
Faster Homomorphic Function Evaluation using
Non-Integral Base Encoding

Charlotte Bonte1, Carl Bootland1, Joppe W. Bos2, Wouter Castryck1,3, Ilia
Iliashenko1, and Frederik Vercauteren1,4

1 imec-Cosic, Dept. Electrical Engineering, KU Leuven
2 NXP Semiconductors

3 Laboratoire Paul Painlevé, Université de Lille-1
4 Open Security Research

Abstract. In this paper we present an encoding method for real num-
bers tailored for homomorphic function evaluation. The choice of the
degree of the polynomial modulus used in all popular somewhat ho-
momorphic encryption schemes is dominated by security considerations,
while with the current encoding techniques the correctness requirement
allows for much smaller values. We introduce a generic encoding method
using expansions with respect to a non-integral base, which exploits this
large degree at the benefit of reducing the growth of the coefficients when
performing homomorphic operations. This allows one to choose a smaller
plaintext coefficient modulus which results in a significant reduction of
the running time. We illustrate our approach by applying this encoding
in the setting of homomorphic electricity load forecasting for the smart
grid which results in a speed-up by a factor 13 compared to previous
work, where encoding was done using balanced ternary expansions.

1 Introduction

The cryptographic technique which allows an untrusted entity to perform arbi-
trary computation on encrypted data is known as fully homomorphic encryption.
The first such construction was based on ideal lattices and was presented by Gen-
try in 2009 [24]. When the algorithm applied to the encrypted data is known in
advance one can use a somewhat homomorphic encryption (SHE) scheme which
only allows to perform a limited number of computational steps on the encrypted
data. Such schemes are significantly more efficient in practice.

In all popular SHE schemes, the plaintext space is a ring of the form Rt =
Zt[X]/(f(X)), where t ≥ 2 is a small integer called the coefficient modulus, and
f(X) ∈ Z[X] is a monic irreducible degree d polynomial called the polynomial
modulus. Usually one lets f(X) be a cyclotomic polynomial, where for reasons of

This work was supported by the European Commission under the ICT programme
with contract H2020-ICT-2014-1 644209 HEAT, and through the European Research
Council under the FP7/2007-2013 programme with ERC Grant Agreement 615722
MOTMELSUM. The second author is also supported by a PhD fellowship of the
Research Foundation - Flanders (FWO).



performance the most popular choices are the power-of-two cyclotomics Xd + 1
where d = 2k for some positive integer k, which are maximally sparse. In this case
arithmetic in Rt can be performed efficiently using the fast Fourier transform,
which is used in many lattice-based constructions (e.g. [8,9,10,34]) and most
implementations (e.g. [3,6,7,25,26,29,32]).

One interesting problem relates to the encoding of the input data of the algo-
rithm such that it can be represented as elements of Rt and such that one obtains
a meaningful outcome after the encrypted result is decrypted and decoded. This
means that addition and multiplication of the input data must agree with the
corresponding operations in Rt up to the depth of the envisaged SHE compu-
tation. An active research area investigates different such encoding techniques,
which are often application-specific and dependent on the type of the input data.
For the sake of exposition we will concentrate on the particularly interesting and
popular setting where the input data consists of finite precision real numbers θ,
even though our discussion below is fairly generic. The main idea, going back to
Dowlin et al. [19] (see also [20,27,31]) and analyzed in more detail by Costache
et al. [16], is to expand θ with respect to a base b

θ = arb
r + ar−1b

r−1 + · · ·+ a1b+ a0 + a−1b
−1 + a−2b

−2 + · · ·+ a−sb
−s (1)

using integer digits ai, after which one replaces b by X to end up inside the
Laurent polynomial ring Z[X±1]. One then reduces the digits ai modulo t and
applies the ring homomorphism to Rt defined by

ι : Zt[X±1]→ Rt :

{
X 7→ X,
X−1 7→ −g(X) · f(0)−1,

where we write f(X) = Xg(X) + f(0) and it is assumed that f(0) is invertible
modulo t; this is always true for cyclotomic polynomials, or for factors of them.
The quantity r + s will sometimes be referred to as the degree of the encoding
(where we assume that ara−s 6= 0). For power-of-two-cyclotomics the homomor-
phism ι amounts to letting X−1 7→ −Xd−1, so that the encoding of (1) is given
by5 arX

r+ ar−1X
r−1+ · · ·+ a1X + a0− a−1Xd−1− a−2Xd−2− · · ·− a−sXd−s.

Decoding is done through the inverse of the restriction ι|Zt[X±1][−`,m]
where

Zt[X±1][−`,m] = { amXm + am−1X
m−1 + . . .+ a−`X

−` | ai ∈ Zt for all i }

is a subset of Laurent polynomials whose monomials have bounded exponents. If
`+m+1 = d then this restriction of ι is indeed invertible as a Zt-linear map. The
precise choice of `,m depends on the data encoded. After applying this inverse,
one replaces the coefficients by their representants in {−b(t − 1)/2c, . . . , d(t −
1)/2e} to end up with an expression in Z[X±1], and evaluates the result at
X = b. Ensuring that decoding is correct to a given computational depth places
constraints on the parameters t and d, in order to avoid ending up outside the
box depicted in Figure 1 if the computation were to be carried out directly in
5 In fact in [16] it is mentioned that inverting X is only possible in the power-of-two
cyclotomic case, but this seems to be overcareful.
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Fig. 1. Box in which to stay during computation, where `+m+ 1 = d.

Z[X±1]. In terms of Rt we will often refer to this event as the ‘wrapping around’
of the encoded data modulo t or f(X), although we note that this is an abuse
of language. In the case of power-of-two cyclotomics, ending up above or below
the box does indeed correspond to wrapping around modulo t, but ending up at
the left or the right of the box corresponds to a mix-up of the high degree terms
and the low degree terms.

The precise constraints on t and d not only depend on the complexity of the
computation, but also on the type of expansion (1) used in the encoding. Dowlin
et al. suggest to use balanced b-ary expansions with respect to an odd base
b ∈ Z≥3, which means that the digits are taken from {−(b−1)/2, . . . , (b−1)/2}.
Such expansions have been used for centuries going back at least to Colson (1726)
and Cauchy (1840) in the quest for more efficient arithmetic.

