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Abstract. In this paper, we study the performances and security of
recent masking algorithms specialized to parallel implementations in a
32-bit embedded software platform, for the standard AES Rijndael and
the bitslice cipher Fantomas. By exploiting the excellent features of these
algorithms for bitslice implementations, we first extend the recent speed
records of Goudarzi and Rivain (presented at Eurocrypt 2017) and re-
port realistic timings for masked implementations with 32 shares. We
then observe that the security level provided by such implementations is
uneasy to quantify with current evaluation tools. We therefore propose
a new “multi-model” evaluation methodology which takes advantage of
different (more or less abstract) security models introduced in the liter-
ature. This methodology allows us to both bound the security level of
our implementations in a principled manner and to assess the risks of
overstated security based on well understood parameters. Concretely, it
leads us to conclude that these implementations withstand worst-case
adversaries with > 264 measurements under falsifiable assumptions.

1 Introduction

The masking countermeasure is among the most investigated solutions to im-
prove the security of cryptographic implementations against side-channel analy-
sis. Concretely, masking amounts to perform cryptographic operations on secret
shared data, say with d shares. Very summarized, it allows amplifying the noise
in the physical measurements (hence the security level) exponentially in d, at
the cost of quadratic (in d) performance overheads [27, 38]. As discussed in [25],
these performance overheads may become a bottleneck for the deployment of
secure software implementations, especially as the number of shares increases –
which is however needed if high security levels are targeted [15].

In this respect, two recent works from Eurocrypt 2017 tackled the chal-
lenge of improving the performances of masked implementations. In the first
one, Goudarzi and Rivain leveraged the intuition that bitslice implementations
are generally well suited to improve software performances, and described opti-
mizations leading to fast masked implementations of the AES (and PRESENT),
beating all state-of-the-art implementations based on polynomial representa-
tions [22]. In the second one, Barthe et al. introduced new masking algorithms
that are perfectly suited for parallel (bitslice) implementations and analyzed the
formal security guarantees that can be expected from them [5].



Building on these two recent works, our contributions are in four parts:

First, since the new masking algorithms of Barthe et al. are natural can-
didates for bitslice implementations, we analyze their performance on a 32-bit
ARM Cortex M4 processor. Our results confirm that they allow competing with
the performances of Goudarzi and Rivain with limited optimization efforts.

Second, we put forward the additional performance gains that can be ob-
tained when applying the algorithms of Barthe et al. to bitslice ciphers with
limited non-linear gates, such as the LS-design Fantomas from FSE 2014 [23].

Third, and since our implementations can run with very high number of
shares (we focus on the case with d = 32), we question their security evaluation.
For this purpose, we start from the observation that current evaluation method-
ologies (e.g., based on leakage detection [21, 10, 33, 44, 16] or on launching high
order attacks [49, 39, 35]) are not sufficient to gain quantitative insights about
the security level of these implementations (and the risks of errors in these eval-
uations). Hence, we introduce a new “multi-model” methodology allowing to
mitigate these limitations. This methodology essentially builds on the fact that
by investigating the security of the masked implementations in different security
models, starting from the most abstract “probing model” of Ishai et al. [27], fol-
lowing with the intermediate “bounded moment model” of Barthe et al. [5] and
ending with the most concrete “noisy leakage model” of Prouff and Rivain [38],
one can gradually build a confident assessment of the security level.

Finally, we apply our new multi-model methodology to our implementations
of the AES and Fantomas, and discuss its limitations. Its application allows us to
claim so far unreported security levels (e.g., against adversaries exploiting more
than 264 measurements) and to conclude that, in front of worst-case adversaries
taking advantage of all the exploitable leakage samples in an implementation,
performance improvements naturally lead to security improvements.

2 Background

In this section, we recall the parallel masking scheme we aim to study, and the
two block ciphers we choose to work with, namely the AES and Fantomas.

2.1 Barthe et al.’s parallel masking algorithm

Masking is a popular side-channel countermeasure formalized by the seminal
work of Ishai et al. [27]. Its main idea is to split all the key dependent data (often
called sensitive variables) in different pieces which are randomly generated. More
formally, masking consists in sharing a sensitive value s such that:

s = s1 ⊕ s2 ⊕ · · · ⊕ sd.

In the case of Boolean masking we will consider next, ⊕ is the XOR operation,
each share si is a random bit and d is the number of shares. In order to apply
masking to a block cipher, one essentially needs a way to perform secure multi-
plications and to refresh the shares. In the case of the bitslice implementations
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we will consider next, this amounts to perform secure AND gates and XORing
with fresh random values. For this purpose, we will use the algorithms proposed
by Barthe et al. at Eurocrypt 2017 [5]. Namely, and following their notations, we
denote as a = (a1, a2, · · · , ad) a vector of d shares, by rot(a, n) the rotation of
vector a by n positions. Moreover, the bitwise addition and multiplication oper-
ations (i.e., the XOR and AND gates) between two vectors a and b are denoted as
a⊕b and a ·b, respectively. Based on these notations, the refreshing algorithm is
given by Algorithm 1 for any number of shares d. Its time complexity is constant
in the number of shares d and requires d bits of fresh uniform randomness.

Algorithm 1 Parallel Refreshing Algorithm

Input: Shares a satisfying
⊕

i ai = a, uniformly random vector r
Output: Refreshed shares b satisfying

⊕
i bi = a

b = a⊕ r ⊕ rot(r, 1)
return b

For readability, we next give the multiplication algorithm for the case d = 4 in
Algorithm 2. Its description for any d can be found in [5]. The time complexity
of the algorithm is linear in the number of shares d and it requires d · dd−14 e
bits of randomness. Intuitively, this algorithm can be viewed as a combination
of different steps: (1) the loading (and possible rotation) of the input share(s),
(2) a partial product phase between the shares, (3) the loading and rotation of
the fresh randomness, and (4) a compression phase where partial products are
XORed together, interleaved with the addition of fresh randomness.

