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Abstract. Embedded IoT devices are often built upon large system
on chip computing platforms running a significant stack of software.
For certain computation-intensive operations such as signal processing
or encryption and authentication of large data, chips with integrated
FPGAs, FPGA SoCs, which provide high performance through config-
urable hardware designs, are used. In this contribution, we demonstrate
how an FPGA hardware design can compromise the important secure
boot process of the main software system to boot from a malicious net-
work source instead of an authentic signed kernel image. This significant
and new threat arises from the fact that the CPU and FPGA are con-
nected to the same memory bus, so that FPGA hardware designs can
interfere with secure boot routines on FPGA SoCs that are without
any interruption on regular SoCs. An enabling factor is that integrated
hardware designs are likely bought from external partners and there is
a realistic lack of security review at the system integrators. This facil-
itates flaws or even unwanted functionality in such hardware designs.
We perform a proof of concept on a Xilinx Zynq-7000 FPGA SoC, and
the threat can be generalized to other devices. We also present as effec-
tive mitigation, an easy-to-review and re-usable wrapper module which
prevents any unauthorized memory access by included hardware designs.
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1 Introduction

We are currently experiencing a rapid increase in the number of embedded de-
vices being used in the context of the Internet-of-Things (IoT) and cyber physical
systems. The application domains of such systems range from automotive, avia-
tion, infrastructure, to industrial production and even home appliances. Across
all domains, embedded systems are mostly build on powerful high-volume System
on Chips (SoCs) running a mixture of open-source and closed source software,
and include network communication interfaces. Such devices perform critical
tasks, however, are at the same time physically accessible for attackers in many



cases. Fortunately, several security mechanisms have been developed to coun-
teract possible attacks based on physical access. The arguably most important
and widely adopted countermeasure is a secure boot mechanism which ensures
that only authentic and unmodified software can be run right from the start
of the first code within the CPU. This prevents attackers from manipulating
software images and restarting devices into a manipulated behaviour. As such,
it can be seen as the foundation of all further software security measures. Some
applications of embedded systems require high computational capabilities for
signal processing or cryptographic operations. At the same time, devices often
remain in the field for many years which means that updates of the functional-
ity are likely required. For such cases, FPGA manufacturers such as Xilinx have
produced SoC chips known as FPGA SoCs which include configurable hardware
logic on the same chip as a conventional CPU architecture. Embedded systems
built using such devices (e.g. [26]) are able to support significant computational
capabilities through hardware acceleration while both, software as well as hard-
ware can be updated in the field.

However, this additional configurable hardware may lead to severe security
issues. Configurable hardware within FPGA SoCs is typically connected to high-
bandwidth memory buses of the main CPU which means that hardware blocks
may possibly access memory regions which are access-managed by the software
system. This has severe consequences for the system, because this may easily cor-
rupt the security of the entire system. We have in the past seen similar attack
vectors in the PC world which were successful. For instance, external high-speed
interfaces have been misused to directly access internal memory [12, 24]. For-
tunately, countermeasures such as Input Output Memory Management Units
(IOMMUs) have also been developed against such attacks [3] which handle the
memory management of peripherals with direct access to memory and thereby
prevent unauthorised memory accesses. In our opinion, however, such threats are
now possible from a new direction i.e., through the integrated hardware. In order
to understand the reasons for this, it is important to realize that hardware de-
signs (e.g. cryptographic accelerators) will possibly come from ’external’ sources.
This is simply cheaper and provides a faster time-to-market. Open-source soft-
ware is used for similar reasons. Even large ASIC SoCs for short-lived consumer-
grade routers/modems are designed with outsourced hardware modules, which
means that the following threat also applies to ASICs in such cases. For exam-
ple, the Elastic Compute Cloud (EC2) from Amazon Web Services (AWS) now
includes an instance with integrated FPGAs (EC2 F1 instance) where IP cores
can be used from a dedicated IP market place [15]. While designers of embed-
ded systems will likely have sufficient software expertise within their team, they
will, in many cases, lack proper hardware engineering expertise along with the
required extensive tooling for hardware development and verification. If hard-
ware is sourced from elsewhere, it is hence questionable whether the embedded
system designers/integrators will be able to properly review the hardware code
to check for unwanted functionality or possible attacks. In many cases, hardware
blocks will even be delivered as a synthesized netlist which more or less prohibits
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proper review. The problem is that malicious functionality could be part of such
hardware modules.