If we fix a precision, then for smaller b the balanced b-ary expansions are
longer but the coefficients are smaller, this implies the need for a larger d but
smaller t. Similarly for larger bases the expansions become shorter but have
larger coefficients leading to smaller d but larger t. For the application to some-
what homomorphic encryption considered in [6,16] the security requirements ask
for a very large d, so that the best choice is to use as small a base as possible,
namely b = 3, with digits in {±1, 0}. Even for this smallest choice the result-
ing lower bound on t is very large and the bound on d is much smaller than
that coming from the cryptographic requirements. To illustrate this, we recall
the concrete figures from the paper [6], which uses the Fan-Vercauteren (FV)
somewhat homomorphic encryption scheme [23] for privacy-friendly prediction
of electricity consumption in the setting of the smart grid. Here the authors use
d = 4096 for cryptographic reasons, which is an optimistic choice that leads to
80-bit security only (and maybe even a few bits less than that [1]). On the other
hand using balanced ternary expansions, correct decoding is guaranteed as soon
as d ≥ 368, which is even a conservative estimate. This eventually leads to the
huge bound t ' 2107, which is overcome by decomposing Rt into 13 factors using
the Chinese Remainder Theorem (CRT). This is then used to homomorphically
forecast the electricity usage for the next half hour for a small apartment complex
of 10 households in about half a minute, using a sequential implementation.

The discrepancy between the requirements coming from correct decoding and
those coming from security considerations suggests that other possible expan-
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Fig. 2. Comparison of the amount of plaintext space which is actually used in the
setting of [6], where d = 4096. More precise figures to be found in Section 4.

sions may be better suited for use with SHE. In this paper we introduce a generic
encoding technique, using very sparse expansions having digits in {±1, 0} with
respect to a non-integral base bw > 1, where w is a sparseness measure. These
expansions will be said to be of ‘non-integral base non-adjacent form’ with win-
dow size w, abbreviated to w-NIBNAF. Increasing w makes the degrees of the
resulting Laurent polynomial encodings grow and decreases the growth of the
coefficients when performing operations; hence lowering the bound on t. Our
encoding technique is especially useful when using finite precision real numbers,
but could also serve in dealing with finite precision complex numbers or even
with integers, despite the fact that bw is non-integral (this would require a careful
precision analysis which is avoided here).

We demonstrate that this technique results in significant performance in-
creases by re-doing the experiments from [6]. Along with a more careful pre-
cision analysis which is tailored for this specific use case, using 950-NIBNAF
expansions we end up with the dramatically reduced bound t ≥ 33. It is not
entirely honest to compare this to t ' 2107 because of our better precision anal-
ysis; as explained in Section 4 it makes more sense to compare the new bound to
t ' 242, but the reduction remains huge. As the reader can see in Figure 2 this
is explained by the fact that the data is spread more evenly across the plaintext
space during computation. As a consequence we avoid the need for CRT decom-
position and thus reduce the running time by a factor 13, showing that the same
homomorphic forecasting can be done in only 2.5 seconds.

Remark. An alternative recent proposal for encoding using a non-integral base
can be found in [15], which targets efficient evaluation of the discrete Fourier
transform on encrypted data. Here the authors work exclusively in the power-of-
two cyclotomic setting f(X) = Xd + 1, and the input data consists of complex
numbers θ which are expanded with respect to the base b = ζ, where ζ is a
primitive 2d-th root of unity, i.e. a root of f(X); a similar idea was used in [12].
One nice feature of this approach is that the correctness of decoding is not
affected by wrapping around modulo f(X). To find a sparse expansion they
use the LLL algorithm [28], but for arbitrary complex inputs the digits become
rather large when compared to w-NIBNAF.
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2 Encoding data using w-NIBNAF

Our approach in reducing the lower bound on the plaintext modulus t is to use
encodings for which many of the coefficients are zero. In this respect, a first
improvement over balanced ternary expansions is obtained by using the non-
adjacent form (NAF) representations which were introduced by Reitweisner in
1960 for speeding up early multiplication algorithms [33]. We note that inde-
pendent work by Cheon et al. [11] also mentions the advantages of using NAF
encodings.

Definition 1. The non-adjacent form (NAF) representation of a real number θ
is an expansion of θ to the base b = 2 with coefficients in {−1, 0, 1} such that
any two adjacent coefficients are not both non-zero.

The NAF representation has been generalized [13]: for an integer w ≥ 1 (called
the ‘window size’) one can ensure that in any window of w consecutive coefficients
at most one of them is non-zero. This is possible to base b = 2 but for w > 2
one requires larger coefficients.

Definition 2. Let w ≥ 1 be an integer. A w-NAF representation of a real num-
ber θ is an expansion of θ with base 2 and whose non-zero coefficients are odd
and less than 2w−1 in absolute value such that for every set of w consecutive
coefficients at most one of them is non-zero.

We see that NAF is just the special case of w-NAF for w = 2. Unfortunately, due
to the fact that the coefficients are taken from a much larger set, using w-NAF
encodings in the SHE setting actually gives larger bounds on both t and d for
increasing w. Therefore this is not useful for our purposes.

Ideally, we want the coefficients in our expansions to be members of {±1, 0}
with many equal to 0, as this leads to the slowest growth in coefficient sizes,
allowing us to use smaller values for t. This would come at the expense of using
longer encodings, but remember that we have a lot of manoeuvring space on the
d side. One way to achieve this goal is to use a non-integral base b > 1 when
computing a non-adjacent form. We first give the definition of a non-integral
base non-adjacent form with window size w (w-NIBNAF) representation and
then explain where this precise formulation comes from.

Definition 3. A sequence a0, a1, . . . , an, . . . is a w-balanced ternary sequence
if it has ai ∈ {−1, 0, 1} for i ∈ Z≥0 and satisfies the property that each set of w
consecutive terms has no more than one non-zero term.