Algorithm 2 Parallel Multiplication Algorithm for d = 4

Input: Shares a and b satisfying
⊕

i ai = a and
⊕

i bi = b, unif. rand. vector r
Output: Shares x satisfying

⊕
i xi = a · b

c1 = a · b
c2 = a · rot(b, 1)
c3 = rot(a, 1) · b
d1 = c1 ⊕ r
d2 = d1 ⊕ c2
d3 = d2 ⊕ c3
d4 = d3 ⊕ rot(r, 1)
x = d4

return x

2.2 Target algorithms

The AES Rijjndael [13] is a 128-bit block cipher operating on bytes and allowing
three different key sizes (128, 192 and 256 bits). We will focus on the 128-
bit variant that has 10 rounds. Each round is composed of the succession of 4
operations: SubBytes (which is the non-linear part), ShiftRows, MixColumns and
AddRoundKey (except for the last round where MixColumns is removed). Each
round key is generated thanks to a key schedule algorithm. Operations will be
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detailed in the implementation section. The AES’ robustness over the years and
widespread use makes it a natural benchmark to compare implementations.

Fantomas is an instance of LS-Design [23], of which the main goal is to make
Boolean masking easy to apply. It is a 128-bit cipher iterating 12 rounds based
on the application of an 8-bit bitslice S-box followed by a 16-bit linear layer
(usually stored in a table and called the L-box), together with a partial round
constant addition and a key addition. The internal state of Fantomas can be
seen as an 8× 16-bit matrix where the S-box is applied on the columns and the
L-box is applied on the rows. The precise description of the S-box and L-box are
provided in the extended version of this work available on the IACR ePrint.

We note that another instance of LS-design (namely Robin) has been recently
cryptanalyzed by Leander et al. [29] and Todo et al. [47]: both attacks highlight
a dense set of weak keys in the algorithm and can be thwarted by adding full
round constants in each round [28]. Despite there is no public indication that a
similar attack can be applied to Fantomas, we considered a similar tweak as an
additional security margin (and denote this variant as Fantomas∗).

2.3 Target device and measurement setups

Our implementations are optimized for a 32-bit ARM Cortex-M4 processor
clocked at 100 MHz and embedded in the SAM4C-EK evaluation board [1]. Of
particular interest for our experiments, this device has an embedded True Ran-
dom Number Generator (TRNG) which provides 32 bit of randomness every 80
clock cycles. We recall the description of the ARM processor and instructions
set given in [22]. The processor is composed of sixteen 32-bit purpose registers
labeled from R0 to R15. Registers R0 to R12 are the variable registers (available
for computations), R13 contains the stack pointer, R14 contains the link register
and R15 is the program counter. The ARM instructions can be classified in three
distinct sets: the data instructions such as AND, XOR, OR, LSR, MOV, ..., which
cost 1 clock cycle; the memory instructions such as STR, LDR,..., which cost 2
clock cycles (with the thumb extension); and the branching instructions such as
B, BL, BX, ..., which cost from 2 to 4 clock cycles. A useful property of the ARM
assembly is the barrel shifter. It allows applying one of the following instructions
on one of the operands of any data instruction for free: the logical shift (right
LSR and left LSL), the arithmetic shift right ASR and the rotate-right ROR.

As for our security evaluations, we performed power analysis attacks using
a standard setup measuring voltage variations across a resistor inserted in the
supply circuit, with acquisitions performed using a Lecroy WaveRunner HRO 66
oscilloscope running at 625 Msamples/second and providing 8-bit samples.

3 Efficient implementations

We designed our implementations in a modular manner, starting with building
blocks such as refreshing and multiplication algorithms, and then building more
complex components such as the S-boxes, rounds, and full cipher upon the pre-
vious ones. This adds flexibility to the implementation (i.e., we can easily change
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one of the building blocks, for example the random number generator) and en-
ables simple cycle counts for various settings. Following this strategy, we first
describe the implementation of cipher independent operations, and then discuss
optimizations that specifically relate to the AES and Fantomas∗.

3.1 Cipher independent components

We start by setting up the parameters of our parallel masking scheme and then
depict the implementation of the refreshing and multiplication algorithms.

Given the register size r of a processor, parallel masking offers different trade-
offs to store the shares of a masked implementation. In the following, we opted
for the extreme solution where the number of shares d equals r (which minimizes
the additional control overheads needed to store the shares of several interme-
diate values in a single register). In our 32-bit ARM processor example, this
implies that we consider a masked implementation with 32 shares.

More precisely, let s = (s1, · · · s32) be a 32-bit word where each si for 1 ≤ i ≤
32 is a bit and s be a sensitive bit. We have that s =

⊕32
i=1 si. Concretely, our

implementations will store such vectors of 32 shares corresponding to a single
bit of sensitive data in single registers. This allows us to take advantage of the
parallelization offered by bitwise operations such as XOR, AND, OR, ... That is,
let ⊥ be such a bitwise operator and sa, sb two 32-bit words, we have:

sa ⊥ sb = (sa1 ⊥ sb1, · · · , sa32 ⊥ sb32).

