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Abstract. This paper presents software demonstrating that the 20-
year-old NTRU cryptosystem is competitive with more recent lattice-
based cryptosystems in terms of speed, key size, and ciphertext size. We
present a slightly simplified version of textbook NTRU, select param-
eters for this encryption scheme that target the 128-bit post-quantum
security level, construct a KEM that is CCA2-secure in the quantum
random oracle model, and present highly optimized software targeting
Intel CPUs with the AVX2 vector instruction set. This software takes
only 307 914 cycles for the generation of a keypair, 48 646 for encapsu-
lation, and 67 338 for decapsulation. It is, to the best of our knowledge,
the first NTRU software with full protection against timing attacks.
Keywords. Post-quantum crypto, lattice-based crypto, NTRU, CCA2-
secure KEM, QROM, AVX2.

1 Introduction

In December 2016, NIST issued a call for proposals for “post-quantum cryptogra-
phy” [34] to select schemes for standardization. More specifically, NIST requests
algorithms in three categories: public-key encryption, key exchange or key en-
capsulation mechanisms (KEMs), and digital signatures. Obviously, the central
requirement is that proposed schemes are indeed “post-quantum”, i.e., that they
resist attacks by a large quantum computer.

For encryption and key encapsulation, it seems that the most promising ap-
proach in terms of speed, key size, and ciphertext size is lattice-based cryptogra-
phy. It is no coincidence that Google chose a lattice-based scheme, more specif-
ically the Newhope Ring-LWE-based key exchange [2], for their post-quantum
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TLS experiment [9]. It is also not surprising that various recent papers propose
constructions and parameters, often together with implementations, for lattice-
based encryption schemes and KEMs. See, for example, [2, 3, 7, 8, 13,14,17,35].

These schemes differ in terms of security notions (e.g., passive vs. active
security), underlying hard problems (e.g., learning-with-errors vs. learning with
rounding), structure of the underlying lattices (standard vs. ideal lattices), cryp-
tographic functionality (encryption vs. key encapsulation), and performance in
terms of speed and sizes.

Contributions of this paper. In this paper we take a step back and turn
our attention to the “grandfather of lattice-based encryption schemes”, namely
NTRU [23], with the goal of constructing a CCA2-secure key encapsulation
mechanism (KEM).

We start by reconsidering the textbook OW-CPA-secure NTRU encryption
scheme and show how a restriction on parameters leads to a considerably simpler
and more efficient key generation algorithm.We also reconsider the sample spaces
for private key and message vectors. We avoid the commonly used fixed-weight
sample spaces and propose a sampling algorithm that produces independent
and identically distributed coefficients. These changes make constant-time noise
sampling much more efficient without significantly impacting security.

We then carefully optimize NTRU parameters to achieve 128 bits of post-
quantum security while at the same time eliminating the possibility of decryp-
tion failures. Next, we transform this optimized OW-CPA-secure scheme into a
CCA2-secure KEM in the quantum-accessible random oracle model (QROM).
To this end, we tweak a known transform by Dent [18] such that security can
also be shown in the QROM without notably sacrificing efficiency.

We illustrate the performance of our NTRU-based KEM by providing a highly
optimized implementation targeting Intel processors with AVX2 vector instruc-
tions, the same architectures targeted by the optimized Newhope software de-
scribed in [2]. To the best of our knowledge, our software is the first NTRU
software with full timing-attack protection.

KEM vs. PKE and passive vs. active security. Achieving CCA2 secu-
rity for an NTRU-based public key encryption scheme appears to require the
use of complex padding mechanisms [27]. However, already [40] and [36] showed
that most of this complexity can be avoided when constructing an NTRU-based
CCA2-secure KEM. CCA2-secure KEMs are very versatile building blocks. To-
gether with a CCA2-secure symmetric “data encapsulation mechanism” (DEM)
they can be used for CCA2-secure public-key encryption of messages of arbitrary
length [16]. They are, furthermore, the central building block in (authenticated)
key exchange constructions (see, e.g., [31]), in particular those that do not rely on
signatures for authentication. We note that the NTRU-based KEM we describe
in this paper could be used in place of Newhope in the key exchange setting
considered in Google’s post-quantum TLS experiment. As a potential benefit,
the CCA2 security allows busy servers to cache and reuse ephemeral keys to
reduce the number of CPU cycles spent on key generation. This is a common

2



optimization in TLS libraries, but passively secure schemes like Newhope or
Frodo may not be secure when this optimization is deployed. See [2, Sec. 2].

Hasn’t NTRU been superseded? From some recent papers on lattice-based
cryptography one might get the impression that NTRU has been “superseded” by
public-key encryption based on Ring-LWE [33] or by NTRU Prime [3]. For exam-
ple, Kirchner and Fouque write in [30]: “Since the practical cost of transforming a
[sic] NTRU-based cryptosystem into a Ring-LWE-based cryptosystem is usually
small, especially for key-exchange [...], we recommend to dismiss the former, in
particular since it is known to be weaker.” Bernstein, Chuengsatiansup, Lange,
and van Vredendaal write in [3]: “Rings of the form (Z/q)[x]/(xp − 1), where p
is a prime and q is a power of 2, are used in the classic NTRU cryptosystem,
and have none of our recommended defenses.”