Definition 4. Let θ ∈ R and w ∈ Z>0. Define bw to be the unique positive real
root of the polynomial Fw(x) = xw+1−xw−x−1. A w-balanced ternary sequence
ar, ar−1, . . . , a1, a0, a−1, . . . is a w-NIBNAF representation of θ if

θ = arb
r
w + ar−1b

r−1
w + · · ·+ a1bw + a0 + a−1b

−1
w + · · · .
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Below we will show that every θ ∈ R has at least one such w-NIBNAF
representation and provide an algorithm to find such a representation. But let
us first state a lemma which shows that bw is well-defined for w ≥ 1.

Lemma 1. For an integer w ≥ 1 the polynomial Fw(x) = xw+1−xw−x−1 has
a unique positive real root bw > 1. The sequence b1, b2, . . . is strictly decreasing
and limw→∞ bw = 1. Further, (x2 + 1) | Fw(x) for w ≡ 3 mod 4.

The proof is straightforward and given in Appendix A. The first few values
of bw are as follows

b1 = 1 +
√
2 ≈ 2.414214, b2 ≈ 1.839287,

b3 = 1
2 (1 +

√
5) ≈ 1.618034, b4 ≈ 1.497094,

where we note that b3 is the golden ratio φ.
Since we are using a non-integral base, a w-NIBNAF representation of a

fixed-point number has infinitely many non-zero terms in general. To overcome
this one approximates the number by terminating the w-NIBNAF representation
after some power of the base. We call such a terminated sequence an approxi-
mate w-NIBNAF representation. There are two straightforward ways of deciding
where to terminate: either a fixed power of the base is chosen so that any terms
after this are discarded giving an easy bound on the maximal possible error cre-
ated, or we choose a maximal allowed error in advance and terminate after the
first power which gives error less than or equal to this value.

Algorithm 1 below produces for every θ ∈ R a w-NIBNAF representation
in the limit as ε tends to 0, thereby demonstrating its existence. It takes the
form of a greedy algorithm which chooses the closest signed power of the base
to θ and then iteratively finds a representation of the difference. Except when
θ can be written as θ = h(bw)/b

q
w, for some polynomial h with coefficients in

{±1, 0} and q ∈ Z≥0, any w-NIBNAF representation is infinitely long. Hence,
we must terminate Algorithm 1 once the iterative input is smaller than some
pre-determined precision ε > 0.

We now prove that the algorithm works as required.

Lemma 2. Algorithm 1 produces an approximate w-NIBNAF representation of
θ with an error of at most ε.

Proof. Assuming that the algorithm terminates, the output clearly represents θ
to within an error of at most size ε. First we show that the output is w-NIBNAF.
Suppose that the output, on input θ, bw, ε, has at least two non-zero terms, the
first being ad. This implies either that bdw ≤ |θ| < bd+1

w and bd+1
w − |θ| > |θ| − bdw

or bd−1w < |θ| ≤ bdw and bdw − |θ| ≤ |θ| − bd−1w . These conditions can be written as
bdw ≤ |θ| < 1

2b
d
w(1 + bw) and 1

2b
d−1
w (1 + bw) ≤ |θ| ≤ bdw respectively, showing that

||θ| − bdw| < max
{
bdw − 1

2b
d−1
w (1 + bw),

1
2b
d
w(1 + bw)− bdw

}
= 1

2b
d
w(bw − 1) .

The algorithm subsequently chooses the closest power of bw to this smaller value,
suppose it is b`w. By the same argument with θ replaced by |θ|− bdw we have that
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Algorithm 1: GreedyRepresentation
Input: θ – the real number to be represented,
bw – the w-NIBNAF base to be used in the representation,
ε – the precision to which the representation is determined.
Output: An approximate w-NIBNAF representation ar, ar−1, . . . of θ with

error less than ε, where ai = 0 if not otherwise specified.
σ ← sgn(θ)
t← |θ|
while t > ε do

r ←
⌈
logbw (t)

⌉
if brw − t > t− br−1

w then
r ← r − 1

ar ← σ
σ ← σ · sgn(t− brw)
t← |t− brw|

Return (ai)i.

either b`w ≤
∣∣|θ| − bdw∣∣ or 1

2b
`−1
w (1 + bw) ≤

∣∣|θ| − bdw∣∣ and since b`w is larger than
1
2b
`−1
w (1+bw) the maximal possible value of `, which we denote by `w(d), satisfies

`w(d) = max
{
` ∈ Z

∣∣ 1
2b
`−1
w (1 + bw) <

1
2b
d
w(bw − 1)

}
.

The condition on ` can be rewritten as b`w < bd+1
w (bw−1)/(bw+1) which implies

that ` < d+ 1 + logbw((bw − 1)/(bw + 1)) and thus

`w(d) = d+

⌈
logbw

(
bw − 1

bw + 1

)⌉
,

so that the smallest possible difference is independent of d and equal to

s(w) := d− `w(d) = −
⌈
logbw

(
bw − 1

bw + 1

)⌉
=

⌊
logbw

(
bw + 1

bw − 1

)⌋
.

We thus need to show that s(w) ≥ w. As w is an integer this is equivalent to

logbw

(
bw + 1

bw − 1

)
≥ w ⇐⇒ bww ≤

bw + 1

bw − 1
⇐⇒ bw+1

w − bww − bw − 1 ≤ 0

which holds for all w since Fw(bw) = 0. Note that our algorithm works correctly
and deterministically because when |θ| is exactly half-way between two powers
of bw we pick the larger power. This shows that the output is of the desired form.