In practice, for a block cipher of size n with key size k, its internal state will
therefore be represented and stored as n+k 32-bit words in our parallel masking
setting. The initial key sharing (performed once in a leak-free environment) is
done as usual by ensuring that the si’s are random bits for 2 ≤ i ≤ d and
s1 = s⊕ s2 ⊕ · · · ⊕ sd. These shares are then refreshed with Algorithm 1 before
each execution. And the un-sharing can finally be done by computing the value⊕32

i=1 si, or equivalently by computing the Hamming weight modulo 2 of s.
One natural consequence of this data representation is that it requires the

block cipher description to be decomposed based on Boolean operations. Bit-
slice ciphers such as Fantomas∗ are therefore very suitable in this context, since
directly optimized to minimize the complexity of such a decomposition.

Refreshing and Multiplication algorithms Since only requiring simple
AND, XOR and rotation operations, these algorithms have naturally efficient
implementations on our target device. The only particular optimization we con-
sidered is to keep all intermediate values in registers whenever possible, in order
to minimize the overheads due to memory transfers. (An ARM pseudo-code for
the multiplication with d = 4 is given in the ePrint version). The random val-
ues needed for the refreshings are first loaded and kept in registers. We then
compute the ci’s and di’s together instead of successively as in Algorithm 2,
allowing to save costly load and store instructions. Eventually, the randomness
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was produced according to two different settings. In the first one, we generated
it on-the-fly thanks to the embedded TRNG of our board which costs RC = 80
clock cycles per 32-bit word. In the second one, we considered a cheaper PRG
following the setting of [22], which costs RC = 10 cycles per 32-bit word. Based
on these figures, the refreshing algorithm is implemented in 28 (resp. 98) clock
cycles and the multiplication algorithm in 197 (resp. 757) clock cycles.

3.2 Cipher dependent components

We now describe how we implemented the AES Rijndael and Fantomas∗ in bit-
slice mode rather than in based on their (more) usual byte representation.

AES components. The AES S-box is an 8-bit permutation which can be
viewed as the composition of an inverse in F28 and an affine function. A well-
known method to mask this S-box, first proposed by Rivain and Prouff in [42],
is to decompose the inversion in a chain of squarings and multiplications. Yet,
this decomposition is not convenient in our parallel masking setting since not
based on binary operations. Hence, a better starting point for our purposes is
the binary circuit put forward by Boyar and Peralta in 2010 [8]. It requires 83
XOR, 32 AND and 4 NOT gates. Recently, Goudarzi and Rivain re-arranged
some operations of this circuit in order to improve their implementation of a
masked bitsliced AES [22]. We therefore implemented the AES S-box thanks to
the latter representation, with each AND replaced by a secure multiplication and
the XORs transposed using the corresponding ARM assembly instructions.

Following, and thanks to our internal state representation, the ShiftRows
operation is easy to implement: it just consists in a re-ordering of the data
which is achieved by a succession of load and store instructions.

The AES MixColumns operation is slightly more involved. The usual repre-
sentation of MixColumns is based on a matrix product in F28 , as depicted in the
following, where ci and di for 0 ≤ i ≤ 3 are bytes:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

c1
c2
c3
c4

 =


d1
d2
d3
d4

 ·
The multiplication by 01 is trivial and the one by 03 can be split into 02 ⊕ 01,
which only leaves the need of a good multiplication by 02 (sometimes called
the xtimes function). This function is usually performed thanks to pre-computed
tables [13], but it can also be achieved solely with binary instructions. Let b =
(b0, · · · , b7) be a byte with bi ∈ {0, 1} for 0 ≤ i ≤ 7. We recall that the AES
field is defined as F28 ≡ F2[x]/(x8 + x4 + x3 + x+ 1). Using this polynomial, the
xtimes can be turned into the following Boolean expression:

xtimes(b) = xtimes(b0, · · · , b7) = (b1, b2, b3, b4 ⊕ b0, b5 ⊕ b0, b6, b7 ⊕ b0, b0). (1)
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For the parallel masking scheme, each bit bi is again replaced by a 32-bit word.
So in practice, we simply implement Mixcolumns by small pieces: for each byte
ci we load the eight 32-bit words, compute all the products by 02 thanks to
Equation (1), and store the results in a temporary memory slot. Eventually, we
recombine the temporary values by XORing them to obtain the right output.

Fantomas∗ components. Fantomas∗’s 8-bit S-box is an unbalanced Feistel net-
work built from 3- and 5-bit S-boxes originally proposed in the MISTY block
cipher (see [34], Section 2.1 and [23]). It can be decomposed in 11 AND gates,
25 XOR gates and 5 NOT gates. Since the S-box is bitsliced, the implementation
of the parallel scheme is straightforward. Namely, each Wi in the algorithm is a
32-bit word encoding one secret bit in 32 shares. As for the AES S-box, ANDs
are replaced by secure multiplications and XORs are applied directly.

The Fantomas∗ linear layer so-called L-box can be represented as a 16 × 16
binary matrix M (given in the ePrint version). Let V a 16× 1-bit vector of the
internal state of Fantomas∗. Applying the L-box consists in doing the product
M ∗V , which corresponds to executing XOR gates between the bits of V , defined
by the entries of the matrix M . Since the XOR is a bitwise and linear operation,
the L-box can again be computed directly in the parallel masking context (where
a bit in the vector V simply becomes a 32-bit word of shares). In practice, as in
the original publication of Fantomas∗ [23], we split M in two 16 × 8 matrices:
a left one and a right one. This allows us to work independently with the first
8 bits and the last 8 bits of V . For this purpose, we load eight 32-bit words
and compute the XORs between them corresponding to the left/right parts of
M , and store these intermediate values in a temporary memory slot. Eventually,
one has just to XOR the results of these two products to recover the output.

