and estimate the cost of an N-operation to be 1 unit
and X-operations to be 2 units. We consider the following 4 types of instruction
for the construction of the Sboxes: a← NOT(a); a← a X b; a← a X (b N c); a←
a X ((b N c) N d), where a, b, c, d are distinct bits of an Sbox input. These so-called
invertible instructions [23] allow us to implement the inverse Sbox by simply
reversing the sequence of the instructions. In addition, the implementation cost
of the inverse Sbox would be the same as the direct Sbox since the same set of
instructions is used.

Under this metric, we found that PRESENT Sbox requires 4N + 9X operations,
a cost of 22 units. While RECTANGLE Sbox requires 4N + 7X operations, a cost of
18 units. Hence, one of the criteria for our Sbox is to have implementation cost
lesser than 18 units2.

Search for GIFT Sbox. Our primary design criteria for the GIFT Sbox are:

1. Implementation cost of at most 17 units.
2. With a score of at least 4 in both differential and linear. I.e. For both

differential and linear, |GO|+ |GI| ≥ 4.
3. There exists a common BOGI permutation for both differential and linear.

From the list of 302 AE Sboxes presented in [14], we generate the PE Sboxes
and check its implementation cost. Our heuristic search shows that there is no
optimal Sboxes [30] (Dmax = 4 and Lmax = 4) that satisfies all 3 criteria, hence
we extended our search to non-optimal Sboxes. For Sboxes with Dmax = 6 and
Lmax = 4, we found some Sboxes with implementation cost of 16 units. For a cost
of 15 units, the best possible Sboxes (in terms of Dmax and Lmax) that satisfies
the criteria have Dmax = 12 and Lmax = 6. And Sboxes with cost of at most 14
units have either Dmax = 16 or Lmax = 8. To maximise the resistance against
differential and linear attacks while satisfying the Sbox criteria, we consider
Sboxes with Dmax = 6, Lmax = 4 and implementation cost of 16 units.

In order to reduce the occurrence of sub-optimal differential transition, we
impose two additional criteria:

4. ]{(∆I , ∆O) ∈ F4
2 × F4

2|DS(∆I , ∆O) > 4} ≤ 2.
5. For DS(∆I , ∆O) > 4, wt(∆I) + wt(∆O) ≥ 4, where wt(·) is the Hamming

weight.

Criteria (5) ensures that when sub-optimal differential transition occurs, there
is a total of at least 4 active Sboxes in the previous and next round.

Finally, we pick an Sbox with a common BOGI permutation for differential
and linear that is an identity, i.e. π(i) = i.

1We do not need to consider AND and OR because when we use these invertible
instructions, it is equivalent to some other instructions that have been taken into
consideration. For instance, a XOR (b AND c) ≡ a XNOR (b NAND c).

2This “unit” metric is to facilitate the Sbox search, the Sboxes are later synthesized
to obtain their GE in Section 5.
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Properties of GIFT Sbox. Our GIFT Sbox GS can be implemented with 4N+6X
operations (smaller than the Sboxes in PRESENT and RECTANGLE), has a maximum
differential probability of 2−1.415 and linear bias of 2−2, algebraic degree 3 and no
fixed point. For the sub-optimal differential transitions with probability 2−1.415,
there are only 2 such transitions and the sum of Hamming weight of input
and output differentials is 4. The implementation, differential distribution table
(DDT) and linear approximation table (LAT) of GS are provided in the full
version.

3.4 Designing of GIFT Key Schedule

Key state update. One of our main goals when designing the key schedule is
to minimize the hardware area, and thus we chose bit permutation which is just
wire shuffle and has no hardware area at all. For it to be also software friendly, we
consider the entire key state rotation to be in blocks of 16-bit, and bit rotations
within some 16-bit blocks. Since it is redundant to apply bit rotations within key
state blocks that have not been introduced to the cipher state, we update the
key state blocks only after it has been extracted as a round key.