The statement by Kirchner and Fouque about NTRU being weaker than
Ring-LWE is an asymptotic statement. It is actually not surprising that Ring-
LWE is asymptotically a better choice than NTRU, because Ring-LWE-based
(and LWE-based) cryptography has been designed, to a large extent, with asymp-
totic security statements in mind. However, these asymptotic results say little
or nothing about the concrete security of parameters that have been proposed
for actual use. See for example [10, Section 6]. NTRU on the other hand was
designed with concrete security for concrete efficient parameters in mind and
does not attempt to make asymptotic statements.

NTRU Prime can be seen as a variation of NTRU that uses a different ring
(or, as the authors phrase it, that avoids “rings with worrisome structure”).
Whether or not this choice of ring and other choices made in the design of NTRU
Prime lead to a more or less secure scheme will need careful investigation. This is
acknowledged by the authors, who state that they “caution potential users that
many details of Streamlined NTRU Prime are new and require careful security
review”.

To summarize, in this paper we do not argue for an order of preference
among NTRU, NTRU Prime, and Ring-LWE. For concrete parameters aiming
at a similar level of security and efficiency it is unclear which of the three will
prove optimal in the long run. At the moment there are good reasons for and
against choosing any of them. We focus on NTRU, the oldest of these schemes,
with a track record of surviving 20 years of cryptanalysis.

A note on patents. One reason that NTRU is not more widely deployed is
that there have been patents restricting its usage for most of its lifetime. The
NTRU cryptosystem was patented in [24], and NTRU with “product-form keys”
was patented in [25]. The former patent was due to expire on August 19, 2017,
but in March of this year Security Innovation released both patents [38], placing
NTRU into the public domain. Neither the present work nor the accompanying
software makes use of product-form keys.

Availability of software.We place all software presented in this paper into the
public domain to maximize reusability of our results. It is available for download
at https://joostrijneveld.nl/papers/ntrukem.
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2 Preliminaries

Minimal representatives. In describing NTRU it is useful to refer to quotient
rings such as Z[x]/(8192, xn − 1) and Z[x]/(3, xn − 1). However, the scheme
involves computations that are not well defined as maps on quotient rings. To
avoid technical pitfalls around this issue, we describe all operations in Z[x] and
introduce a “minimal representative” map to enact reduction modulo an ideal.

Let I be an ideal of Z[x] with Z[x]/I ∼= (Z/`)m for some m, possibly ∞.
The minimal representative map [·]I : Z[x]→ Z[x] is defined such that [a]I ≡ a
(mod I), deg [a]I < m, and [a]I has coefficients in [−`/2, `/2). When ` is even we
use the convention that [`/2]I = −`/2. We write [1/a]I to denote the minimal b
for which [ab]I = 1, if such an element exists.

Cyclotomic rings. We denote the dth cyclotomic polynomial by Φd. Note Φ1 =
x − 1 and if d is prime Φd = 1 + x + x2 + · · · + xd−1. These are the only two
cases we consider. We define

Sd := Z[x]/(Φd),
Rn := Z[x]/(xn − 1).

For prime n we have xn − 1 = Φ1Φn and Rn ∼= S1 × Sn. We will occasionally
need to lift elements of Sn/p to Rn for a fixed prime p. We do this by solving
the system of congruences

Liftp(v) ≡ 0 (mod Φ1)

Liftp(v) ≡ v (mod (p, Φn)).

Solutions are guaranteed to exist by the Chinese remainder theorem. We fix a
particular solution

Liftp(v) :=
[
Φ1 [v/Φ1](p,Φn)

]
(xn−1)

.

An efficient algorithm for Liftp may be found in the full version of this paper.

Coefficient embedding of Rn. The coefficient embedding identifies the mono-
mial basis {1, x, x2, . . . , xn−1} of Rn as an orthonormal basis of Rn. We write vi
for the ith coefficient of v and allow arithmetic modulo n in the index. We write
〈·, ·〉 for the inner product on Rn and define the 2-norm and max-norm as usual:
|v|2 =

√
〈v, v〉, and |v|∞ = maxi |vi|.

For a ∈ Rn we write a to denote the element with ai = a−i for all i. This
“reversal” map reveals a connection between the multiplicative structure of Rn
and the geometry of the coefficient embedding that we use in Lemma 1. Namely,

ab =

n−1∑
k=0

n−1∑
i=0

ak−ibix
k =

n−1∑
k=0

〈xka, b〉xk.
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Min-entropy. If ρ is a probability distribution on a finite set X, then the min-
entropy of ρ is min{− log2 ρ(x) : x ∈ X}.

eXtendable Output Functions (XOF). Our constructions make use of an
extendable output function XOF(X,L, S), whereX is the input bitstring, L is the
desired output length in bits, and S is a context string (domain separator). As
the XOF will be modeled as (quantum-accessible) random oracle in our security
arguments, we require the instantiation of the XOF to be indistinguishable from
a random oracle. The XOF can be instantiated, for example, using sponge con-
structions like SHAKE [5]. We often need a length value that is consistent with
the security level for the scheme. We denote this µ. One may assume µ = 256.