3.3 Performance evaluation

Table 1 provides the total number of total clock cycles for both the AES and
Fantomas∗ in our two settings for the randomness generation. The S-box col-
umn reports the percentage of clock cycles spent in the evaluation of the S-box
(excluding the randomness generation and refreshings). The linear layer column
reports the percentage of clock cycles spent in the evaluation of the linear parts
(i.e., ShiftRows, MixColumns and AddRoundKey for the AES; the L-boxes, key
and round constant additions for Fantomas∗). The rand. column reports the
percentage of clock cycles spent in the generation of fresh random numbers (in-

total # of cycles S-box % linear Layer % rand. %

AES (RC = 10) 2,783,510 25.16 1.99 72.66

AES (RC = 80) 9,682,710 7.23 0.6 91.91

Fantomas∗ (RC = 10) 1,217,616 23.95 4.6 68.56

Fantomas∗ (RC = 80) 4,134,096 7.06 1.38 90.74

Table 1. Performance evaluation results for d = 32.
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cluding the refresh operations and random values needed in the multiplication).
Note that in order to make our results comparable with the ones of Goudarzi
and Rivain, we did not consider the evaluation of the AES key schedule and
simply assumed that the round keys (or the master key for Fantomas∗) were
pre-computed, stored in a shared manner and refreshed before each execution
of the ciphers. Besides, and as in this previous work (Section 6.2), we systemat-
ically refreshed one of the inputs of each multiplication in order to avoid flaws
related to the multiplication of linearly-related inputs.1 The masked AES imple-
mentation in [22] is evaluated on a device similar to ours with up to 10 shares.
Using their cost formulas, we can extrapolate the number of clock cycles of their
implementation for d = 32 shares as approximately 3, 821, 312 cycles (consider-
ing RC = 10), which highlights that the linear complexity of our multiplication
algorithm indeed translates into excellent concrete performances. The further
comparison of our (share-based) bitslicing approach with the (algorithm-based)
one in [22] is an interesting scope for further research. In this respect, we note
the focus of our codes was on regularity and simplicity, which allowed fast de-
velopment times while also leaving room for further optimizations.

As expected, using the bitslice cipher Fantomas∗ rather than the standard
AES Rijndael allows reducing the cycle counts by an approximate factor 2. This
is essentially due to the fact that the overall number of secure multiplications of
the latter is roughly twice lower (2112 against 5120 multiplications).

This benchmarking highlights that the time spent in the linear layers in very
high order (parallel) masked implementations is negligible: efforts are spent in the
S-box executions and (mostly) the randomness generation. It suggests various
tracks for improved designs, ranging from the minimization of the non-linear
components thanks to powerful linear layers, the reduction of the randomness
requirements in secure multiplications or the better composition of linear & non-
linear gadgets (see Sections 4.1 and 4.3), and the design of efficient RNGs.

4 Side-channel security evaluation

The previous section showed that bitslice implementations of masking schemes
lead to excellent performances, as already hinted by Goudarzi and Rivain [22],
and that the parallel refreshing and multiplication algorithms of Barthe et al.
in [5] are perfectly suited to them. Thanks to these advances, we are able to
obtain realistic timings for very high order masked implementations.

Quite naturally, such very high order implementations raise the complemen-
tary challenge that they are not trivial to evaluate. In particular, since one can
expect that they lead to very high security levels (if their shares’ leakages are
independent and sufficiently noisy), an approach based on “launching attacks”

1 We used the iteration of
⌈
d−1
3

⌉
simple refreshing gadgets (given Algorithm 1) for

this purpose, which is conjectured to be composable in [5] (and therefore comparable
to the refreshing used in [22]). As will be discussed in Sections 4.1 and 4.3, this very
direct strategy leaves ample room for further optimization efforts.
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is unlikely to provide any meaningful conclusion. That is, unsuccessful attacks
under limited evaluation time and cost do not give any indication of the actual
security level (say 2x) other than that the evaluator was unable to attack in
complexity 2y, with potentially 2x � 2y. In the following, we introduce a new
methodology for this purpose, based on recent progresses in the formal analysis
of masking exploiting different proof techniques and leakage models.

4.1 Rationale: a multi-model approach

The core idea of our following security evaluation is to exploit a good separation
of duties between the different leakage models and metrics that have been intro-
duced in the literature. More precisely, we will use the probing model of Ishai
et al. to guarantee an “algorithmic security order” [27], the bounded moment
model of Barthe et al. to guarantee a “physical security order” [5], and the noisy
leakage model of Prouff and Rivain to evaluate concrete security levels [38].

Step 1. The probing model, composability and formal methods. In
general, the first important step when evaluating a masked implementation is to
study its security against (abstract) t-probing attacks. In this model, the adver-
sary is able to observe t wires within the implementation (usually modeled as
a sequence of operations). From a theoretical point of view, it has been shown
in [14] that (under conditions of noise and independence considered in the follow-
ing steps), probing security is a necessary condition for concrete (noisy leakage)
security against (e.g., power or electromagnetic) side-channel attacks. It has also
been shown in [5] that it is equally relevant in the case of parallel implementation
we study here (i.e., that it is also a necessary condition in this context).