Previous contributions have already highlighted some of the issues arising
from this where unwanted additional functionality in hardware blocks leaks or
corrupts sensitive information. E.g. Kutzner et al. [19] describe how an AES
core could be maliciously modified such that the key of the last round is output
instead of the cipher text. Other contributions have demonstrated how cryp-
tographic keys could be leaked via intentional side-channels such as the power
consumption [21] or over the wireless channel [17]. King et al. [18] and Yang et al.
[29] show how a privilege escalation of applications can be achieved at run-time
using malicious hardware blocks. For this, King et al. modify the data cache and
MMU of the Leon processor, while Yang et al., modify the register that holds the
privilege bit of the OpenRISC processor. Li et al. [20] describe how a hardware
core, which is originally purposed for memory tracing in the context of software
debugging, may include unwanted functionality to inject code into the running
system. As a proof of concept, Li et al. demonstrate how a log-in password
check of a Linux Operating System (OS) can successfully be circumvented by a
hardware core scanning and manipulating the memory on the Xilinx Zynq-7000.
Jacob et al. [23] show how public authentication keys can be overwritten by a
malicious hardware core in FPGA SoCs so that the devices accepts malicious
system updates.

In this work, we show that even the secure boot process, one of the most im-
portant and basic security features of embedded systems, can be compromised
by malicious hardware blocks in the FPGA on FPGA SoCs. We describe a proof
of concept on the Xilinx Zynq-7000 device and explain why even later models
which include IOMMUs (and are fit to counteract attacks such as described by
Li et al. [20] and Jacob et al. [23]) will likely be susceptible to such attacks.
Our proof of concept system includes a conventional software stack along with
an additional hardware block for the FPGA. The included unwanted hardware
functionality overwrites parameters of the second stage boot loader, U-boot,
during the secure boot so that an unauthorized kernel image is retrieved and
booted over the network instead of the local authorized image even though all
previous boot stages are properly verified prior to that. In our opinion, it will
not be realistic for general design teams to acquire the necessary hardware ex-
pertise to prevent this. Hence, we developed an efficient countermeasure, which
provides full re-usability, and is easy-to-review because of the small code size,
that protects against all unauthorized memory accesses through hardware cores
while raising an alarm at every attempt. It is a simple hardware wrapper for
the AXI bus interface which is easy to wrap around all outsourced hardware
cores with memory access and is configured through every access from software.
It can be seen as a stripped-down IOMMU which instead works straight from
configuration (without requiring the software to explicitly enable or configure it,
which is usually done after boot in the OS) and has a smaller set of functionality,
thus, trusted code base.
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The paper is organised as follows. Section 2 reviews the security of embedded
systems generally. Section 3 outlines the attack on the secure boot process.
Section 4 describes the Xilinx Zynq device and boot sequence along with a
generalization to other devices. Section 5 presents the proof of concept along
with a discussion. Section 6 presents the countermeasure.

2 On the Security of Embedded Systems

To highlight the importance of a secure boot process we review popular security
mechanisms for embedded systems in this section. They can be divided into
three general kinds of security measures built on top of each other.

Hardware Security. Since many IoT embedded systems are in physical reach
of potential attackers, security must be rooted in the hardware of respective
devices. Hardware security mechanisms for instance include protection against
physical tampering, which can be achieved by using tamper-proof casings with
light sensors to detect break-ins. Chip-internal tamper detection sensors typ-
ically monitor clock and voltage inputs to prevent fault-injection attacks [4].
In case of a tamper event, critical data is e.g. cleared and the system is shut
down. Many SoCs for embedded systems include dedicated secure memory for
keys and/or certificates. This helps to refrain from storing such information on
external memories. Another important aspect of hardware security is to protect
debug interfaces using e.g. passwords so that read-out and/or corruption of data
and software is prevented in the field [13].

Secure System Startup. One of the most important security mechanisms is a
secure boot process. In this process, all executed code is verified for integrity
and authenticity using cryptographic means before execution. This means that
right after the system startup, the running software can be trusted, which is
the required foundation for all later security mechanisms. For a secure boot, a
chain-of-trust is established which starts from the very first code that is exe-
cuted from within the CPUs internal hardwired ROM (also including respective
keying material), commonly called the hardware root-of-trust [10]. Given that
attackers have physical access, a trusted boot process using Trusted Platform
Modules (TPMs) on the contrary, cannot provide this assurance, since the ex-
ternal TPM can always be manipulated by malicious software on the main CPU
(comparable to a man-in-the-middle attack). Using similar functions as secure
boot, secure update processes allow updates in-the-field from authentic sources
by checking authenticity and integrity as well as decrypting confidential data
using cryptographic methods. Both require a secure storage for the respective
key material.

Runtime Security. After the device startup, all assets such as cryptographic
keys, processed data and control functions must be protected against run-time
attacks on the software. This only makes sense if the running software is trusted
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from the start (i.e. secure boot). Popular mechanisms include different kinds
of software isolation and virtualization to prevent corrupted processes (e.g. af-
ter successful exploits) from accessing sensitive or higher-privilege information.
Memory isolation can be achieved through the OS or a hypervisor. Both need
hardware support in the form of a Memory Management Unit (MMU) and/or
IOMMUs [3]. Trusted execution environments [25] provide an additional privi-
lege level for processes where sensitive processes including their memory regions
for e.g. keys, and even peripherals, can be put into a secure world to prevent
access by corrupted processes from the normal world.