3 OW-CPA-secure NTRU encryption

In this section we describe the key generation, encryption, and decryption rou-
tines for our OW-CPA-secure NTRU encryption scheme. We make several de-
partures from previous instantiations. First, we work directly with Sn to avoid
common security issues associated with the S1 subring of Rn. While it is pos-
sible to instantiate NTRU directly in Sn, and not use Rn at all, we still lift
elements of Sn to Rn to take advantage of convenient computational and geo-
metric features of Rn. Second, we choose parameters so that decryption failures
are completely eliminated, and we do this without restricting the key and mes-
sage spaces. Finally, we eliminate any need for fixed-weight distributions like
those used in [3, 15, 17, 20, 21, 23, 28]. All of our sampling routines are chosen to
admit simple and efficient constant time implementations.

3.1 Parameters

NTRU is parameterized by an odd prime n and coprime positive integers p and
q. The parameter n indexes Rn and Sn, hereafter denoted R and S. We define
p = (p, Φn) and q = (q, xn − 1). Ciphertexts and public keys belong to the set
of minimal representatives of R/q = Z[x]/q. Messages, blinding polynomials,
and private keys belong to the set of minimal representatives of S/p = Z[x]/p,
denoted

T = {a ∈ Z[x] : a = [a]p} .

Private keys are restricted to non-negatively correlated elements of T :

T+ = {v ∈ T : 〈xv, v〉 ≥ 0} .

The correlation restriction is new to this work. It comes from the proof of cor-
rectness in Section 3.5.

In Section 3.5 we prove that our instantiation of NTRU is correct, i.e. that
decryption failures are impossible, with p = 3 and q = q(n) where log2 q(n) =
d7/2 + log2 (n)e. With p = 3 and q as the smallest power of two providing
correctness, n is our only free parameter.
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A final restriction on parameters is that Φn must be irreducible modulo both
p and q. This obviates invertibility tests during key generation and makes the
process more amenable to a constant time implementation. A similar condition
has been recommended since the original description of NTRU [22,23], but has
not previously been a requirement. Streamlined NTRU Prime has an analo-
gous requirement for q, but not for p [3]. This leaves us with only a handful of
valid n in the range typical of recent NTRU and LWE instantiations. They are:
509, 557, 653, 677, 701, 773, 797, 821, 859, 907, 941, and 1061. All of these sat-
isfy q(n) ∈ {8192, 16384}. The largest for which q(n) = 8192 is n = 701. In Sec-
tion 4 we show that the corresponding parameter set, n = 701, p = 3, q = 8192,
is expected to provide 128-bit security in a post-quantum setting.

3.2 Key Generation

A private key for our OW-CPA-secure encryption scheme is a non-zero element
f ∈ T . A corresponding public key is h ∈ R such that [fh]q has small coefficients.
We generate h by sampling g in T and computing h = [Φ1gfq]q where fq =
[1/f ](q,Φn). This ensures [fh]q = Φ1g.

Previous instantiations of NTRU have taken f to be a short element of R with
an inverse in both R/p and R/q. With the parameters of the previous section,
every non-zero element of T is invertible as an element of both S/p and S/q.
Invertibility in S/p and S/q is sufficient for our decryption procedure, so we can
forego tests for invertibility in R/p and R/q. Inverses must still be computed,
but the process never fails.

The factor of Φ1 in the definition of h ensures that h is equivalent to zero
modulo (q, Φ1). Previous instantiations of NTRU have taken h = [g/f ]q and
the value of h modulo (q, Φ1) has been a security concern – one that is typi-
cally mitigated by sampling f and g from sets of fixed-weight vectors. To avoid
complicated sampling routines, we allow f and g to take any value in T+.

Of course the exact distribution from which f and g are drawn affects security.
Algorithm 1 makes use of a generic subroutine SampleT+ that may be thought
of as sampling from the uniform distribution on T+. In Section 3.4 we describe
a non-uniform SampleT+ routine that admits simple and efficient constant time
implementation. Our security claims in Section 4 are relative to this non-uniform
distribution. Implementations that sample from the uniform distribution on T+
may be able to claim a slightly higher security level.

Algorithm 1 KeyGen(coins)

1: g = SampleT+(XOF(coins, µ, randg))
2: f = SampleT+(XOF(coins, µ, randf))
3: fq = [1/f ](q,Φn)

4: h = [Φ1gfq]q
Output: Private key f , Public key h
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3.3 OW-CPA Encryption

An NTRU public key determines an R-module of rank 2 that we denote by

Lh = {(u, v) ∈ R2 : v ≡ uh (mod q)}. (1)

Clearly (1, h) ∈ Lh, so [Lh]q is a set of exactly qn distinct points in R2. Elements
of R2 of the form r(1, h) + (0,m) = (r, rh+m) will generally not be in Lh. The
essential idea behind NTRU is that with suitable restrictions on r and m it is
possible to recover m uniquely from rh+m.

In previous instantiations of NTRU, r and m have been chosen to have coef-
ficients in {−1, 0, 1} with a prescribed number of coefficients taking each value.
We depart from this by letting r and m take arbitrary values in T .

We also ensure that all ciphertexts are identical modulo (q, Φ1). Toward this
end we take encryption to be the map

(r,m) 7→ [prh+ Liftp(m)]q .

Since h and Liftp(m) are equivalent to 0 modulo (q, Φ1) this achieves our goal.
Complete encryption and decryption routines are given by Algorithms 2 and

3. As with SampleT+ in the previous section, SampleT in Algorithm 2 is a generic
sampling routine that may be thought of as sampling from the uniform distri-
bution on T . However, our security claims in Section 4 are with respect to the
SampleT instantiation described in Section 3.4, which does not sample the uni-
form distribution on T .