Finally, to show that the algorithm terminates we note that the k’th suc-
cessive difference is bounded above by 1

2b
d−(k−1)s(w)
w (bw − 1) and this tends

to 0 as k tends to infinity. Therefore after a finite number of steps (at most⌈
(d− logbw (2ε/(bw − 1)) /s(w)

⌉
+ 1) the difference is smaller than or equal to ε

and the algorithm terminates. ut
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The process of encoding works as described in the introduction, i.e. we follow
the approach from [16,19] except we use an approximate w-NIBNAF represen-
tation instead of the balanced ternary representation. Thus to encode a real
number θ we find an approximate w-NIBNAF representation of θ with small
enough error and replace each occurrence of bw by X, after which we apply the
map ι to end up in plaintext space Rt. Decoding is almost the same as well, only
that after inverting ι and lifting the coefficients to Z we evaluate the resulting
Laurent polynomial at X = bw rather than X = 3, computing the value only to
the required precision. Rather than evaluating directly it is best to reduce the
Laurent polynomial modulo Fw(X) (or modulo Fw(X)/(X2+1) if w ≡ 3 mod 4)
so that we only have to compute powers of bw up to w (respectively w − 2).

Clearly we can also ask Algorithm 1 to return
∑
i aiX

i ∈ Zt[X±1], this gives
an encoding of θ with maximal error ε. Since the input θ of the algorithm can
get arbitrarily close to but larger than ε, the final term can be ±Xh where
h = blogbw(2ε/(1 + bw))c + 1. If we are to ensure that the smallest power of
the base to appear in any approximate w-NIBNAF representation is bsw then we
require that if bs−1w is the nearest power of bw to the input θ then |θ| ≤ ε so
that we must have 1

2b
s−1
w (1 + bw) ≤ ε which implies the smallest precision we

can achieve is ε = bs−1w (1+ bw)/2. In particular if we want no negative powers of
bw then the best precision possible using the greedy algorithm is (1+b−1w )/2 < 1.

Remark. If one replaces bw by a smaller base b > 1 then Algorithm 1 still
produces a w-NIBNAF expansion to precision ε: this follows from the proof of
Lemma 2. The distinguishing feature of bw is that it is maximal with respect to
this property, so that the resulting expansions become as short as possible.

3 Analysis of coefficient growth during computation

After encoding the input data it is ready for homomorphic computations. This
increases both the number of non-zero coefficients as well as the size of these co-
efficients. Since we are working in the ring Rt there is a risk that our data wraps
around modulo t as well as modulo f(X), in the sense explained in the intro-
duction, which we should avoid since this leads to erroneous decoding. Therefore
we need to understand the coefficient growth more thoroughly. We simplify the
analysis in this section by only considering multiplications and what constraint
this puts on t, it is then not hard to generalize this to include additions.

Worst case coefficient growth for w-NIBNAF encodings. Here we ana-
lyze the maximal possible size of a coefficient which could occur from computing
with w-NIBNAF encodings. Because fresh w-NIBNAF encodings are just ap-
proximate w-NIBNAF representations written as elements of Rt we consider
finite w-balanced ternary sequences and the multiplication endowed on them
from Rt. Equivalently, we consider multiplication in the Z[X±1]-plane depicted
in Figure 1. As we ensure in practice that there is no wrap around modulo f(X)
this can be ignored in our analysis.
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To start the worst case analysis we have the following lower bound; note that
the d we use here is not that of the degree of f(X).

Lemma 3. The maximal absolute size of a term that can appear in the product
of p arbitrary w-balanced ternary sequences of length d+ 1 is at least

Bw(d, p) :=

bbpbd/wc/2c/(bd/wc+1)c∑
k=0

(−1)k
(
p

k

)(
p− 1 + bpbd/wc/2c − kbd/wc − k

p− 1

)
.

A full proof of this lemma is given in Appendix A but the main idea is to look
at the largest coefficient of mp where m has the maximal number of non-zero
coefficients, bd/wc+1, all being equal to 1 and with exactly w−1 zero coefficients
between each pair of adjacent non-zero coefficients. The (non-zero) coefficients
ofmp are variously known in the literature as extended (or generalized) binomial
coefficients or ordinary multinomials; we denote them here by

(
p
k

)
n
defined via(

1 +X +X2 + . . .+Xn−1)p = ∞∑
k=0

(
p

k

)
n

Xk ,

[22,18,35,21]. In particular the maximal coefficient is the (or a) central one and
we can write Bw(d, p) =

(
p
k

)
n
where k = bpbd/wc/2c and n = bd/wc+ 1.

We note that the w-NIBNAF encoding, using the greedy algorithm with
precision 1

2 , of b
d+w−(d mod w)
w (bw − 1)/2 is m so in practice this lower bound is

achievable although highly unlikely to occur.
We expect that this lower bound is tight, indeed we were able to prove the

following lemma, the proof is also given in Appendix A.

Lemma 4. Suppose w divides d, then Bw(d, p) equals the maximal absolute size
of a term that can be produced by taking the product of p arbitrary w-balanced
ternary sequences of length d+ 1.

We thus make the following conjecture which holds for all small values of p
and d we tested and which we assume to be true in general.

Conjecture 1 The lower bound Bw(d, p) given in Lemma 3 is exact for all
d, that is the maximal absolute term size which can occur after multiplying p
arbitrary w-balanced ternary sequences of length d+ 1 is Bw(d, p).

This conjecture seems very plausible since as soon as one multiplicand does
not have non-zero coefficients exactly w places apart the non-zero coefficients
start to spread out and decrease in value.

To determine Bw(d, p) for fixed p define n := bd/wc+1, then we can expand
the expression for Bw(d, p) as a ‘polynomial’ in n of degree p − 1 where the
coefficients depend on the parity of n, see [5] for more details. The first few are:

Bw(d, 1) = 1, Bw(d, 2) = n,

Bw(d, 3) =
1
8 (6n

2 + 1)− (−1)n
8 , Bw(d, 4) =

1
3 (2n

3 + n),

Bw(d, 5) =
1

384 (230n
4 + 70n2 + 27)− (−1)n

384 (30n2 + 27),

Bw(d, 6) =
1
20 (11n

5 + 5n3 + 4n).
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Denoting the coefficient of np−1 in these expressions by `p, it can be shown
(see [2] or [5]) that limp→∞

√
p`p =

√
6/π and hence we have

lim
p→∞

log2(Bw(d, p))− (p− 1) log2(n) +
1
2 log2

(
πp
6

)
= 0

or equivalently Bw(d, p) ∼p
√
6/πpnp−1. Thus we have the approximation

log2(Bw(d, p)) ≈ (p− 1) log2(n)− 1
2 log2

(
πp
6

)
which for large enough n (experimentally we found for n > 1.825

√
p− 1/2) is an

upper bound for p > 2. For a guaranteed upper bound we refer to Mattner and
Roos [30] where they state, for n, p ∈ Z>0 with n ≥ 2, if p 6= 2 or n ∈ {2, 3, 4}
then Bw(d, p) ≤

√
6/(πp(n2 − 1))np. This upper bound is in fact a more precise

asymptotic limit than that above which only considers the leading coefficient.