From a practical point of view, the probing security of simple gadgets such
as given by Algorithms 1 and 2 is given in their original papers, and the main
challenge for their application to complete ciphers is their composability. That
is, secure implementations must take into account the fact that using the output
of a computational gadget (e.g., an addition or multiplication) as the input of
another computational gadget may provide additional information to the ad-
versary. Such an additional source of leakage is essentially prevented by adding
refreshing gadgets. There exists two strategies to ensure that the refreshings in
an implementation are sufficient. First, one can use probing-secure computa-
tional gadgets, test implementations with formal methods such as [3], and add
refreshing gadgets whenever a composition issue is spotted by the tool. This
solution theoretically leads to the most efficient implementations, but is limited
by the complexity of analyzing full implementations at high orders. Second, one
can impose stronger (local) requirements to the computational gadgets, such as
the Strong Non Interference (SNI) property introduced in [4]. Those gadgets are
generally more expensive in randomness, but save the designers/evaluators from
the task of analyzing their implementation globally. As mentioned in Section 3.3
we exploited a rough version of this second strategy, by applying an SNI refresh-
ing to one input of every multiplication. As discussed in [7] (e.g., when masking
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the AES S-box based on a polynomial representation in Section 7.2), it is ac-
tually possible to obtain SNI circuits with less randomness thanks to a clever
combination of SNI and NI gadgets. The investigation of such optimizations in
the case of bitslice implementations is an interesting open problem.

Step 2. The bounded moment model and Welch’s T-test. Given that
probing security is guaranteed for an implementation, the next problem is to
guarantee the shares’ leakages physical independence. In other words, the evalu-
ator needs to test whether the leakage function does “re-combine” the shares in
some way that is not detectable by abstract probing attacks. From a theoretical
viewpoint, this recombination can be captured by a reduction of the security
order in the bounded moment model [5]. Concretely, it may be due to defaults
such as computational glitches [31, 32] and memory transitions [11, 2].

From a practical point of view, the security order in the bounded moment
leakage model can be estimated thanks to so-called “moment-based security
evaluations”. One option for this purpose is to launch high order attacks such
as [49, 39, 35]. In recent years, and alternative and increasingly popular solution
for this purpose has been to exploit simple(r) leakage-detection tests [21, 10, 33,
44, 16]. We will next rely on the recent discussion and tools from [46].2

Step 3. The noisy leakage model and concrete evaluations. Eventually,
once a designer/evaluator is convinced that his target implementation guarantees
a certain security order, it remains to evaluate the amount of noise in the im-
plementation. Indeed, from a theoretical point of view, a secure masking scheme
is expected to amplify the impact of the noise in any side-channel attack (and
therefore the worst-case measurement complexity) exponentially in the number
of shares. This concrete security is reflected by the noisy leakage model [38].

From a practical point of view, the noise condition for secure masking (and
the resulting noisy leakage security) can be captured by an information theo-
retic or security analysis [45]. In this respect, it is important to note that this
condition depends on both the physical noise of the operations in the target
implementation and the number of such operations. When restricting the eval-
uation to divide-and-conquer attacks, which is the standard strategy to exploit
physical leakages [30], this number of operations drops to the number of ex-
ploitable operations (i.e., the operations that depend on an enumerable part of
the key). We will next consider this standard adversarial setting.3

Besides, as mentioned at the beginning of the section, one may expect that
the security level of a very high order masked implementation is beyond the
evaluator’s measurement (and time, memory) capacities. In this context, rather
than trying to launch actual attacks we will rely on the (standard cryptographic)

2 Note that nothing prevents using the bounded moment model to analyze abstract
implementations: as shown in [5] it may also allow explaining the security of certain
types of countermeasures that cannot be captured by probing security.

3 More advanced strategies include algebraic/analytical side-channel attacks, which
may require considering slight additional (constant) security margins [41, 48, 24].
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strategy of bounding the attack complexity based on the adversary’s power. For
this purpose, we will use the tools recently introduced in [15, 26] which show
that such bounds can be obtained from the information theoretic analysis of the
leakage function (i.e., a characterization of the individual shares’ leakages).

Wrapping up. The main observation motivating our rationale is that security
against side-channel attacks can be gradually built by exploiting existing leak-
age models, starting from the most abstract probing model, following with the
intermediate bounded moment model, and finishing with the most physical noisy
leakage model. In this respect, one great achievement of recent research in side-
channel analysis is that each of those theoretical leakage models has a concrete
counterpart allowing its practical evaluation. Namely, the probing security of
an algorithm (represented as a sequence of operations) is challenged by for-
mal methods or guaranteed by composable gadgets, bounded moment security
is tested thanks to moment-based distinguishers or leakage-detection tools, and
noisy leakage security is quantified thanks to information theoretic metrics which
eventually bound standard security metrics such as the success rate.

Cautionary note. Because of place constraints, the following sections will not
recall the technical details of the tools used in our evaluations (i.e., Welch’s T-
test, linear regression and the mutual information metric). We rather specify all
the parameters used and link to references for the description of the tools.

4.2 Bounded moment security and security order

Noise-efficient leakage detection test. As we rely on SNI refreshings to
ensure the composability of our masked implementations, the first step in our
evaluation is to evaluate the extent to which the shares’ physical leakages are
independent.4 As mentioned in the previous subsection, this independence is
reflected by a security order in the bounded moment model, which can be esti-
mated thanks to leakage detection. For this purpose, we used a variant of leakage
detection test recently introduced in [46], Section 3.2. As with the standard de-
tection tools, its main idea is to consider two leakage classes: one corresponding
to a fixed plaintext and key, the other corresponding to random (or fixed [16])
plaintext(s) and a fixed key. The test then tries to detect a differences between
these classes at different orders (i.e., after raising the leakage samples to different
powers). The only specificity of this “noise-efficient” variation is that it mitigates
the exponential amplification of the noise due to masking by averaging the traces
before raising them to some power, thus reducing the evaluation time and stor-
age. Such an averaging is possible because of our evaluation setting where masks
are known. It admittedly makes the test completely qualitative (i.e., the number
of traces needed to detect is not correlated with the security level that we discuss
in the next subsection). Yet, in view of the noise level of our implementation, it
was the only way to detect high order leakages somewhat efficiently.