To introduce the entire key material into the cipher state as fast as possible,
the key state blocks that are extracted as the round key are chosen such that all
the key material are introduced into the cipher state in the least possible number
of rounds.

Adding round keys. To optimize the hardware performances of GIFT, we XOR
the round key to only half of the cipher state. This saves a significant amount of
hardware area in a round-based implementation. For it to be software friendly
too, we XOR the round key at the same i-th bit positions of each nibble. This
makes the bitslice implementation more efficient. In addition, since all nibbles
contains some key material, the entire state will be dependent on the key after a
SubCells operation.

The choice of the positions for adding the round key and 16-bit rotations
were chosen to optimize the related-key differential bounds. However, we would
like to reiterate that more rounds is advised to resist related-key attacks.

Round constants. For the round constants, but instead of using a typical
decimal counter, we use a 6-bit affine LFSR (like in SKINNY [5]). It requires only
a single XNOR gate per update which is probably has smallest possible hardware
area for a counter. Each of the 6 bits is xored to a different nibble to break the
symmetry. In addition, we add a “1” at the MSB to further increase the effect.

4 Security Analysis

In this section, we provide short summary of the various cryptanalysis that we
had conducted on GIFT. All details are provided in the full version.
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4.1 Differential and Linear Cryptanalysis

We use Mixed Integer Linear Programming(MILP) to compute the lower bounds
for the number of active Sboxes in both differential cryptanalysis [9] (DC) and
linear cryptanalysis [31] (LC), the results are summaries in Table 11. The MILP
solution provide us the actual differential or linear characteristics, which allow
us to compute the actual differential probability and correlation contribution.

Table 11. Lower bounds for number of active Sboxes.

Cipher DC/LC
Rounds

1 2 3 4 5 6 7 8 9

GIFT-64
DC 1 2 3 5 7 10 13 16 18
LC 1 2 3 5 7 9 12 15 18

PRESENT
DC 1 2 4 6 10 12 14 16 18
LC 1 2 3 4 5 6 7 8 9

RECTANGLE
DC 1 2 3 4 6 8 11 13 14
LC 1 2 3 4 6 8 10 12 14

GIFT-128
DC 1 2 3 5 7 10 13 17 19
LC 1 2 3 5 7 9 12 14 18

Recall that one of our main goals is to match the differential bounds of
PRESENT, that is having an average of 2 active Sboxes per round, but with a
lighter Sbox and without the constraint of differential branching number of 3. In
addition, we aim for same ratio for the linear bound which was not accomplished
by PRESENT. These targets were achieved at 9-round of GIFT. Hence, our DC and
LC analysis and discussion focus on 9-round.

Regarding the security against DC, GIFT-64 has a 9-round differential proba-
bility of 2−44.415, taking the average per round and propagate forward, we expect
that the differential probability will be lower than 2−63 after 14 rounds. Therefore,
we believe 28-round GIFT-64 is enough to resist against DC. For GIFT-128, it
has a 9-round differential probability of 2−46.99, which suggested that 26-round
is sufficient to achieve a differential probability lower than 2−127. Therefore, we
believe 40-round GIFT-128 is enough to resist against DC.

Regarding LC, GIFT-64 has a 9-round linear hull effect of 2−49.997, which
expected to require 13-round to achieve correlation potential lower than 2−64.
Therefore, we believe 28-round GIFT-64 is enough to resist against LC. For
GIFT-128, it has a 9-round differential probability of 2−45.99, which means that
we would need around 27 rounds to achieve a differential probability lower than
2−128. Therefore, we believe 40-round GIFT-128 is enough to resist against LC.