Statistical analysis of the coefficient growth. Based on the w-NIBNAF
encodings of random numbers in N ∈

[
−240, 240

]
, we try to get an idea of the

amount of zero and non-zero coefficients in a fresh encoding without fractional
part, obtained by running Algorithm 1 to precision (1+ b−1w )/2. We also analyze
how these proportions change when we perform multiplications. We plot this for
different values of w to illustrate the positive effects of using sparser encodings.
As a preliminary remark note that the w-NIBNAF encodings produced by Al-
gorithm 1 applied to −N and N are obtained from one another by changing all
the signs, so the coefficients −1 and 1 are necessarily distributed evenly.6

We know from the definition of a w-NIBNAF expansion that at least w − 1
among each block of w consecutive coefficients of the expansion will be 0, so
we expect for big w that the 0 coefficient occurs a lot more often than ±1.
This is clearly visible in Figure 3. In addition we see an increasing number of 0
coefficients and decreasing number of ±1 coefficients for increasing w. Thus both
the absolute and the relative sparseness of our encodings increase as w increases.

Since the balanced ternary encoding of [16,19] and the 2-NAF encoding [33],
only have coefficients in {0,±1} it is interesting to compare them to 1-NIBNAF
and 2-NIBNAF respectively. We compare them by computing the percentage
of zero and non-zero coefficients, in 10 000 encodings of random integers N in[
−240, 240

]
. We compute this percentage up to an accuracy of 10−2 and consider

for our counts all coefficients up to and including the leading coefficient, further
zero coefficients are not counted. When we compare the percentages of zero and
non-zero coefficients occurring in 1-NIBNAF and balanced ternary in Table 1 we
see that for the balanced ternary representation, the occurrences of 0, 1 and −1
coefficients are approximately the same, while for 1-NIBNAF the proportion of 0
6 This is a desirable property leading to the maximal amount of cancellation during
computation. While this does not affect our worst case analysis, in practice where
the worst case is extremely unlikely this accounts for a considerable reduction of the
size of the coefficient modulus t. If in some application the input encodings happen
to be biased towards 1 or −1 then one can work with respect to the negative base
−bw < −1, by switching the signs of all the digits appearing at an odd index.
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balanced ternary 1-NIBNAF 2-NAF 2-NIBNAF

zero coefficients 32.25% 48.69% 65.23% 70.46%
non-zero coefficients 67.76% 51.31% 34.77% 29.54%

Table 1. Comparison between the previous encoding techniques and w-NIBNAF
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Fig. 4. Plot of log2(#coeff+1) on the vertical axis against the respective value of
the coefficient on the horizontal axis for the result of 10 000 multiplications of two
w-NIBNAF encodings of random numbers between

[
−240, 240

]
.

coefficients is larger than that of 1 or −1. Hence we can conclude that 1-NIBNAF
encodings will be sparser than the balanced ternary encodings even though the
window size is the same. For 2-NIBNAF we also see an improvement in terms of
sparseness of the encoding compared to 2-NAF.

The next step is to investigate what happens to the coefficients when we
multiply two encodings. From Figure 4 we see that when w increases the max-
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Fig. 5. log2 of the maximum absolute value of the coefficient of xi seen during 10 000
products of two w-NIBNAF encodings of random numbers in

[
−240, 240

]
against i.

imal size of the resulting coefficients becomes smaller. So the plots confirm the
expected result that sparser encodings lead to a reduction in the size of the re-
sulting coefficients after one multiplication. Next, we investigate the behaviour
for an increasing amount of multiplications. In Figure 5 one observes that for a
fixed number of multiplications the maximum coefficient, considering all coeffi-
cients in the resulting polynomial, decreases as w increases and the maximum
degree of the polynomial increases as w increases. This confirms that increasing
the degree of the polynomial, in order to make it more sparse, has the desirable
effect of decreasing the size of the coefficients. Figure 5 also shows that based
on the result of one multiplication we can even estimate the maximum value of
the average coefficients of xi for a specific number of multiplications by scaling
the result for one multiplication.

To summarize, we plot the number of bits of the maximum coefficient of the
polynomial that is the result of a certain fixed amount of multiplications as a
function of w in Figure 6. From this figure we clearly see that the maximal co-
efficient decreases when w increases and hence the original encoding polynomial
is sparser. In addition we see that the effect of the sparseness of the encoding
on the size of the resulting maximal coefficient is bigger when the amount of
multiplications increases. However the gain of sparser encodings decreases as w
becomes bigger. Furthermore, Figure 6 shows that the bound given in Lemma 3
is much bigger than the observed upper bound we get from 10 000 samples.

4 Practical impact

We encounter the following constraints on the plaintext coefficient modulus t
while homomorphically computing with polynomial encodings of finite precision
real numbers. The first constraint comes from the correctness requirement of the
SHE scheme: the noise inside the ciphertext should not exceed a certain level
during the computations, otherwise decryption fails. Since an increase of the
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plaintext modulus expands the noise this places an upper bound on the possible
t which can be used. The second constraint does not relate to SHE but to the
circuit itself. After any arithmetic operation the polynomial coefficients tend to
grow. Given that fact, one should take a big enough plaintext modulus in order to
prevent or mitigate possible wrapping around modulo t. This determines a lower
bound on the range of possible values of t. In practice, for deep enough circuits
these two constraints are incompatible, i.e. there is no interval from which t
can be chosen. However, the plaintext space Rt can be split into smaller rings
Rt1 , . . . , Rtk with t =

∏k
i=1 ti using the Chinese Remainder Theorem (CRT).