4 Analyzing the SNI security of a software code (rather than an abstract implementa-
tion as usually done in masking gadget proofs) would further increase the relevance
of the composability argument and is an interesting scope for further research.
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Unfortunately, and even using this tweak, the complexity of the leakage detec-
tion is still exponential in the number of shares and therefore hardly achievable
at order 32 (see again [46]). As a result, we studied reduced-order implemen-
tations with limited number of shares/randomness. Similarly to reduced-round
versions in block cipher cryptanalysis, the goal of such implementations is to
extrapolate the attacks’ behavior based on empirically verifiable but weakened
versions of our implementations. In particular, we used such implementations to
verify the extent to which the shares are recombined by the physical leakages.
Since the implementations considered for this purpose are similar to the one
using 32 shares (see next), the hope is that they give the evaluator an estimate
of the “security order reduction factor” f caused by physical defaults (e.g., [2]
showed that transition-based leakages reduce this order by a factor two).

Concretely, we analyzed both tweaked implementations with d = 2 and d = 4
shares (thanks to an adapted software) and the implementation with 32 shares
where only 2 (resp. 4) bits of the random numbers generated were actually ran-
dom – the other 30 (resp. 28) bits being kept constant. All tests gave consistent
results and no leakage of order below the expected 2 (resp. 4) was detected. For
illustration, the result of a leakage detection test for the Fantomas∗ S-box with
d = 4 shares (tweaked implementation) is given in Figure 1. We used 120,000
different traces, each of them repeated 50 times, for a total of 6,000,000 mea-
surements. The top of the figure shows the average trace, the bottom of the
figure is the result of the detection test at order 4, where we see that the stan-
dard threshold of 4.5 is passed for a couple of samples. We additionally checked
that those samples correspond to the multiplications performed during the S-box
execution. By contrast, we could not spot evidence of lower order leakages (for
which detection plots are given in the ePrint version). We insist that testing such
reduced-order implementations does not offer formal guarantees that no flaw may
happen for the full version with 32 random shares.5 Nevertheless, (i) the fact
that we observed consistent results for the d = 2 and d = 4 cases is reassuring;
(ii) we may expect that some physical defaults (such as couplings [9]) become
less critical with larger number of shares, since the shares will be more physically
separated in this case; and (iii) most importantly, we will use the factor f as a
parameter of our security evaluations, allowing a good risk assessment.

Robustness against transition-based leakages. The results of the previous
detection tests are (positively) surprising since one would typically expect that
the transition-based leakages discussed in [2] reduce the security order in the
bounded moment model from the optimal o=d − 1 to o=dd/2e − 1. For exam-
ple, assuming a sharing s = s1 ⊕ s2, observing the Hamming distance between
the shares s1 and s2 would provide the adversary with leakages of the form
HD(s1, s2) = HW(s1 ⊕ s2) = s. By contrast, in our parallel implementation set-
ting, no such transitions could be detected. While we leave the full analysis of this
phenomenon (e.g., with formal methods) as an open problem, we next provide

5 Note also that the variant of leakage detection with averaging used here makes the
interpretation of such flaws less easy to interpret with the tools of [15] (Section 4.2).
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Fig. 1. Noise-efficient leakage detection with 6M traces (50x averaging).

preliminary explanations why this positive result is at least plausible. For this
purpose, we first observe that the multiplication Algorithm 2 essentially iterates
three types of operations: partial products, compressions and refreshings; and it
ensures that any pair of partial products (ai · bj , aj · bi) is separated from the
other pairs (and the ai · bi partial products) by a refreshing. As already hinted
in [5], the distances between such pairs of intermediate results do not lead to
additional information to the adversary. So the main source of transition-based
leakages would be based on intermediate results separated by refreshings. In
this respect, we note that our implementation was designed so that intermediate
results are produced progressively according to the previous “compute partial
products – compress – refresh” structure, which additionally limits the risk that
many unrefreshed intermediates remain in the registers. Eventually, we checked
that intermediate results in successive clock cycles do not lead to detectable
transition-based leakages in the bounded moment model thanks to simulations.
So intuitively, we can explain the absence of such transition-based leakages by
the fact that our parallel manipulation of the shares mitigates them.6

Summarizing, as any hypothesis test, leakage detection offers limited the-
oretical guarantees that no lower-order leakages could be detected with more
measurements. Yet, our experiments do not provide any evidence of strong re-
combinations of the shares’ leakages via transitions or other physical defaults,
which can be explained by algorithmic features. Hence, in the following, we will
consider two possible settings for our evaluations: the empirically observed one,
assuming a security order 31 in the bounded moment model, and a more con-
servative one, assuming a security order 15 in the bounded moment model.

6 When decreasing technology sizes, this gain may come with higher risk of couplings
between the shares (as also mentioned in [5] and recently discussed in [9]).
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4.3 Noisy leakage security and information theoretic analysis

Assuming the security order of our implementations to be 31 (as observed ex-
perimentally) or 15 (taking a security margin due to a risk of physical defaults
that we could not spot), we now want to evaluate the security level of these
implementations in the noisy leakage model, based on an information theoretic
and security analysis. For this purpose, our next investigations will follow three
main steps. First we will estimate the deterministic and noisy parts of the leak-
age function corresponding to our measurements, thanks to linear regression [43].
This will additionally lead to an estimation of our implementations’ Signal to
Noise Ratio (SNR). Second, we will use this estimation of the leakage function
to quantify the information leakage of our Boolean encodings (assuming security
orders 31 and 15, as just motivated), using the numerical integration techniques
from [15]. Finally, we will take advantage of the tightness of masking security
proofs recently put forward in [26], in order to bound the complexity of mul-
tivariate (aka horizontal) attacks taking advantage of all the leakage samples
computationally exploitable by a divide-and-conquer side-channel adversary.