Line 2 of Algorithm 2 is equivalent to the original NTRU encryption primitive
[23] on the subring corresponding to S. The OW-CPA security [18, Definition
3] of this scheme is (trivially) equivalent to the assumption that random NTRU
ciphertexts are hard to invert.

Algorithm 2 E (m, coins, h)
1: r = SampleT (coins)
2: e = [prh+ Liftp(m)]q

Output: Ciphertext e.

Algorithm 3 D (e, f)

1: m′ =
[
[ef ]q f

−1
]
p

Output: m′

3.4 Simplified sampling

Sampling from the uniform distribution on T or T+ in constant time may be
difficult or slow. In this section we present alternative distributions that admit
simple and efficient constant time sampling routines. Our security analysis in
Section 4 assumes that these simplified sampling routines are used. Implemen-
tations that sample from the uniform distribution on these spaces may be able
to claim a slightly higher security level.
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We first note that any routine for sampling from T can be transformed into a
routine for sampling from T+ with at most a one bit loss in the min-entropy of its
output distribution. Let v be an element of T and let w be the element obtained
by flipping the signs of the even index coefficients of v. With the exception of
wn−1w0, each product in the expansion of 〈xw,w〉 contains one even index term
and one odd index term. Hence 〈xw,w〉 = 2vn−1v0 − 〈xv, v〉. However, since
v ∈ T we have vn−1 = 0 and in fact 〈xw,w〉 = −〈xv, v〉.

Our simplified SampleT+ routine (Algorithm 4) draws v from T and then
conditionally applies an even index sign flip to v if 〈xv, v〉 < 0. While Algorithm
4 does not preserve the distribution of its SampleT subroutine, in the way that
rejection sampling would, it does preserve expected length. Also note that the
even index sign flip is an involution on T , so the min-entropy of the output
of SampleT+, over a uniform choice of coins, is at most one bit less than the
min-entropy of the output of SampleT .

Algorithm 4 SampleT+(coins)
1: v = SampleT (coins)
2: s = sign(〈xv, v〉)
3: /* s = ±1, sign(0) = 1 */
4: for i = 0 to (n− 1)/2 do
5: v2i = s · v2i
6: end for

Output: v ∈ T+

Algorithm 5 SampleT (coins)
1: b = XOF(coins, 4n− 4, expand)
2: v = 0
3: for i = 0 to n− 2 do
4: vi = [b4i + b4i+1 − b4i+2 − b4i+3]p
5: end for

Output: v

Our simplified SampleT routine (Algorithm 5) draws n − 1 coefficients in-
dependently from a centered binomial distribution5 of parameter t = 2 and
then reduces these coefficients modulo p. The process always consumes exactly
2t(n−1) random bits. The resulting distribution is centrally symmetric (for any
value of p and t) and tends to the uniform distribution as t is increased. With
p = 3 and t = 2, a coefficient drawn from this distribution is −1, 0, or 1 with
probability 5

16 ,
6
16 , and

5
16 respectively. The expected length of the output is

therefore
√

5
8 (n− 1).

3.5 Correctness

The following lemma determines the parameters for which we can prove that
(KeyGen, E ,D) is a correct probabilistic encryption scheme. It also explains our
use of T+. A similar statement with g ∈ T would require a factor of 2 rather
than

√
2.

5 A centered binomial distribution of parameter t is defined as
∑t
i=1 bi − bt+i where

b1, b2, . . . , b2t are uniform random bits.
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Lemma 1. For r ∈ T and g ∈ T+,

|Liftp(r)g|∞ ≤
√
2max
a∈T
|a|22.

Proof. We may write Liftp(r) = [(x − 1)v](xn−1) where v = [r/Φ1]p ∈ T . The
quantity in question satisfies

|Liftp(r)g|∞ = |v(xg − g)|∞ = max
i
|〈xiv, xg〉 − 〈xiv, g〉|.

To simplify the indexing we will assume wlog that the maximum is attained at
i = 0. Let γ = 〈v, g〉/|g|22, and let ṽ denote the projection of v orthogonal to g,
ṽ = v − γg. Let η = 〈g, xg〉/|g|22. Crucially, note that g ∈ T+ implies η ∈ [0, 1].
This gives us

|〈v, xg〉 − 〈v, g〉| = |〈ṽ, xg〉+ γ〈g, xg〉 − 〈v, g〉|
≤ |ṽ|2|xg|2 + |γ〈g, xg〉 − 〈v, g〉|
= |ṽ|2|g|2 + |η〈v, g〉 − 〈v, g〉|
≤ |ṽ|2|g|2 + |〈v, g〉|.

For an upper bound we may assume that |v|2 = |g|2 = max{|a|2 : a ∈ T }. Then
with θ as the angle between v and g we have |ṽ|2 = sin(θ)|v|2, hence

|ṽ|2|g|2 + |〈v, g〉| ≤ (sin(θ) + cos(θ))max
a∈T
|a|22

≤
√
2max
a∈T
|a|22

as claimed. ut
Theorem 1 (Correctness). The algorithms KeyGen, E, and D with parame-
ters p = 3 and q > 8

√
2n are a correct probabilistic encryption scheme.

Proof. Let f , g, and h be as in Algorithm 1, and let h′ be such that h = [Φ1h
′]q.