Through this work we would like to highlight that even if we have an FPGA
SoC with a secure hardware root-of-trust and a secure boot process, as well
as runtime protection (by isolation of software components), we still have a
major risk that the system may be compromised. This risk comes from the
reconfigurable hardware. We show that protection mechanisms such as a secure
boot, MMU, or privilege levels do not help against such threats.

3 Attacking the Secure Boot on FPGA SoCs

In this section, we outline the general idea of an attack on the secure boot
process in the context of FPGA SoCs. The main underlying observation for all
secure boot processes is that the verification of the authenticity and integrity of
a software image is either not done in-place, or, more importantly, the process
which performs the verification and later hands off control to the subsequent
stage is inherently not atomic in the sense that it could be interrupted by ma-
nipulations. This is an issue that we generally want to highlight and which is
of particular relevance for embedded systems built upon FPGA SoCs. In most
cases of conventional SoCs, there is no reason to believe that a manipulation
of the memory is happening while the CPU is executing the secure boot code,
since no-one besides the CPU is accessing the memory. However, in the case of
FPGA SoCs, hardware cores on the FPGA have access to the shared memory
bus. Hence, such cores, once loaded, present as immediate additional actors on
those buses and may manipulate memory content while the CPU is not ’aware’
of this. Specifically, such hardware cores, once loaded, are able to manipulate
the boot process such that a malicious software image is executed instead of an
authentic one. This can be achieved by the hardware secretly overwriting parts
of a running bootloader. We present a proof of concept on the Xilinx Zynq-7000
FPGA SoC.

It is important to note that the malicious functionality in the hardware, for
the reasons explained in the introduction, is part of an FPGA configuration
file and contains authentic signatures. It is also important to note that it often
makes sense to load the FPGA before starting the software system so that the
hardware acceleration is e.g. available to verify large software images to reduce
software startup times in secure boot scenarios.
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4 Relevant Properties of the Xilinx Zynq-7000

We chose the Xilinx Zynq-7000 device for our practical proof of concept since it is
a popular choice for contemporary embedded system designs. Also, the insights
are generalizable to later models as well as devices from different manufacturers.

The Xilinx Zynq-7000 is an FPGA SoC consisting of a dual core ARM Cortex
A9 CPU and a Xilinx 7-series FPGA fabric on the same die. The processing
system includes a MMU and two-level cache. A small on-chip RAM of 256KB
is available for the storage of sensitive information or code. A larger external
DDR memory can be accessed via the memory controllers. The main memory
bus is an ARM AMBA AXI bus system. External communication is supported
through CAN, I2C, Ethernet and USB interfaces. The device includes a hard-
core AES and HMAC implementation which are used during the decryption and
authenticity verification of images and configuration files to be run on the Zynq-
7000. The ARM trusted execution environment known as TrustZone is available
for runtime security of the software system. A one-bit hardware setting divides
all processes and peripherals into either a secure, or a normal world.

4.1 Secure Boot Process on the Xilinx Zynq-7000

Figure 1 depicts the boot process on the Zynq-7000 FPGA SoC. It consists of
five stages after power-up:

1. BootROM (non-accessible internal hardwired code)
2. First Stage Bootloader (FSBL)
3. FPGA configuration (bitstream)
4. Second stage bootloader (i.e. U-boot)
5. Operating System (OS)

First Stage
Bootloader

FPGA 
Configuration

Second Stage
Bootloader

Operating
System

TimePower-up

BOOT.bin uImage

Fig. 1: Overview of boot process on Xilinx Zynq-7000

The FSBL, bitstream and second stage bootloader are packed into a single
boot image i.e., BOOT.bin as separate partitions. Each partition within the boot
image is separately encrypted and authenticated. Figure 2 depicts the structure
of such a partition. It contains the payload as the main part. For AES/HMAC-
based authentication and integrity checks, the HMAC key as well as the HMAC
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digest are appended to the payload before encryption. Xilinx uses the MAC-
then-encrypt order of encryption and authentication i.e., the message digest of
each partition is first computed followed by its encryption. The key for the AES
encryption can either be stored in the battery-backed RAM or in eFuses of
the chip. The selection of the AES key source can be enforced by setting the
corresponding eFuse. If the optional RSA algorithm is used for authentication,
an RSA signature verification is computed in software and the signature as well
as the certificate are appended to the partition. The hash of the RSA public key,
which is used to validate the certificate, is stored in an on-chip eFuse array.

RSA signature (opt.)

RSA authentication certificate (opt.)