This technique [8] allows us to take the modulus big enough for correct evaluation
of the circuit and then perform k threads of the homomorphic algorithm over
{Rti}i. These k output polynomials will then be combined into the final output,
again by CRT. This approach needs k times more memory and time than the
case of a single modulus. Thus the problem is mostly about reducing the number
of factors of t needed.

An a priori lower bound on t can be derived using the worst case scenario in
which the final output has the maximal possible coefficient, which was analyzed
in Section 3. If we use w-NIBNAF encodings for increasing values of w then
this lower bound will decrease, eventually leading to fewer CRT factors; here a
concern is not to take w too large to prevent wrapping around modulo f(X). In
practice though, we can take t considerably smaller because the worst case occurs
with a negligible probability, which even decreases for circuits having a bigger
multiplicative depth. Moreover, we can allow the least significant coefficients of
the fractional part to wrap around modulo t with no harm to the final results.

In this section we revisit the homomorphic method for electricity load fore-
casting described in [6] and demonstrate that by using w-NIBNAF encodings, by
ignoring the unlikely worst cases, and by tolerating minor precision losses we can
reduce the number of CRT factors from k = 13 to k = 1, thereby enhancing its
practical performance by a factor 13. We recall that [6] uses the Fan-Vercauteren
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SHE scheme [23], along with the group method of data handling (GMDH) as a
prediction tool; we refer to [6, §3] for a quick introduction to this method. Due
to the fact that 80 percent of electricity meter devices in the European Union
should be replaced with smart meters by 2020, this application may mitigate
some emerging privacy and efficiency issues.

Experimental setup. For comparison’s sake we mimic the treatment in [6]
as closely as possible. In particular we also use the real world measurements
obtained from the smart meter electricity trials performed in Ireland [14]. This
dataset [14] contains observed electricity consumption of over 5000 residential
and commercial buildings during 30 minute intervals. We use aggregated con-
sumption data of 10 buildings. Given previous consumption data with some
additional information, the GMDH network has the goal of predicting electricity
demand for the next time period. Concretely, it requires 51 input parameters:
the 48 previous measurements plus the day of the week, the month and the tem-
perature. There are three hidden layers with 8, 4, 2 nodes, respectively. A single
output node provides the electricity consumption prediction for the next half
hour. Recall that a node is just a bivariate quadratic polynomial evaluation.

The plaintext space is of the form Rt = Zt[X]/(X4096+1), where the degree
d = 4096 is motivated by the security level of 80 bits which is targetted in [6];
recent work by Albrecht [1] implies that the actual level of security is slightly
less than that. Inside Rt the terms corresponding to the fractional parts and
those corresponding to the integral parts come closer together after each multi-
plication. Wrapping around modulo X4096 + 1, i.e. ending up at the left or at
the right of the box depicted in Figure 1, means that inside Rt these integer and
fractional parts start to overlap. In this case it is no longer possible to decode
correctly. We encode the input data using approximate w-NIBNAF representa-
tions with a fixed number of integer and fractional digits. When increasing the
window size w one should take into account that the precision of the correspond-
ing encodings changes as well. To maintain the same accuracy of the algorithm
it is important to keep the precision fixed, hence for bigger w’s the smaller base
bw should result in an increase of the number of coefficients used by an encod-
ing. Starting with the balanced ternary expansion (BTE), for any w > 2, the
numbers `(w)i and `(w)f of integer and fractional digits should be expanded
according to `(w)i = (`(BTE)i − 1) · logbw 3 + 1, `(w)f = −blogbw efc, where
ef is the maximal error of an approximate w-NIBNAF representation such that
the prediction algorithm preserves the same accuracy. Empirically we found that
the GMDH network demonstrates reasonable absolute and relative errors when
`(BTE)inp

i = 4 and einp
f = 1 for the input and `(BTE)pol

i = 2 and epol
f = 0.02032

for the coefficients of the nodes (quadratic polynomials).

Results. The results reported in this section are obtained running the same
software and hardware as in [6]: namely, FV-NFLlib software library [17] running
on a laptop equipped with an Intel Core i5-3427U CPU (running at 1.80GHz). We
performed 8560 runs of the GMDH algorithm with BTE, NAF and 950-NIBNAF.
The last expansion is with the maximal possible w such that the resulting output
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Fig. 7. The mean and the maximal size per coefficient of the resulting polynomial.

polynomial still has discernible integer and fractional parts. Correct evaluation
of the prediction algorithm requires the plaintext modulus to be bigger than the
maximal coefficient of the resulting polynomial. This lower bound for t can be
deduced either from the maximal coefficient (in absolute value) appearing after
any run or, in case of known distribution of coefficient values, from the mean
and the standard deviation. In both cases increasing window sizes reduce the
bound as depicted in Figure 7. Since negative encoding coefficients are used,
950-NIBNAF demands a plaintext modulus of 7 bits which is almost 6 times
smaller than for BTE and NAF.

As expected, w-NIBNAF encodings have longer expansions for bigger w’s
and that disrupts the decoding procedure in [6,16]. Namely, they naively split
the resulting polynomial into two parts of equal size. As one can observe in
Figure 7, using 950-NIBNAF, decoding in this manner will not give correct
results. Instead, the splitting index is should be shifted towards zero, i.e. to 385.
To be specific [6, Lem. 1] states that is lies in the interval (di + 1, d− df ) where
di = 2r+1(`(w)inp

i +`(w)pol
i )−`(w)pol

i and df = 2r+1(`(w)inp
f +`(w)pol

f )−`(w)pol
f .

Indeed, this is the worst case estimation which results in the maximal w = 74
for the current network configuration.