Fix a message m ∈ T and coins c ∈ {0, 1}µ. Let e = E(m, c, h). Note that
we may write e = [pLiftp(r)h

′ + Liftp(m)]q for some r ∈ T . The claim is that
[[ef ]qf

−1]p = m. It suffices to show that [[ef ]q]p = [Liftp(m)f ]p. Toward this
end, note that

ef = [pLiftp(r)h
′ + Liftp(m)]qf

≡ pLiftp(r)g + Liftp(m)f (mod q).

By definition of the minimal representative map, the claim holds if

[pLiftp(r)g + Liftp(m)f ]q = [pLiftp(r)g + Liftp(m)f ](xn−1).

Only the reduction modulo q can obstruct this since (xn − 1) ⊂ q. Hence it is
sufficient to have

|pLiftp(r)g + Liftp(m)f |∞ < q/2.

With p = 3 an element of T is of norm at most n− 1. By Lemma 1 we have

|3Liftp(r)g + Liftp(m)f |∞ < 4
√
2n < q(n)/2,

and the claim follows. ut
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4 NTRU parameters for 128-bit post-quantum security

We claim that our n = 701 parameter set offers 128-bit security in a post-
quantum setting. Recall that we have defined our KEM so that n is the only
free parameter; for n = 701 we have p = 3 and q = 8192. The claim of 128-bit
post quantum security is based on two separate numerical analyses. First, an
analysis of the “known quantum” primal attack described in [2] with the cost
model of the same paper. Second, an analysis of the hybrid attack [26] using the
cost model of [21]. In the full version of this paper we review the cryptanalytic
literature around NTRU and provide some insight into how security analyses of
NTRU have evolved since 1996.

Both of our numerical analyses attempt to estimate the cost of lattice reduc-
tion on a sublattice of Lh (Eq. 1). Specifically, a lattice generated by a subset of
the columns of (

q · In−1 H
0 In−1

)
, (2)

where column 0 ≤ i < n − 1 of H is given by [xih](q,Φn). The analyses also
require estimates for the length of a shortest vector in Lh. For this we assume
the distribution on f and g induced by Algorithm 5.

When optimized according to the success criteria of [2], the “known quantum”
primal attack applies BKZ with blocksize 466 to the first 1283 columns of Eq.
(2)6. The cost of BKZ-466 is dominated by a polynomial number of calls to an
SVP solver in dimension 466. The quantum version of Laarhoven’s hypercone
filtering sieve solves SVP in dimension k at a cost of (13/9)k/2+o(k) queries to
a quantum search oracle [32, Section 14.2.10]. Following [2] we assume that the
o(k) term is positive for relevant values of k. Setting k = 466 and suppressing
all subexponential factors, including the number of SVP calls made by BKZ,
we obtain a cost of (13/9)466/2 > 2123 queries. In [2] the overhead of converting
the query cost into a quantum RAM model cost is absorbed into the (13/9)o(k)

term. Our claim of 128 bit post-quantum security follows as long as a query has
a quantum RAM model cost ≥ 25. To see that this is the case we will briefly
sketch the steps of the hypercone filtering sieve and what these queries involve.

With k = 466, each iteration of the sieve involves the enumeration of >
298 lattice points. A subset of these of size 297 is put aside for later use. The
remaining lattice points, of which there are > 297, are stored in a database that
admits nearest-neighbor queries. Points are stored in a data structure called a
filter bucket in order to facilitate these queries. Each point is stored in 226 out
of a total of 297 filter buckets. The total number of point representations stored
is therefore > 2123. Having built this database, the attacker makes a nearest
neighbor query for each of the reserved 297 points. Let v be such a point. The
search for a neighbor of v involves the construction of a list of points in filter
buckets relevant to v. There are expected to be & 226 filter buckets relevant to v,
each containing & 226 points. For the (13/9)k/2 query cost estimate, one assumes
6 If SampleT produced the uniform distribution on T , then the attack would apply
BKZ with blocksize 470 to the first 1285 columns of Eq. (2).
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that this list of & 252 points relevant to v is presented by a quantum-accessible
oracle, Ov, and moreover, that quantum search finds a nearest neighbor of v
after 226 queries to Ov. Each query tests whether a point w is close to v; the
test is performed in superposition over relevant w. Accessing the entries of w, in
order to compute ||v − w||, has a (quantum) RAM model cost that is at least
linear in k (the dimension of v and w). The nearest neighbor search is repeated
for each of the reserved points for a total quantum RAM model cost of at least
466 · 226 · 297 > 2131 operations.

We will now consider the cost of Howgrave-Graham’s hybrid attack [26]. This
analysis allows for a more direct comparison with recent security estimates for
NTRU [21] and NTRU Prime [3]. As in [3, 21] we use the BKZ 2.0 simulator
of [12] to estimate the quality of the basis produced by BKZ-β after a fixed
number of SVP calls.

In a slight departure from [3, 21], we estimate the cost of solving SVP by
enumeration in dimension β using a quasilinear fit to the experimental data of
Chen and Nguyen [11]. Following [1] we use the trend line:

enum(β) = 0.18728 · β log2(β)− 1.0192 · β + 16.10. (3)

Note that enum(β) estimates the logarithm of the RAM cost for one SVP call.
After optimizing the attack parameters subject to the success criteria given

in [21], we estimate that hybrid attack makes > 213 SVP calls in dimension 339.
Each SVP call has a cost of 2enum(β) > 2204 operations. The attack has a cost
of > 2217 operations. As described, this is an entirely pre-quantum attack. The
meet-in-the-middle stage of the hybrid attack can be replaced by quantum search
to reduce the storage requirements, but this does not change the estimated cost.