Linear regression and noise level. For this first step, we again considered a
simplified setting where the evaluator has access to the masks during his profiling
phase. Doing so, he is able to efficiently predict the 32 bits of the bus in our ARM
Cortex device, and therefore to estimate the leakage function for various target
operations thanks to linear regression. More precisely, and given a sensitive value
s and its shares vector s considered in our masking scheme, linear regression
allows estimating the true leakage function L̂(s) ≈ D̂(s) + N̂ , with D̂(s) the
deterministic part of the leakages and N̂ a noise random variable. As frequently
considered in the literature, we used a linear basis (made of the 32 bits of the
bus and a constant element) for this purpose. Such a model rapidly converged
towards close to Hamming weight leakages, with estimated SNR of 0.05 for the
best sample (defined as the variance of D̂(s) divided by the variance of N̂).

Encoding leakage. Given the previous sensitive value s, its shares vector s
considered in our masking scheme, and a leakage function L leading to samples
l = L(s), a standard metric to capture the informativeness of these leakages is
the Mutual Information [45], defined as follows:

MI(S; L(S)) = H[S] +
∑
s∈S

Pr[s] ·
∑
l←L

f(l|s) · log2 Pr[s|l].

In this equation, H[S] is the entropy of the sensitive variable S and f(l|s) the
conditional Probability Density Function (PDF) of the leakages L(s) given the
secret s. Assuming Gaussian noise, it can be written as a mixture model:

f(l|s) =
∑

s∈Sd−1

N
(
l|(s, s), σ2

n

)
·

The conditional probability Pr[s|l] is then computed thanks to Bayes’ theorem as:

Pr[s|l] =
f(l|s)∑

s∗∈S f(l|s∗)
·

14



log
10

(SNR)
-2 -1 0 1 2 3

lo
g 10

(H
I)

-50

-40

-30

-20

-10

0

31st-order security

15th-order security

7th-order security

2128-bit security

264-bit security

measured SNR

2-averaging

4-averaging

6-averaging

Fig. 2. Information theoretic analysis of the encoding.

Unfortunately, what we obtained thanks to linear regression is not the true
leakage function L(s) but only its estimate L̂(s). Hence, what we will compute
in the following is rather the Hypothetical Information (HI), defined as:

HI(S; L̂(S)) = H[S] +
∑
s∈S

Pr[s] ·
∑
l←L̂

f̂(l|s) · log2 P̂r[s|l].

Formally, it corresponds to the amount of information that would be leaked from
an implementation of which the leakages would be exactly predicted by L̂(s).

Admittedly, we cannot expect that HI(S; L̂(S)) = MI(S; L(S)) in practice (e.g.,
since we used a linear basis rather than a full one in our regression).7 However,
we note that the information leakages of a masked implementation depend only
on their security order and SNR, not on variations of the leakage function’s
shape. So small errors on L̂ should not affect our conclusions. Furthermore, in
our parallel setting the addition of significant non-linear terms in the regression
basis would also directly decrease the security order because it would re-combine
the shares in a non-linear manner (see [5]). Since the previous moment-based
evaluation did not detect such re-combinations, a linear leakage model is also
well motivated from this side. We finally note that adding quadratic terms in
our basis could be a way to capture the reduction of the security order from 31
to 15. Yet, for efficiency, we next reflect such reductions of the security order by
simply (and pessimistically) reducing the number of random shares in s.

The result of such an information theoretic evaluation for our Boolean en-
coding is given in Figure 2, where we plot the HI in log scale, for various SNRs.
Of particular interest are the measured SNR and the SNRs with (2, 4 and 6×)
averaging, which would correspond to the noise level of sensitive shares vectors

7 Yet, we can test that it is close enough thanks to leakage certification [18, 17].
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appearing multiple times in the implementation, therefore allowing the adversary
to reduce the noise of these leakage samples by averaging (which we will discuss
next). We also plotted the curves corresponding to the security orders 31, 15
and 7 (i.e., corresponding to a flaw parameter f = 1, 2 and 4). Remarkably, we
see that for the measured SNR, the leakage of a single encoding secure of order
31 would lead to an HI below 2−128. Since the masking proofs in [15] show that
the measurement complexity of any side-channel attack is inversely proportional
to (and bounded by) this information leakage, it implies that a simple attack
exploiting a single leakage sample corresponding to a 32-tuple of parallel shares
would not be successful even with the full AES/Fantomas∗ codebook. Similarly,
a 15th-order secure implementation would be secure with up to a comfortable
1026 ≈ 282 measurements. Table 2 provides an alternative view of these findings
and lists experimental HI values for different levels of averaging.

SNR measured ×2 ×3 ×4 ×5 ×6 ×7

Security order 31 -48 -39 -34 -31 -29 -27 -25
Security order 15 -26 -22 -19 -17 -16 -15 -14

Table 2. Experimental bounds on log10(HI) for the encoding.

Worst-case security level. While the previous figure and table show that
an adversary exploiting a single 32-tuple of parallel shares, assuming security
order 31 (or 15) and the SNR estimated in the previous section, will not be able
to perform efficient key recoveries, it has been recently put forward in [6] and
more formally discussed in [26] that optimal side-channel adversaries are actually
much more powerful. Namely, such adversaries can theoretically exploit all the
32-tuples in the implementation, and if some of these tuples are manipulated
multiple times, average their leakages in order to improve their SNR.