Related-key differential cryptanalysis. For GIFT-64, since it takes 4 rounds
for the all the key material to be introduced into the cipher state, it is trivial to see
that it is possible to have no active Sboxes from 1-round to 4-round. Thus we start
our computation on the related-key differential bounds from 5-round onwards.
From 5-round to 12-round, the probability of these differential characteristics are
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2−1.415, 2−5, 2−6.415, 2−10, 2−16, 2−22, 2−27, 2−33 respectively. Even if we suppose
that the probability of 12-round characteristic is lower bounded by 2−33, it is
doubtful that 28 rounds are secure against related-key differential cryptanalysis.
Therefore, as we describe in Sect. 2, we strongly recommend to increase the
number of rounds to achieve the security against the related-key attacks.

For GIFT-128, we start our computation from 3-round onwards. From 3-
round to 9-round, the probabilities are 2−1.415, 2−5, 2−7, 2−11, 2−20, 2−25, 2−31

respectively. Similar to GIFT-64, it is doubtful that 40 rounds are secure against
related-key differential cryptanalysis.

4.2 Integral Attacks

We discuss the security against integral attacks [26]. Here the integral distin-
guisher is found by using the (bit-based) division property [40,42] and the key
recovery is executed by using the partial-sum technique [19]. As a result, the
number of rounds that we can find integral distinguishers is 9 rounds for GIFT-64,
and the following is an example.

(A60, ACAA)
9R−−→ ((UUBB)16)

Here, only 2nd bit in plaintext is constant, and bits {b4i} and {b4i+1} in 9-round
ciphertexts are balanced. Note that there is no whitening key at the beginning.
Therefore, we can trivially extend integral distinguishers by one round, and
GIFT-64 has 10-round integral distinguishers, respectively. We can append four
rounds to the 10-round integral distinguisher as the key recovery and attack
14-round GIFT-64. The attack complexity is about 297 with 263 chosen plaintexts.

We also evaluated the longest integral distinguisher for GIFT-128 by using
the (bit-based) division property. As a result, we can find 11-round integral
distinguisher. The number of rounds is improved by two rounds than that for
GIFT-128. However, the number of bits in round key that is XORed every round
increases from 32 bits to 64 bits. Therefore, we expect that GIFT-128 is also
secure against integral attacks.

4.3 Impossible Differential Attacks

Impossible differential attacks [8,25] exploits a pair of difference ∆1 and ∆2 in
which ∆1 never reaches ∆2 after some rounds.

We searched for impossible differentials by using the MILP-based tool [38].
The results show that there does not exist any impossible differentials with
1-active nibble against 7 rounds of GIFT-64. Thus full rounds are sufficient to
resist the impossible differential attack.

4.4 Meet-in-the-Middle Attacks

The meet-in-the-middle (MITM) attack discussed here is a rather classical one,
which separates the encryption algorithm into two independent functions [13, 16].

GIFT-64-128 XORs only 32 bits out of 128 bits of the key to the state in every
round. Given this property, along with splice-and-cut [1] and initial-structure
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(IS) [37] techniques, we choose that 8 bits of (k6, k7) and 8 bits of k2, k3 as sources
of independent computations called neutral bits and separate 15 rounds as shown
in Fig. 3. Note that when the backward computation reaches the plaintext, the
attacker makes a query to obtain the corresponding ciphertext. Every details of
the attack procedure will be explained in the full version.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subkey U k1 k
B
3 k5 k

F
7 k1 k

B
3 k5 k

F
7 k1 k

B
3 k5 k

F
7 k1 k

B
3 k5

V k0 k
B
2 k4 k

F
6 k0 k

B
2 k4 k

F
6 k0 k

B
2 k4 k

F
6 k0 k

B
2 k4

Remarks ←− IS −→ match ←−

Fig. 3. Chunk separation for 15-round MitM attack.

For each of 2112 non-neutral bits, the attacker computes the forward and
backward chunks for 28 choices of neutral bits. Therefore, the time complexity is
2120 and the memory complexity is 28. This requires the knowledge of the full
codebook, thus the data complexity is 264.

4.5 Invariant Subspace Attacks

Since the round constant is XORed only in the MSB of several S-boxes, invariant
subspace attacks [20,28,29] can be a potential threat.