Following [17], we also consider the effect of a quadratic improvement in
the cost of solving SVP by enumeration. We report the resulting cost in the
“Quantum Enum” column of Table 1. Lastly, in the column labeled “Quantum
Sieve”, we report the cost of the hybrid attack when the quantum version of
Laarhoven’s hypercone filtering sieve is used within BKZ.

Table 1: Cost of the hybrid attack with various SVP subroutines.

SVP routine Enum Quantum Enum Quantum Sieve
Dimension 925 1092 1144
Blocksize β 339 434 464
SVP calls 12250 11462 13128
SVP cost exponent enum(β) enum(β)/2 β log2(13/9)
Cost 2217 2156 2136

Note that the cost estimates in Table 1 do not have the same units. The
enumeration column has units of “bit operations.” The quantum enumeration and
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quantum sieve columns have units of “quantum queries.” Furthermore the queries
required for quantum enumeration could potentially be replaced with polynomial
space algorithms, while the quantum sieve requires exponential space.

5 CCA2-secure key-encapsulation mechanism

We now show how to turn the above OW-CPA secure encryption into an IND-
CCA2-secure KEM. Toward this end, we make use of a generic transform by
Dent [18, Table 5]. Similar transforms have already been used for the NTRU-
based KEMs described in [36,40] and [3]. This transform comes with a security
reduction in the random oracle model. As we are interested in post-quantum
security, we have to deal with the quantum-accessible random oracle model
(QROM) [6]. As it turns out, Dent’s transform can be viewed as the KEM version
of the Fujisaki-Okamoto transform (FO) [19]. For this FO-transform there exists
a security reduction in the QROM by Targhi and Unruh [41]. It just requires
appending a hash to the ciphertext.

The basic working of the KEM-transform is as follows. First, a random string
m is sampled from the message space of the encryption scheme. This string is
encrypted using random coins, deterministically derived from m using a hash
function, later modeled as a random oracle (RO) in the proof (we use a XOF
to instantiate all ROs). The session key is derived from m by applying another
RO. Finally, the ciphertext and the session key are output.

The decapsulation algorithm decrypts the ciphertext to obtain m, derives
the random coins from m, and re-encrypts m using these coins. If the resulting
ciphertext matches the received one, it generates the session key from m.

In the QROM setting, Targhi and Unruh had to add the hash of m to the
ciphertext to make the proof go through. The reason is that in the QROM
setting a reduction simulating the RO has no way to learn the actual content of
adversarial RO queries. This issue can be circumvented by this additional hash
using a length preserving RO. In the proof, the reduction simulates this RO
using an invertible function. When it later receives a classical output of this RO,
it can recover the corresponding input, inverting the function.

An unfortunate detail in our case is that message space elements are strictly
larger than a single hash value. Appending the output of a length preserving
function to the ciphertext would therefore significantly increase the encapsula-
tion size. One might think of several ways to circumvent this issue, sadly all
straight forward approaches fail. A first approach would be to append a hash of
the coins used for SampleT instead of using its output. This does not work in
the given setting as SampleT is not invertible. Hence, the receiver has no way
to check the validity of the hash. A second approach would be as follows. In-
stead of deriving everything from the message, one could first compute a message
digest using a XOF parameterized to be compressing. Then the coins used in
the encryption, the encapsulated key, and the appended hash are all computed
from this message digest. This makes the security reduction fail, as it becomes
impossible for the reduction to verify if a given decapsulation query contains
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a valid ciphertext. The reduction would always return a valid decapsulation as
it does not use decryption for this. Hence, the behavior of the reduction would
significantly differ from the real security game. As none of these straightforward
approaches work, we accept the increase of 141 bytes, which “only” accounts
for 11% of the final encapsulation size. Users that do not consider a QROM
proof necessary, can just omit this hash value. Alternatively, one could replace
SampleT with an efficiently invertible function. In that case the first approach
described above becomes viable.

Algorithm 6 Encaps (h)

1: c0←{0, 1}µ
2: m = SampleT (c0)
3: c1 = XOF(m,µ, coins)
4: k = XOF(m,µ, key)
5: e1 = E(m, c1, h)
6: e2 = XOF(m,µ, qrom)

Output: Ciphertext (e1, e2),
session key k.

Algorithm 7 Decaps ((e1, e2), (f, h))

1: m = D(e, f)
2: c1 = XOF(m,µ, coins)
3: k = XOF(m,µ, key)
4: e′1 = E(m, c1, h)
5: e′2 = XOF(m,µ, qrom)
6: if (e′1, e

′
2) 6= (e1, e2) then

7: k = ⊥
8: end if

Output: Session key k

6 Implementation

With this work, we provide a portable reference implementation of the scheme
described above, as well as an optimized implementation using vector instruc-
tions from the AVX2 instruction set. Both implementations run in constant time.
The AVX2 implementation is tailored to the n = 701, q = 8192, p = 3 parame-
ter set. This section highlights some of the relevant building blocks to consider
when implementing the scheme, focusing on the AVX2 implementation. Recall
that the AVX2 extensions provide 16 vector registers of 256 bits that support a
wide range of SIMD instructions.