In order to take such a possibility into account in our security evaluations,
we therefore started by inspecting the codes of our implementations in order
to determine (1) the number of linear and non-linear operations that can be
targeted by a divide-and-conquer attack (for illustration, we considered an ad-
versary targeting a single S-box), and (2) the number of such operations for
which one of the operands is repeated x times in the code. The result of such a
code inspection is given in Table 3. Note that the table includes the count of the

Cipher Operations total # 2-rep. 3-rep. 4-rep. 5-rep. 6-rep. 7-rep.

AES
linear 115 20 55 18 12 10 0

non-lin. 32 2 16 2 7 5 0

Fantomas∗
linear 41 13 18 10 0 0 0

non-lin. 11 1 5 5 0 0 0

Table 3. S-box code inspection for the AES and Fantomas∗.
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Fig. 3. Measurement complexity bounds for different attacks.

SNI refreshings added to one input of each multiplication, which we reported as
32 (resp. 11) additional linear operations for the AES (resp. Fantomas∗).8

Thanks to the tools in [26], we then bounded the measurement complexity
of adversaries taking advantage of a single tuple (considered in the previous sec-
tion), all the tuples, and all the tuples with averaging in Figure 3. Concretely, the
second adversary is simply captured by relying on an “Independent Operation
Leakage” assumption which considers (pessimistically for the designer) that the
information of all the 32-tuples of shares in the implementation is independent
and therefore can be summed. Taking the example of the Fantomas∗ S-box, it
means that this adversary can exploit the information of 41 encodings for the
linear operations, and 11*32 encodings for the non-linear ones (where the factor
32 comes from the linear cost of the parallel multiplication algorithm, of which
the leakage was bounded in [38]). And the third adversary is captured by adapt-
ing the encoding leakages depending on the number of repetitions allowed by the
code. Taking the example of the linear operations in Fantomas∗, it means that
this adversary can exploit the information of 13 encodings with double SNR,
18 encodings with triple SNR, . . . The latter is admittedly pessimistic too since
it considers an averaging based on the most repeated operand only. Besides,
it assumes that sensitive values manipulated multiple times will leak according
to the same model (which is not always the case in practice [19]). The main
observations of this worst-case security evaluation are threefold:

8 This assumes that the iteration of simple refreshing gadgets to obtain an SNI re-
freshing is tweaked so that the tuple of shares to refresh is only XORed once, at the
end of the iteration. It therefore slightly differs from the proposal in [5]. We leave
the investigation of such a variant as an interesting scope for further research.
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First, the security levels reached for the two first adversaries are significantly
higher than previously reported thanks to “attack-based evaluations”. In partic-
ular, we reach the full codebook (measurement) security if the security order was
31 (as empirically estimated) and maintain > 264 measurement security if this
order was only 15. In this respect, we insist that this order is the only parameter
which could lead to an overstated security level (i.e., all the other assumptions in
our evaluations are pessimistic for the designer). Quite naturally, the figure also
exhibits that masked implementations with lower orders (e.g., 8 or 4) cannot
offer strong security guarantees in case of SNRs in the 0.01 range.

Second, the impact of averaging is much more critical, since the adversary
then essentially cancels the exponential increase of the noise that is the expected
payload of the masking countermeasure. Roughly, for an implementation secure
of order d, doubling the SNR thanks to 2-averaging reduces the security by an
approximate factor 2d. By contrast, multiplying the number of target d-tuples
(without averaging) by α only reduces the security by a factor α.

Third, in front of these optimal adversaries, Fantomas∗ offers (slightly) more
security than the AES despite we assume the same information leakages for their
encodings. This gain is essentially due to the fact that Fantomas∗ implementa-
tions are slightly more efficient, effectively reducing the opportunities for the
adversary to exploit many leakage samples and to average them.

Towards mitigating averaging attacks. As a conclusion of this paper, we
first observe that our experiments raise interesting optimization problems for
finding new representations of block cipher S-boxes, minimizing the number of
non-linear operations and the multiple manipulation of the same intermediate
values during their execution. Besides, and quite fundamentally, Figure 3 recalls
that the security of the masking countermeasure is the result of a tradeoff be-
tween an amount of physical noise (reflected by the SNR) and an amount of
digital noise (reflected by the shares’ randomness) in the implementations. In
this respect, there is a simple way to mitigate the previous “averaging attacks”,
namely to add refreshing gadgets to prevent the repetition of the same sensitive
values multiple times in an implementation. Remarkably, the systematic refresh-
ing that we add to one input of each multiplication does contribute positively
to this issue. For example, we show in the ePrint version that the number of
repetitions in our codes increases if one removes these refreshings. By extending
this approach brutally (i.e., by refreshing all the intermediate tuples in an im-
plementation so that they are never used more than twice: once when generated,
once when used), one can therefore mitigate the “all tuples + avg.” adversary of
Figure 3. But most interestingly, the latter observations suggest the search for
good tradeoffs between physical and digital noise as a fundamental challenge for
sound masking. That is, how to efficiently ensure composability as mentioned in
Section 4.1 (first step) and prevent the averaging attacks in this section?
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Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 116–129. ACM, 2016.

5. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-
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11. Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,

Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of security proofs
from one leakage model to another: A new issue. In Werner Schindler and Sorin A.
Huss, editors, COSADE 2012, volume 7275 of LNCS, pages 69–81. Springer, 2012.
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