AES encrypted

Payload

HMAC Key

HMAC Digest

Fig. 2: Content of an authenticated and encrypted boot partition

After power-up, the CPU executes the hardwired instructions from the inter-
nal BootROM which is a small and inaccessible read-only memory of 128KB. It
also initializes the clocks and configures the first ARM processor core along with
the necessary peripherals to fetch the FSBL from Non-Volatile Memory (NVM)
based on the boot mode stating the source where the FSBL can be fetched (i.e.
SD card, QSPI flash, NAND flash or NOR flash). The boot mode is determined
by the voltage levels on the chip’s external pin3. The BootROM code then copies
the FSBL from the NVM to the 192KB4 on-chip memory (which is typically large
enough). The FSBL code is decrypted and authenticated using the AES/HMAC
core on the fly while copying it to the internal memory. Upon successful ver-
ification of the HMAC, control is handed off to the FSBL and it is executed
from the same internal memory. The FSBL is a Xilinx-specific bootloader which
initializes clocks, GPIOs, DDR controller and the FPGA fabric. Following the
initializations, the FSBL loads subsequent partitions. Xilinx provides a template
of the FSBL code, which can be customized. The FSBL controls the decryption
and authentication of the bitstream and second stage bootloader. If a bitstream
is part of the boot image, this is loaded next. (The bitstream may alternatively
be loaded at a later stage of boot through the U-boot or the OS. This, however,
is uncommon since it requires additional code to be inserted into the U-boot
or later OS instead of using the Xilinx template. Also, hardware acceleration

3 Those pins are accessible to possible attackers but no unauthorized images can be
started.

4 The rest of the on-chip memory is reserved for the BootROM code until control is
handed off to the FSBL
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would not be available for the verification of the OS image.). The bitstream
is decrypted and authenticated using AES/HMAC while it is loaded into the
FPGA configuration memory. If the verification fails, the FPGA containing an
unauthentic configuration is not activated. As a next step, the second stage
bootloader, e.g., U-boot is decrypted and authenticated. As the on-chip memory
is not large enough for typical loaders, the decrypted U-boot is stored on the
external DDR memory. If the verification is successful, control is then handed
off to U-boot. After initialization of the platform (processor, clocks, memory)
and reservation of memory, U-boot enters the main loop where it decrypts and
authenticates the kernel image. U-boot then reads the kernel image header and
jumps to the address of the kernel header, handing off control to the OS.

As can be devised, a secure chain-of-trust is established starting from the
BootROM code. If any of the partitions cannot be successfully verified, the
system goes into a secure lockdown mode. In case of a lockdown, the AES key
in the BBRAM is cleared and the configuration memory of the FPGA is cleared
(the keys and settings in the eFuses remain untouched).

5 Proof of Concept: Breaking the Secure Boot on Xilinx
Zynq-7000

In this section, we describe our proof of concept where we practically break
the secure boot process of the Xilinx Zynq-7000 FPGA SoC using a hardware
module. The investigation was carried on a Zedboard Rev. D development board
with 512MB of external DDR memory. The FSBL v2015.4, u-boot-xlnx v2016.1
and linux-xlnx v2016.1 from Xilinx are used [27]. The Xilinx tool bootgen is used
to encrypt and compute the message digests of each partition. Each partition of
the boot image is decrypted and authenticated using the on-chip AES/HMAC.
The AES encryption key is stored in the battery-backed RAM.

Hardware Module. As a likely scenario for the proof of concept, we chose a
hardware module similar to a cryptographic accelerator which we connect to the
AXI bus of the Xilinx Zynq-7000. In our case this module only XORs two input
values, which can be seen as a placeholder for several meaningful cryptographic
operations. We use an interface which is typical for high-speed hardware accel-
erators and consists of a low-speed slave interface for configuration and control
(i.e. source address, destination address, length, and enable signal) as well as
a high-speed master interface for data transfer [5, 6, 11]. The master interface
is DMA-like and, hence, reduces the load on the processing system by not re-
quiring the CPU for data input/output. The CPU only passes the configuration
information after which the module starts to perform its core function whilst
accessing data directly from the memory. Upon completion, a flag is set to alert
the processor.

In addition to this, the module also contains unwanted functionality. Us-
ing the high-speed data interface, the module progressively scans the external
DDR memory and maliciously alters its content. It specifically scans the U-boot
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binary in the DDR memory for the kernel boot parameters. After finding the tar-
get memory location, the boot parameters are modified to load an unauthorized
kernel image from a remote server over the network instead of booting from the
verified source. For this unwanted functionality, our example hardware module
requires 117 LUTs and 46 Slices in addition to the original functionality. This
hardware overhead will likely pass unnoticed since e.g. a high-speed AES-GCM
core for the same family of FPGAs and including a similar interface requires
22.7 k LUTs and 6.9 k Slices [5] for example, which is larger by orders of magni-
tude. Another smaller example of a SHA-384/512 core (excluding the interface)
for the same FPGA family still requires 2.5 k LUTs and 700 Slices [14], which
is also significantly larger.