6.1 Polynomial multiplication

It will come as no surprise that the most crucial implementation aspect is polyno-
mial multiplication. As is apparent from the definition of the scheme, we require
multiplication in R/q during key generation and during encryption and decryp-
tion. Additionally, decryption uses multiplication in S/p. Furthermore, we use
multiplication of binary polynomials in order to perform inversion in S/q, which
we will describe in Section 6.2.
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Multiplication in R/q. The multiplication can be composed into smaller
instances by combining Toom-Cook multiplication with Karatsuba’s method7.
Consider that elements of R/q are polynomials with 701 coefficients in Z/8192;
16 such coefficients fit in a vector register. With this in mind, we look for a
sequence of decompositions that result in multiplications best suited for parallel
computation.

By applying Toom-Cook to split into 4 limbs, we decompose into 7 multipli-
cations of polynomials of degree 176. We decompose each of those by recursively
applying two instances of Karatsuba to obtain 63 multiplications of polynomi-
als of 44 coefficients. Consider the inputs to these multiplications as a matrix,
rounding the dimensions up to 64 and 48. By transposing this matrix we can
efficiently perform the 63 multiplications in a vectorized manner. Using three
more applications of Karatsuba, we decompose first into 22 and 11 coefficients,
until finally we are left with polynomials of degree 5 and 6. At this point a
straight-forward schoolbook multiplication can be performed without additional
stack usage.

The full sequence of operations is as follows. We first combine the evalua-
tion step of Toom-4 and the two layers of Karatsuba. Then, we transpose the
obtained 44-coefficient results by applying transposes of 16x16 matrices, and
perform the block of 63 multiplications. The 88-coefficient products remain in
44-coefficient form (i.e. aligned on the first and 45th coefficient), allowing for
easy access and parallelism during interpolation; limbs of 44 coefficients are the
smallest elements that interact during this phase, making it possible to operate
on each part individually and keep register pressure low.

A single multiplication in R/q costs 11 722 cycles. Of this, 512 cycles are
spent on point evaluation, 3 692 cycles are used for the transposes, 4 776 are
spent computing the 64-way parallel multiplications, and the interpolation and
recomposition takes 2 742 cycles.

Multiplication in S/p. In this setting it appears to be efficient to decompose
the multiplication by applying Karatsuba recursively five times, resulting in 243
multiplications of polynomials of degree 22. One could then bitslice the two-
bit coefficients into 256-bit registers with only very minimal wasted space, and
perform schoolbook multiplication on the 22-register operands, or even decide
to apply another layer of Karatsuba.

For our implementation, however, we instead decide to use our R/q multipli-
cation as though it were a generic Z[x]/(xn − 1) multiplication. Even though in
general these operations are not compatible, for our parameters it works out.
After multiplication and summation of the products, each result is at most
701 · 4 = 2804, staying well below the threshold of 8192. While a dedicated

7 Note that, as is observed in [3], popular choices for the ring in Ring-LWE schemes
typically make it convenient to use the NTT to perform multiplication. As was also
the case in [3], however, our ring of choice is particularly unsuitable. In our case this
is caused by q being a power of two, and the polynomials being of prime degree.
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S/p multiplication would out-perform this use of R/q multiplication, the choice
of parameters makes this an attractive alternative at a reasonable cost.

Multiplication in (Z/2)[x]. Dedicated processor instructions have made mul-
tiplications in (Z/2)[x] considerably easier. As part of the CLMUL instruction
set, the PCLMULQDQ instruction computes a carry-less multiplication of two 64-
bit quadwords, performing a multiplication of two 64-coefficient polynomials over
Z/2.

We set out to efficiently decompose into polynomials of degree close to 64,
and do so by recursively applying a Karatsuba layer of degree 3 followed by
a regular Karatsuba layer and a schoolbook multiplication. This reduces the
full multiplication to 72 multiplications of 59-bit coefficients, which we perform
using PCLMULQDQ. By interweaving the evaluation and interpolation steps with
the multiplications, we require no intermediate loads and stores, and a single
multiplication ends up measuring in at only 244 cycles.

6.2 Inverting polynomials

Computing the inverse of polynomials plays an important role in key generation.
We compute [1/f ](q,Φn) when producing the public key, but also pre-compute
[1/f ](p,Φn) as part of the secret key, to be used during decryption.

Inversion in S/q. We compute [1/f ](2,Φn) and then apply a variant of Newton
iteration [39] in R/q to obtain fq ≡ f−1 (mod (q, Φn)). It may not be the case
that fq = [1/f ](q,Φn), however the difference this makes in the calculation of h is
eliminated after the multiplication by Φ1 in Line 4 of Algorithm 1. The Newton
iteration adds an additional cost of eight multiplications in R/q on top of the
cost of an inversion in S/2.

Finding an inverse in S/2 is done using f2
n−1−1 ≡ 1 (mod (2, Φn)), and thus

f2
700−2 ≡ f−1 (mod (2, Φ701)) [29]. This exponentiation can be done efficiently

using an addition chain, resulting in twelve multiplications and thirteen multi-
squarings.