We exhaustively searched for the subspace transition through the GIFT S-box
and confirmed that XORing the constant to MSB breaks the invariant subspace,
thus GIFT resists the attack. The details are provided in the full version.

4.6 Nonlinear Invariant Attacks

Nonlinear invariant attacks [41] are weak-key attacks that can be applied when
the round constant is XORed only to some particular bits of nibbles. The core
idea is to find a nonlinear approximation of the round transformation with
probability one. For the SPN structure, the attacks are mounted when 1) S-box
has the quadratic nonlinear invariant and 2) the linear layer is represented by
the multiplication with an orthogonal binary matrix.

The diffusion of GIFT (bit permutation) is orthogonal. However, it is not
represented by the multiplication with an orthogonal binary matrix. Moreover,
we searched for the quadratic nonlinear invariant for GIFT S-box, but there is no
such invariant. Therefore, GIFT is secure against the nonlinear invariant attacks.

4.7 Algebraic Attacks

Algebraic attacks do not threaten GIFT, the analysis is provided in the full
version.
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5 Hardware Implementation

GIFT is surprisingly efficient and on ASIC platforms across various degrees of
serialization. This is mainly due to the extremely lightweight round function that
performs key addition on only half of the state and uses a bit permutation as the
only diffusion mechanism. Due to page constraints, we leave the details in the
full version of our paper and present the summary here.

5.1 Round based implementation

GIFT includes various design strategies in order to minimize gate count. GIFT
employs key addition to only half of the state and so saves silicon area in the
process. SKINNY uses the same mechanism, but it additionally uses an equal
amount of XOR gates to add the tweak to the state, and so the number of XOR
gates required to construct the roundkey addition layer is equal to that of any
cipher employing full state addition.

In Table 12, we compare the hardware performances of GIFT with other
lightweight ciphers. In Figure 4 we list the individual area requirements of the
respective components in GIFT.

Table 12. Comparison of performance metrics for round based implementations
synthesized with STM 90nm Standard cell library (∗ Piccolo implemented in
dynamic key mode)

Area Delay Cycles TPMAX Power (µW) Energy
(GE) (ns) (MBit/s) (@10MHz) (pJ)

GIFT-64-128 1345 1.83 29 1249.0 74.8 216.9
SKINNY-64-128 1477 1.84 37 966.2 80.3 297.0
PRESENT 64/128 1560 1.63 33 1227.0 71.1 234.6
SIMON 64/128 1458 1.83 45 794.8 72.7 327.3
MIDORI 64 1542 2.06 17 1941.7 60.6 103.0
PICCOLO 64/128∗ 1868 2.32 32 889.9 79.4 254.1
RECTANGLE 64/128 1637 1.61 27 1472.2 76.2 206.0
LED 64/128 1831 5.25 50 243.8 131.3 656.5

GIFT-128-128 1997 1.85 41 1729.7 116.6 478.1
SKINNY-128-128 2104 1.85 41 1729.7 132.5 543.3
SIMON 128/128 2064 1.87 69 1006.6 105.6 728.6
MIDORI 128 2522 2.25 21 2844.4 89.2 187.3
AES 128 7215 3.83 11 3038.2 730.3 803.3

We see that GIFT has the smallest area compared to the other ciphers. From
the pie chart, we see that the storage area (which is a fixed cost) took up most
of the area percentage, the cipher component (which is the variable) only make
up a small percentage to the overall area.
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GIFT-64-128 (1345 GE) GIFT-128-128 (1997 GE)

Key Register - 649 GE

State Register - 326 GE

S. Layer - 263 GE

Xor gates- 64 GE

Control System - 43 GE

Key Register - 649 GE

State Register - 651 GE

S. Layer - 527 GE

Xor gates- 127 GE

Control System - 43 GE

48.2%

24.2%

19.6%

4.8%
3.2%

32.5%

32.6%

26.4%

6.4%
2.1%

Fig. 4. Componentwise area requirements for GIFT-64-128 and GIFT-128-128

5.2 Serial implementation

The serial implementation of GIFT-64-128 uses a mixed datapath of size 4 bits
on the stateside and 16 bits on the keyside. The architecture has been explained
in Figure 5.