Bus System

DMA

AES HMAC

FPGA Fabric

Processor System

DDR 
Controller U-boot

DDR

OS

BBRAM

EFUSE

HW Acc.

Xilinx Zynq FPGA SoC

NVM

CPU
On-chip
Memory

NVM
Controller

Encrypted binary/bitstream path

Decrypted binary/bitstream path

Path of malicious modifications

Malicious image loaded over 
the network

1

2 5

3

4

Fig. 3: Secure boot attack on Xilinx Zynq-7000 FPGA SoC

Sequence of Events During the Attack. Figure 3 depicts the Xilinx Zynq-7000
FPGA SoC and highlights the data flow of the encrypted and decrypted images
during the secure boot process as it is described in Section 4. The numbers in the
figure indicate the sequence of events during the attacked boot process. In step
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1 (dotted grey path), the encrypted and authenticated partitions are read from
NVM (our system boots from an SD-card) or DDR memory and piped through
the AES/HMAC cores for verification5. Boot steps 2-4 (dashed green paths)
depict the successive loading of the FSBL, bitstream and U-boot respectively,
as described in Section 4.1. Following the successful verification and loading of
the bitstream to the FPGA, U-boot is verified and loaded to the external DDR
memory and control is handed-over. As soon as the hardware is activated after
the successful verification of the HMAC, the malicious core starts to scan the
external DDR memory for a particular U-boot setting which is to be modified.
This is the actual attack and depicted as step 5 in Fig. 3.

fi.sdboot=if mmcinfo; then echo Boot 
from SD env variables to RAM... && lo
ad mmc 0 ${devicetree_load_address} $
{devicetree_image} && zynqaes ${devic
etree_load_address} ${devicetree_size
}$ ${devicetree_dest_address} $device
tree_len$ &&load mmc 0 ${ramdisk_load
_address} ${ramdisk_image} && zynqaes 
 ${ramdisk_load_address} $ramdisk_siz
e$ ${ramdisk_dest_address} $ramdisk_l
en$ &&load mmc 0 ${kernel_load_addres
s} ${kernel_image} && zynqaes ${kerne
l_load_address} $kernel_size$ ${kerne
l_dest_address} $kernel_len$ &&bootm 
${kernel_load_address} ${ramdisk_load
_address} ${devicetree_load_address};

(a) Authentic image

fi.sdboot=if mmcinfo; then echo Boot 
from SD env variables to RAM... && bo
otp 0x2000000 10.148.95.25:dt.dtb && 
bootp 0x4000000 10.148.95.25:ur.gz&& 
bootp 0x2080000 10.148.95.25:uI &&boo
tm 0x4000000 0x2080000 0x2000000;vice
tree_len$ &&load mmc 0 ${ramdisk_load
_address} ${ramdisk_image} && zynqaes
 ${ramdisk_load_address} $ramdisk_siz
e$ ${ramdisk_dest_address} $ramdisk_l
en$ &&load mmc 0 ${kernel_load_addres
s} ${kernel_image} && zynqaes ${kerne
l_load_address} $kernel_size$ ${kerne
l_dest_address} $kernel_len$ &&bootm 
${kernel_load_address} ${ramdisk_load
_address} ${devicetree_load_address};

(b) Corrupted image

Fig. 4: Excerpt of the .rodata section of the U-boot image

Figure 4a shows an excerpt of the trusted U-boot image which contains
strings representing the boot parameters in the .rodata section of the image.
In step 5 explained above explained, the hardware module searches for the SD
card boot parameters i.e., fi.sdboot= (see Figure 4a). Upon locating the string,
the following original boot parameters from the authentic image, which are used
to load and verify the kernel image on the SD card, are overwritten:
load mmc 0 <dest addr> <filename>

zynqaes <src addr> <src len> <dest addr> <dest len>

The load command is used to transfer the encrypted and authenticated
kernel image from the SD card to the DDR memory. The zynqaes command then
routes this image from the DDR memory to the AES-HMAC core for decryption
and authentication. The malicious functionality overwrites these commands with
the following bootp command:
bootp <dest addr> <sever IP addr>:<filename>

5 Encrypted partitions may first be copied from NVM to DDR in order to accelerate
data transfer.
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The bootp command downloads a file from the specified server IP address
to the DDR memory6. Once the image is downloaded to the DDR memory from
the remote server, the kernel is booted. For this, the malicious core also writes
a regular U-boot boot command, which specifies the locations where the bootp

command had placed the kernel image, uramdisk and devicetree in the DDR
memory, as follows:
bootm <kernel addr> <ramdisk addr> <devicetree addr>

Figure 4b shows the same excerpt as Fig. 4a, with the described malicious
modifications highlighted in grey. (In our set-up, the kernel image (uI), de-
vicetree (dt.dtb) and uramdisk (ur.gz) are three separate images and, hence,
successively loaded.) Note that the U-boot code after the overwritten section
of code is corrupted. This is highlighted in red in Fig. 4b but does not make a
difference as control is handed off to the OS after the bootm command.