Performing a squaring operation in (Z/2)[x] is equivalent to inserting 0-bits
between the bits representing the coefficients: the odd-indexed products cancel
out in Z/2. When working modulo (xn−1) with odd n, the subsequent reduction
of the polynomial causes the terms with degree exceeding xn to wrap around and
fill the empty coefficients. This allows us to express the problem of computing
a squaring as performing a permutation on bits. More importantly: repeated
squarings can be considered repeated permutations, which compose into a single
bit permutation.

Rewording the problem to that of performing bit permutations allows for
different approaches; both generically and for specific permutations. In order to
aid in constructing routines that perform these permutations, we have developed
a tool to simulate a subset of the assembly instructions related to bit movement.
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Rather than representing the bits by their value, we label them by index, making
it significantly easier to keep track. The assembly code corresponding to the
simulated instructions is generated as output. While we have used this tool to
construct permutations that represent squarings, it may be of separate interest
in a broader context — the source code is also available as part of this work.

We use two distinct generic approaches to construct permutation routines,
based on pext/pdep (from the BMI2 instruction set), and on vshufb.

The first approach amounts to extracting and depositing bits that occur
within the same 64-bit block in both the source and destination bit sequence,
under the constraint that their order remains unchanged. By relabeling the bits
according to their destination and using the patience sorting algorithm, we iter-
atively find the longest increasing subsequence in each block until all bits have
been extracted. Note that the number of required bit extractions is equal to the
number of piles patience sort produces. In order to minimize this, we examine
the result for each possible rotated input, and rotate it according to the rotation
that produces the least amount of disjunct increasing subsequences. Heuristically
keeping the most recently used masks in registers allows us to reduce the number
of load operations, as the BMI2 instructions do not allow operands from mem-
ory. Further improvements could include dynamically finding the right trade-off
between rotating registers and re-using masks, as well as grouping similar extrac-
tions together. For the permutations we faced, these changes did not immediately
seem to hold any promises for significant improvements.

The second approach uses byte-wise shuffling to position the bits within 256-
bit registers. We examine all eight rotations of the input bytes and use vshufb
to reposition the bytes (as well as vpermq to cross over between xmm lanes).
The number of required shuffles is minimized by gathering bytes for all three
destination registers at the same time, and where possible, rotation sequences
are replaced by shifts (as the rotated bits often play no role in the bit deposit
step, and shifts are significantly cheaper). Whereas the bit extraction approach
works for well-structured permutations, it is beaten by the (somewhat more
constant) shuffling-based method for the more dispersed results. While there
is some potential for gain when hand-crafting permutations, it turns out to be
non-trivial to beat the generated multi-squarings.

The multi-squaring routines vary around 235 cycles, with a single squaring
taking only 58. Including converting from R/q to S/2, an inversion in S/2 costs
10 332 cycles. Combining this with the multiplication in R/q described above,
the full procedure takes 107 726 cycles.

Inversion in S/p. Inversion in S/p is done using the ‘Almost Inverse’ algorithm
described in [37] and [39]. However, the algorithm as described in [39] does not
run in constant time. Notably, it performs a varying number of consecutive
divisions and multiplications by x depending on the coefficients in f , and halts
as soon as f has degree zero. We eliminate this issue by iterating through every
term in f (i.e. including potential zero terms, up to the nth term), and always
performing the same operations for each term (i.e. constant-time swaps and
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always performing the same addition, multiplied with a flag fixing the sign). See
the full version of this paper for a listing in pseudo-code.

While the number of loop iterations is constant, the final value of the ro-
tation counter k is not; the done flag may be set before the final iteration. We
compensate for k after the loop has finished by rotating 2i bits for each bit in the
binary representation of k, and subsequently performing a constant-time move
when the respective bit is set.

Benefiting from the width of the vector registers, we operate on bitsliced
vectors of coefficients. This allows us to efficiently perform the multiplications
and additions in parallel modulo 3, and makes register swaps comparatively
easy. On the other hand, shifts are still fairly expensive, and two are performed
for each loop iteration to multiply and divide by x. With 159 606 cycles, the
inversion remains a very costly operation that determines a large chunk of the
cost of the key generation operation. There may still be some room for significant
improvement, though, considering the fact that each instruction in the critical
loop gets executed fourteen hundred times.

7 Results and Comparison

Table 2 gives an overview of the performance of various lattice-based encryp-
tion schemes and KEMs. As memory is typically not a big concern on the given
platforms, concrete memory usage figures are often not available and we do
not attempt to include this in the comparison. In the same spirit, our refer-
ence implementation uses almost 11KiB of stack space and our AVX2 software
uses over 43KiB, but this should not be considered to be a lower bound. We
performed our benchmarks on one core of an Intel Core i7-4770K (Haswell) at
3.5GHz and followed the standard practice of disabling TurboBoost and hyper-
threading. We warn the reader that direct comparison of the listed schemes and
implementations is near impossible for various reasons: First of all, there are
significant differences in the security level; however, at least most schemes aim
at a level of around 128 bits of post-quantum security. More importantly, the
passively secure KEMs have a very fast decapsulation routine, but turning them
into CCA2-secure KEMs via the Targhi-Unruh transform would add the cost
of encapsulation to decapsulation. Also, the level of optimization of implemen-
tations is different. For example, we expect that Frodo [7] or the spLWE-based
KEM from [13] could be sped up through vectorization. Finally, not all imple-
mentations protect against timing attacks and adding protection may incur a
serious overhead. However, the results show that carefully optimized NTRU is
very competitive, even for key generation and even with full protection against
timing attacks.
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