However the impact of the lower coefficients of the fractional part can be
much smaller than the precision required by an application. In our use case the
prediction value should be precise up to einp

f = 1. We denote the aggregated
sum of lower coefficients multiplied by corresponding powers of the w-NIBNAF
base as L(j) =

∑is
i=j−1 aib

−i
w . Then the omitted fractional coefficients ai should

satisfy |L(ic)| < 1, where ic is the index after which coefficients are ignored.
To find ic we computed L(j) for every index j of the fractional part and

stored those sums for each run of the algorithm. For fixed j the distribution of
L(j) is bimodal with mean µL(j) and standard deviation σL(j) (see Figure 8).
Despite the fact that this unknown distribution is not normal, we naively ap-
proximate the prediction interval [µL(j)−6σL(j), µL(j)+6σL(j)] that will contain
the future observation with high probability. It seems to be a plausible guess in
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t CRT factors timing for one run

950-NIBNAF 25.044 1 2.57 s
BTE (this paper) 241.627 5 12.95 s

BTE [6] 2103.787 13 32.5 s

Table 2. GMDH implementation with 950-NIBNAF and BTE [6]

this application because all observed L(j) fall into that region with a big overes-
timate according to Figure 8. Therefore ic is equal to the maximal j that satisfies
τ(j) < 1, where τ(j) = max(|µL(j) − 6σL(j)|, |µL(j) + 6σL(j)|).

As Figure 9 shows, ic is equal to 3388. Thus, the precision setting allows an
overflow in any fractional coefficient aj for j < 3388. The final goal is to provide
the bound on t which is bigger than any aj for j ≥ 3388. Since the explicit distri-
butions of coefficients are unknown and seem to vary among different indices, we
rely in our analysis on the maximal coefficients occurring among all runs. Hence,
the plaintext modulus should be bigger than maxj≥3388{aj} over all resulting
polynomials. Looking back at Figure 7, one can find that t = 33 suffices.

As mentioned above t is constrained in two ways: from the circuit and from
the SHE correctness requirements. In our setup the ciphertext modulus is q ≈
2186 and the standard deviation of noise is σ = 102, which together impose that
t ≤ 396 [6]. This is perfectly compatible with t = 33, therefore 950-NIBNAF
allows us to omit the CRT trick and work with a single modulus, reducing the
sequential timings by a factor 13. In the parallel mode it means that 13 times
less memory is needed.

Additionally, these plaintext moduli are much smaller than the worst case
estimation from Section 3. For 950-NIBNAF we take d ∈ [542, 821] according to
the encoding degrees of input data and network coefficients. Any such encod-
ing contains only one non-zero coefficient. Consequently, any product of those
encodings has only one non-zero coefficient which is equal to ±1. When all mono-
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mials of the GMDH polynomial result in an encoding with the same index of
a non-zero coefficient, the maximal possible coefficient of the output encoding
will occur. In this case the maximal coefficient is equal to the evaluation of the
GMDH network with all input data and network coefficients being just 1. It
leads to t = 2 · 615 ' 239.775.

One further consequence of smaller t is that one can reconsider the parame-
ters of the underlying SHE scheme. Namely, one can take smaller q and σ that
preserve the same security level and require a smaller bound on t instead of
396 taken above. Given t = 33 from above experiments, q reduces to 2154 to-
gether with σ ≈ 5 that corresponds to smaller sizes of ciphertexts and faster
SHE routines, where σ is taken the minimal possible to prevent the Arora-Ge
attack [4] as long as each batch of input parameters is encrypted with a different
key. Unfortunately, it is not possible to reduce the size of q by 32 bits in our
implementation due to constraints of the FV-NFLlib library.

5 Conclusions

We have presented a generic technique to encode real numbers using a non-
integral base. This encoding technique is especially suitable for use when eval-
uating homomorphic functions since it utilizes the large degree of the defining
polynomial imposed by the security requirements. This leads to a considerably
smaller growth of the coefficients and allows one to reduce the size of the plain-
text modulus significantly, resulting in faster implementations. We show that in
the setting studied in [6], where somewhat homomorphic function evaluation is
used to achieve a privacy-preserving electricity forecast algorithm, the plaintext
modulus can be reduced from about 2103 when using a balanced ternary expan-
sion encoding, to 33 ' 25.044 when using the encoding method introduced in this
paper (non-integral base non-adjacent form with window size w), see Table 2.
This smaller plaintext modulus means a factor 13 decrease in the running time
of this privacy-preserving forecasting algorithm: closing the gap even further to
making this approach suitable for industrial applications in the smart grid.
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A Proofs

Lemma 1 For an integer w ≥ 1 the polynomial Fw(x) = xw+1−xw−x− 1 has
a unique positive root bw > 1. The sequence b1, b2, . . . is strictly decreasing and
limw→∞ bw = 1. Further, (x2 + 1) | Fw(x) for w ≡ 3 mod 4.

Proof. For w ≥ 1, F ′w(x) = (w + 1)xw − wxw−1 − 1 = (x − 1)((w + 1)xw−1 +
xw−2 + · · · + 1) so that for x ≥ 0 there is only one turning point of Fw(x),
at x = 1. Further, F ′′w(x) = (w + 1)wxw−1 − w(w − 1)xw−2, which takes the
value 2w > 0 at x = 1, so the turning point is a minimum. Since Fw(0) = −1
and limx→∞ Fw(x) = ∞ we conclude that there is a unique positive root of
Fw(x), bw > 1, for any w ≥ 1. Further, we have that Fw+1(x) = xFw(x) +
x2 − 1 so that Fw+1(bw) = b2w − 1 > 0 so that bw+1 < bw and hence the
sequence bw is strictly decreasing and bounded below by 1 so must converge
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to some limit, say b∞ ≥ 1. If b∞ > 1 then as bw is the positive solution to
x − 1 = (x + 1)/xw and, for x ≥ b∞ > 1, limw→∞(x + 1)/xw = 0 we see
that b∞ = limw→∞ bw = 1, a contradiction. Hence b∞ = 1 as required. Finally
we see that Fw(x) = x(x − 1)(xw−1 + 1) − (x2 + 1) and for w = 4k + 3 that
xw−1+1 = 1− (−x2)2k+1 = (x2+1)

∑2k
i=0(−x2)i and hence (x2+1) | F4k+3(x).

ut

Recall that to find a lower bound on the maximal absolute coefficient size we
consider w-balanced ternary sequences and to each sequence (ai) we have the
corresponding polynomial

∑
i aiX

i in Rt. As we only look at the coefficients and
their relative distances we can simply assume that to each w-balanced ternary
sequence c0, c1, . . . , cd of length d + 1 we have the associated polynomial c0 +
c1X + . . .+ cdX

d of degree d. Multiplication of polynomials thus gives us a way
of multiplying (finite) w-balanced ternary sequences. In the rest of this appendix
we use the polynomial and sequence notation interchangeably.