Through the last command, control is handed-off and the malicious kernel
image is booted without the system or secure boot process having any chance to
detect the manipulation.

Regarding timing, the module is clocked at 100 MHz. Each read operation to
the external memory takes 70 ns. Insertion of the malicious code takes 3.6 µs.
Straight after activation, the core begins to scan the memory starting from the
address 0x4000000, which is the default address where the U-boot is stored. This
address is static and publicly accessible from the default implementation of the
FSBL provided by Xilinx or the U-boot code which is open-source. The overall
attack (scanning and overwriting) takes 5.5 ms. Note that the scanning would
even be faster if the hardware core uses a full memory mapped AXI interface or
an AXI-stream interface which support burst data transfers.

To summarize, we were able to carry out the proof of concept attack suc-
cessfully and have shown that secure boot, which is a critical protection mech-
anism for embedded systems, can be compromised using malicious hardware in
the FPGA of FPGA SoCs.

Note that for this proof of concept, the RSA authentication of images was not
enabled and only the AES-HMAC was used for decryption and authentication.
However, the same attack can be carried out when RSA is enabled without any
modifications to the malicious functionality.

5.1 Discussions and Generalizations

There are several interesting aspects of the described successful attack which
require a more detailed discussion. This helps understanding and highlights gen-
eralizations to other devices.

IOMMUs. In general, IOMMUs or System MMUs (as called by ARM), are de-
signed to protect the system against threats such as the one demonstrated in
this contribution where bus peripherals access shared memory resources without

6 Alternative U-boot commands that could be used to load a file from a remote server
are tftpboot and dhcp
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proper authorization. IOMMUs are hardware cores which, when properly con-
figured, control bus access rights of such peripherals. They are even available in
newer (and partly more expensive) FPGA SoCs such as the Xilinx UltraScale+
[28] and Altera Stratix 10 [1]. However, IOMMUs are typically initialized by the
OS, which is the last stage in the boot process. Hence, we conclude that the
availability of IOMMUs on FPGA SoCs will not generally prevent the described
attack because this would require an earlier configuration. We advise the use of
the countermeasure presented in the next section instead.

ARM TrustZone. ARM TrustZone prevents unauthorized accesses from the nor-
mal world to secure world resources (e.g. memory regions) through the use of
the TrustZone bit, which is implemented in all system parts (MMU, bus par-
ticipants, CPU). However, it is e.g. likely that cryptographic cores are placed
within TrustZone, which allows them unlimited access which may lead to an
attack as described. Even if an IP core is not within TrustZone, it is still able to
compromise boot, since U-boot is typically not running in TrustZone. So while
TrustZone is an important security feature, it is not an effective countermeasure
against this attack.

Static Access Restrictions on Xilinx Devices. The Zynq-7000 allows to statically
restrict the access of peripherals to the memory at design time. This means that
under no operational circumstances, the hardware may access certain excluded
memory regions. A similar feature is also offered by Microsemi for the SmartFu-
sion2 FPGA SoCs [22]. However, this would pose a drastic limitation for designs
since for most cases, the final use of a hardware module such as a cryptographic
accelerator will be determined by software and it will be beneficial if all mem-
ory regions can be accessed. For example, a cryptographic core that is used for
run-time integrity checking of software requires access to all memory regions.

On the Xilinx Zynq UltraScale+ series, a XMPU module can be used to
restrict the access of masters on the bus. This access configuration can optionally
be locked at boot time (recommended method by Xilinx [28]). This, however,
means that the settings can only be changed after a power-on-reset using a
modified and signed image. Alternatively, if this setting is not locked at boot
time, the configuration can be changed at run-time. In our opinion, a static
configuration will not likely be used for acceleration-type cores since it poses as
an unfavorable restriction to designs. Instead the countermeasures presented in
the next section is advised.

Generalization. We used the Xilinx Zynq-7000 for a proof of concept. It is cur-
rently being deployed and will likely stay in the field for many years. And even
though the Zynq Ultrascale+ includes IOMMUs and XMPU, the Zynq-7000 will
remain attractive for new designs due to lower costs. Also, as described above,
the availability of IOMMUs does not by default prevent the described threats.
They also need to be configured properly before the FPGA is loaded.