GIFT-128-128 uses a similar architecture: a mixture of 4 bit datapath in the
stateside and a 32 bit datapath on the keyside is employed. We also implemented
bit serial versions of GIFT as per the techniques outlined in [24]. In Table 13,
we list the performance comparisons of GIFT with other block ciphers. While
the bit serial implementation of Simon is probably the most compact due to the
nature of the design, but the performance of GIFT is comparable/better with
other ciphers with similar level of serialization.

6 Software Implementation

In this section, we describe our software implementation of GIFT-64 and GIFT-128.
Due to its inherent bitslice structure, it seems natural to consider that the most
efficient software implementations of GIFT will be bitslice implementations.

We leave the details of the packing/unpacking of the data and round function
implementation in the full version.

Benchmarks. We have produced this bitslice implementation for AVX2 registers
and we give in Table 14 the benchmarking results on a computer with a Intel
Haswell processor (i5-4460U). We have benchmarked the bitslice implementations
of SIMON and SKINNY (available online) on the same computer for fairness.
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Table 13. Comparison of performance metrics for serial implementations syn-
thesized with STM 90nm Standard cell library (∗ AES implementation figures
from [3])

Degree of Area Delay Cycles TPMAX Power (µW) Energy
Serialization (GE) (ns) (MBit/s) (@10MHz) (nJ)

GIFT-64-128 4/16 1113 2.14 522 57.3 39.0 2.04
GIFT-64-128 1 930 2.67 2816 8.5 35.9 10.11
SKINNY-64-128 4 1265 1.73 756 48.9 59.2 4.48
SKINNY-64-128 1 887 0.98 3152 20.7 42.6 13.42
PRESENT 64/128 4 1158 1.94 576 57.3 58.0 3.34
SIMON 64/128 1 794 1.10 1536 37.9 44.7 6.87
LED 64/128 4 1225 2.54 1904 13.2 49.8 9.48

GIFT-128-128 4/32 1455 2.25 714 79.7 61.7 4.40
GIFT-128-128 1 1213 2.46 6528 8.0 40.3 26.30
SKINNY-128-128 8 1638 1.95 840 78.1 79.1 6.64
SKINNY-128-128 1 1110 0.81 6976 22.7 53.8 37.53
SIMON 128/128 1 1077 1.17 4480 25.1 60.5 27.10
AES 128∗ 8 2060 5.79 246 88.6 129.7 3.19
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Table 14. Bitslice software implementations of GIFT and other lightweight block
ciphers. Performances are given in cycles per byte, with messages composed of
2000 64-bit blocks to obtain the results.

Cipher
Speed

Ref.
(c/B)

GIFT-64-128 2.10 new

SKINNY-64-128 2.88 [27]

SIMON-64-128 1.74 [43]

Cipher
Speed

Ref.
(c/B)

GIFT-128-128 2.57 new

SKINNY-128-128 4.70 [27]

SIMON-128-128 2.55 [43]

Comments. Bitslice implementations can be used for any parallel mode (as it
is the case for most modern operating modes), but can also be used for serial
modes when several users are communicating in parallel. In this setting, the
implementation would be exactly the same, as our key preparation does not
assume that the keys have to be the same for all blocks. In the scenario of a serial
mode for a single user, then a classical table-based or VPERM implementation
will probably be the most efficient option [6].

For low-end micro-controllers, it is very likely that GIFT will perform very
well on this platform. RECTANGLE is very good on micro-controllers and GIFT

shares the same general strategy on this regard. The key schedule being even
simpler, we believe that it will actually perform even better than RECTANGLE.
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