Lemma 3 The maximal absolute size of a term that can appear in the product
of p arbitrary w-balanced ternary sequences of length d+ 1 is at least

Bw(d, p) :=

bbpbd/wc/2c/(bd/wc+1)c∑
k=0

(−1)k
(
p

k

)(
p− 1 + bpbd/wc/2c − kbd/wc − k

p− 1

)
.

Proof. Consider the product of p sequences all of which are equal to m =
10 · · · 010 · · · 010 · · · 0 of length d + 1, having n := bd/wc + 1 non-zero terms
(all being 1) and between each pair of adjacent non-zero terms there are exactly
w−1 zero terms. Note that n is the maximal number of non-zero terms possible.
As polynomials we have that m =

∑n−1
i=0 X

iw = 1−Xnw

1−Xw , and hence we have

mp =

(
1−Xnw

1−Xw

)p
= (1−Xnw)p · (1−Xw)−p

=

(
p∑
i=0

(−1)i
(
p

i

)
Xinw

) ∞∑
j=0

(
p− 1 + j

p− 1

)
Xjw


=

∞∑
`=0

b`/nc∑
k=0

(−1)k
(
p

k

)(
p− 1 + `− kn

p− 1

)X`w ,

where we have used the substitution (i, j)→ (k, `) = (i, in+ j). Since we know
that mp has degree p(n − 1)w we can in fact change the infinite sum over ` to
a finite one from ` = 0 to p(n − 1). To give the tightest lower bound we look
for the maximal coefficient of mp. It is well known that this maximal coefficient
occurs as the central coefficient, namely of x` where ` is any nearest integer to
p(n− 1)/2 and this gives us Bw(d, p). ut

Lemma 4 Suppose w divides d, then Bw(d, p) equals the maximal absolute size
of a term that can be produced by taking the product of p arbitrary w-balanced
ternary sequences of length d+ 1.
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Proof. Let Sw(d, p) be the set of all sequences that are the product of p arbitrary
w-balanced ternary sequences of length d+1. To prove the lemma we bound all
the terms of any sequence in Sw(d, p). For i = 0, . . . , pd define

mw(d, p, i) = max{ |ai| | ai is the i’th term of a sequence in Sw(d, p) } .

Define Bw(d, p, `) :=
∑b`/nc
k=0 (−1)k

(
p
k

)(
p−1+`−kn

p−1
)
, the coefficient of X`w in mp.

We will prove by induction on p that mw(d, p, i) ≤ Bw(d, p, bi/wc). We will use
the notation Ci(f) for a polynomial f to denote the coefficient ofXi in f(X); this
is defined to be zero if i > deg(f) or i < 0. Thus in this notation Bw(d, p, `) =
C`w ((1−Xnw)p/(1−Xw)p). The base case p = 1 is straight forward, all the
mw(d, p, i) are equal to 1 by the definition of a w-balanced ternary sequence. We
therefore suppose that mw(d, p− 1, i) ≤ Bw(d, p− 1, bi/wc) for 0 ≤ i ≤ (p− 1)d.
Consider a product of p w-balanced ternary sequences of length d+1. It can be
written as f(X)e(X) where f(X) ∈ Sw(d, p− 1) and e(X) ∈ Sw(d, 1). We know
that if f(X) =

∑(p−1)d
i=0 aiX

i then |ai| ≤ mw(d, p−1, i) and if e(X) =
∑d
j=0 αjX

j

that (fe)(X) = f(X)e(X) =
∑pd
k=0

(∑min((p−1)d,k)
i=max(0,k−d) aiαk−i

)
Xk, and due to the

form of e(X) we see that |Ck(fe)| ≤
∑nk

j=1 |aij | ≤
∑nk

j=1mw(d, p−1, ij) for some
nk ≤ n, max(0, k−d) ≤ i1 < i2 < · · · < ink

≤ min((p−1)d, k) and ij+1− ij ≥ w
for j = 1, . . . , nk − 1.

The final condition on the ij implies that the bij/wc are distinct and since
mw(d, p− 1, i) is bounded above by Bw(d, p− 1, bi/wc), which depends only on
bi/wc, we can recast this as

|Ck(fe)| ≤
nk∑
j=1

Bw(d, p− 1, `j) =

nk∑
j=1

C`jw

((
1−Xnw

1−Xw

)p−1)
where max(0, bk/wc−(n−1)) ≤ `1 < `2 < · · · < `nk

≤ min((p−1)(n−1), bk/wc)
where we have used that d/w = n− 1 is an integer.

Since bk/wc − (bk/wc − (n− 1)) + 1 = n we see that to make nk as large as
possible the `j must be the (at most n) consecutive integers in this range subject
also to 0 ≤ `1 and `nk

≤ (p−1)(n−1). Thus taking a maximum over all possible
f and e we have

mw(d, p, k) ≤
bk/wc∑

`=bk/wc−(n−1)

C`w

((
1−Xnw

1−Xw

)p−1)

=

n−1∑
j=0

Cbk/wcw

((
1−Xnw

1−Xw

)p−1
Xw(n−1−j)

)

= Cbk/wcw

((
1−Xnw

1−Xw

)p)
= Bw(d, p, bk/wc) ,

which proves the inductive step. To finish the proof we note as before that the
maximal value of Bw(d, p, bk/wc) for 0 ≤ k ≤ pd is reached, for example, when
bk/wc = bpbd/wc/2c and in this case we have Bw(d, p) as required. ut
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