The order of the boot of FPGA and software system influences the vulner-
ability of the boot process. In case of FPGA SoCs from Altera, three cases of
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boot [2] are available: (i) the CPU boots and configures the FPGA during its
boot sequence (similar to Zynq-7000), (ii) the FPGA is configured first and the
CPU boot sequence is controlled by the FPGA, and (iii) the FPGA and CPU
boot independently. The first case is the same with the same issue, the second is
even worse as the FPGA is configured first. In the last, the FPGA and CPU are
booted independently so the success will depend on whether the FPGA boots
before the OS or during the CPU. In all cases, devices like, e.g. Stratix V and
Arria 10 have no IOMMU and are vulnerable at run-time at least.

Microsemi on the contrary offers non-volatile FPGA SoCs, which means that
the FPGA is ready to be used directly after power-up and there is no configu-
ration of the FPGA from external memory as is the case with standard SRAM-
based FPGA SoCs from Xilinx and Altera. Hence, the threat is imminent from
the very start of the system.

To summarize the above cases, whenever the FPGA is configured early during
the boot sequence, and this is often the case, a secure boot process can be
compromised by a malicious core in the FPGA and the use of the countermeasure
described in the next section is advised.

Virtual vs. Physical Memory Addressing. There is no virtual addressing before
the OS is loaded. Hence, attacks such as the presented one do not have to take
address mappings into account and can rely on direct physical addressing instead.

Finding the Location of the Code to be Overwritten. One of the key factors for
attack vectors as the one described in this contribution is to estimate the location
of the code which is to be overwritten. The less precise this is, the more code
needs to be searched which takes more time. Interestingly, the location of the
respective U-boot image depends only on a few factors and can be determined
using publicly accessible information. Within the U-boot image, the presented
attack overwrites U-boot environment variables which are located in the .rodata
section of the image in the form of strings. By being part of the U-boot image, the
variables are authenticated. (Technically, there are cases where such variables are
instead retrieved from other, unauthentic external memories, and are loaded onto
the heap in RAM at run-time. However, this option is completely unreasonable
in the context of secure embedded systems since attackers with physical access
may easily modify them [16]. Hence, we assume that U-boot is compiled such
that it does not read environment variables from external memory.)

U-boot is generally unaware where the previous bootloader, in our case the
FSBL, was loaded. Hence, after the basic initialization, U-boot checks the current
value of the program counter to determine the location. By default, the FSBL
loads the U-boot binary to start at address 0x4000000. There are regions in
DDR memory, which need to be preserved to store the kernel image, devicetree
and uramdisk. Hence, if U-boot detects that the previous loader has put it
into those regions, it relocates itself to a predefined region before continuing
execution. The relocation offset is usually at the end of the RAM so that one
big continuous part of the memory remains for the OS. By analysing the U-
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boot code (which is open-source), the offset address can be retrieved7. In our
practical investigation, we found that the initialization before the relocation
takes approximately 37 ms. Afterwards, the remaining part of the initialization
is done, which takes approximately 400 ms on our example setup. Finally the
kernel is loaded as a last step. From this we see that an attack could target the
initial location of the U-boot during the 37 ms until it is relocated, or the final
location during the 400 ms of further initialization.

Timing and Durations. The available time to perform a search for the specific
string to be overwritten depends on whether it is done before or after the re-
location, as described above. Our presented hardware module is able to scan
up to 2.1 MB of memory, and successfully modify the specific boot parameters
during the shorter time of 37 ms before relocation. For comparison, the size of
a standard U-boot is about 3 MB which already hints at the high likeliness of
success. Our practical investigations have indeed shown, that for both cases, the
attack could be performed successfully.

Caches. The CPU caches are enabled by U-boot and could possibly influence the
outcome of such attacks if the respective code to be overwritten is cached while
it is overwritten in the RAM. This would lead to the case that the original data
is possibly written back from cache in case of a later cache eviction. However, we
did not encounter such situations and suspect that the targeted part of the U-
boot image, the boot environment variables, are not accessed, thus, not cached
until they are used shortly before handing over control to the OS kernel.

6 Wrapper Countermeasure

In this section, we propose a general countermeasure to protect systems against
unauthorized memory access from hardware cores within the FPGA part of
FPGA SoCs. For this purpose, we developed a flexible and lightweight security-
enhanced hardware wrapper for cores with an AXI interface8.

Cores can be easily integrated into the wrapper and subsequently connected
to the AXI bus. The wrapper stores access commands and prevents the core
from accessing other memory regions than designated by software driving it
through the command interface. In principle it can be regarded as a stripped-
down IOMMU. However, functionality is restricted to a minimum to support
easy review, and a small trusted code base for easy re-use. Also, the wrapper is
working with restricted default settings from the very start of the FPGA and
does not rely on the OS configuring it (contrary to IOMMUs).

Typically, a software process using a hardware core writes configuration infor-
mation (source address, destination address, length, enable) to the core via the
core’s slave interface. Based on this information the core performs its function

7 The U-boot command bdinfo outputs the relocation offset on a running system.
8 The source code for the wrapping module can be retrieved from
https://github.com/Fraunhofer-AISEC/axi-firewall
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Fig. 5: Hardware core with security-enhanced wrapper

using the master interface for memory access. Figure 5 depicts a system archi-
tecture of an FPGA SoC including a core which is wrapped with our proposed
design. Our wrapper uses the received configuration information to monitor the
AXI-transactions of the master interface and only allows access to the memory
range specified by the software process while leveraging the time during the AXI
handshake to enforce the access commands. In a typical AXI transaction, the
address channel is first set followed by the data channel. A transaction begins
with the master sending the address of the memory location to be read/written
along with an address valid signal. It then waits until the slave responds with
an address ready signal. Next, the slave sends a data valid signal and the master
responds with a data ready signal following which valid data can then be read
/written to the memory. The wrappers checks the address issued by the master
while it waits for the slaves’ address ready response signal. If the wrapped un-
derlying core attempts to access memory outside of the allowed range, an alarm
signal is set. Thereby aborting a transaction before any valid data could be
read/written to the memory while not affecting the performance of legitimate
transactions. The wrapper also checks the length of data read/written as per
the current configuration. If the core attempts to read or write more data, the
remaining transactions are dropped and an alarm is raised. Furthermore, the
wrapper also ensures that the core is only functional when a software process
has explicitly set the enable signal, which prevents the core from performing
accesses while technically in idle state. If the core tries to initiate any unautho-
rised transactions, an alarm is raised. Thus the core is not able to enable itself
or modify its configuration settings.
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Table 1: Wrapper error codes
Error Code Description

00 No error
01 Exceeded permitted number of transactions
10 Out-of-range write
11 Out-of-range read

The alarm signal can be connected to the interrupt controller or a separate
tamper detection unit. Currently, all subsequent transactions are blocked after
an alarm is raised. However, based on the criticality of the system, other actions
can be taken such as e.g. putting the system into a secure lockdown mode. The
wrapper also includes a 2-bit error output code to indicate the cause of the alarm
which is listed in Table 1.

For cores that may require access to both the secure and normal world e.g.,
run-time integrity monitors, the TrustZone setting may not be fixed at boot
(through the FSBL). In such cases, cores with a master interface may set the
TrustZone security bit themselves and are, hence, free to access the secure world
memory without explicit permission. Our wrapper, however, sets the security bit
of the master interface to normal world by default unless explicitly reconfigured
through software which prevents this.

Our proposed wrapper requires a hardware overhead of 133 LUTs and 55
Slices which is a low overhead compared to the given security gain in our opinion.
There is no cycle count penalty during operation.

In a previous contribution, Brunel et al. [7] have developed a secure AXI
bridge which is similar to a full IOMMU core for SoCs. The downside in our
view is that it requires significantly more hardware resources and contains a sig-
nificantly larger amount of source code to review. Coburn et al., [8] and Cotret
et al. [9] present a post-boot run-time protection core similar to TrustZone. This
is achieved by storing system wide or processor specific (for MPSoCs) security
policies in large look-up-tables or BRAMS resulting in a significant overhead
in area and latency. In contrast, the proposed wrapper protects devices against
malicious hardware IP cores. Further, the wrapper reuses the configuration in-
formation passed to it from the firmware and leverages the time between the
AXI handshaking for the enforcement. Hence minimizing the overhead in terms
of area, performance, latency and maintenance of the security policies.

Xilinx provides a module known as the XMPU which can be used to dynam-
ically restrict memory access from early boot stages onwards [28] but is only
available for the Zynq Ultrascale+ devices. Unfortunately, the sources of the
module are not publicly available. In contrast, our AXI-wrapper can be used for
any IP cores with memory access and is not restricted to any manufacturer or
device. Also, as the source code of the wrapper is small in size and public, it can
be easily reviewed and re-used.
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7 Conclusion

We successfully demonstrated the feasibility and practical impact of attacks on
the secure boot process of FPGA SoCs through hardware on the FPGA. In a
time where services such as the Amazon AWS EC2 F1 instances and embedded
systems based on FPGA SoCs entice the broader use of hardware from IP ven-
dors, the trust level of such outsourced hardware is difficult to determine. Hence,
in our opinion, hardware cores including unwanted functionality such as the one
described here, could become more common in hardware IP marketplaces. Hence,
to prevent attacks against secure boot such as the one we presented and protect
against similar attacks through unauthorized memory accesses from hardware
cores generally, we propose to use our efficient wrapping module as a counter-
measure. Alternatively, a strict restriction in the boot order (FPGA last) and
early configuration of IOMMUs would be necessary.
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