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Abstract. Since they were first proposed as a countermeasure against differential power
analysis (DPA) and differential electromagnetic analysis (DEMA) in 2006, threshold schemes
have attracted a lot of attention from the community concentrating on cryptographic imple-
mentations. What makes threshold schemes so attractive from an academic point of view is
that they come with an information-theoretic proof of resistance against a specific subset of
side-channel attacks: first-order DPA. From an industrial point of view they are attractive
as a careful threshold implementation forces adversaries to DPA of higher order, with all its
problems such as noise amplification. A threshold scheme that offers the mentioned provable
security must exhibit three properties: correctness, incompleteness and uniformity. A thresh-
old scheme becomes more expensive with the number of shares that must be implemented
and the required number of shares is lower bound by the algebraic degree of the function
being shared plus 1. Defining a correct and incomplete sharing of a function of degree d in
d + 1 shares is straightforward. However, up to now there is no generic method to achieve
uniformity and finding uniform sharings of degree-d functions with d+ 1 shares has been an
active research area. In this paper we present a generic, simple and potentially cheap method
to find a correct, incomplete and uniform d + 1-share threshold scheme of any S-box layer
consisting of degree-d invertible S-boxes. The uniformity is not implemented in the sharings
of the individual S-boxes but rather at the S-box layer level by the use of feedforward and
some expansion of shares. When applied to the Keccak-p nonlinear step χ, its cost is very
small.
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1 Introduction

Systems such as digital rights management (DRM) or banking cards try to offer protection
against adversaries that have physical access to platforms performing cryptographic com-
putations, allowing them to measure computation time, power consumption or electromag-
netic radiation. Adversaries can use this side channel information to retrieve cryptographic
keys. A particularly powerful attack against implementations of cryptographic algorithms is
differential power analysis (DPA) introduced by Kocher et al. [20]. This attack can exploit
even the weakest dependence of the power consumption (or electromagnetic radiation) on
the value of the manipulated data by combining the measurements of many computations
to improve the signal-to-noise ratio. The simplest form of DPA is first-order DPA, that



exploits the correlation between the data and the power consumption. To make side chan-
nel attacks impractical, system builders implement countermeasures, often multiple at the
same time.

In threshold schemes, as proposed by Rijmen et al. [23,24,25] one represents each sen-
sitive variable by a number of shares (typically denoted by d+ 1) such that their (usually)
bitwise sum equals that variable. These shares are initially generated in such a way that any
subset of d shares gives no information about the sensitive variable. Functions (S-boxes,
mixing layers, round functions . . . ) are computed on the shares of the inputs resulting in
the output as a number of shares. Threshold schemes must be correct : the sum of the out-
put shares equals the result of applying the implemented function on the sum of the input
shares. Another essential property of a threshold implementation of a function is incom-
pleteness: each output share shall be computed from at most d input shares, or equivalently,
in the computation of each output share at least one input share is not used. Incomplete-
ness guarantees that each individual output share computation cannot leak information
about sensitive variables. The resulting output is then typically subject to some further
computation, again in the form of separate and incomplete computation on shares. For
these subsequent computations to not leak information about the sensitive variables, the
output of the previous stage must still be uniform. Therefore, in an iterative cryptographic
primitive such as a block cipher, we need a threshold implementation of the round function
that yields a uniformly shared output if its input is uniformly shared. This property of the
threshold implementation is called uniformity.

Threshold schemes form a good protection mechanism against DPA. In particular, using
it allows building cryptographic hardware that is guaranteed to be unattackable with first-
order DPA, assuming certain leakage models of the cryptographic hardware at hand and
for a plausible definition of “first order”. De Cnudde et al. have an interesting work [13]
on such assumptions and their validity in the real world. Still, threshold schemes remain
a very attractive technique for building cipher implementations that offer a high level of
resistance against DPA and differential electromagnetic analysis (DEMA).

Constructing an incomplete threshold implementation of a non-linear function is rather
straightforward and can be done in the following way. One can express the function alge-
braically as the sum of monomials. Then one replaces each shared variable by the sum
of its shares. Subsequently, one can work out the expressions resulting in a larger num-
ber of monomials, where the factors are bits (or in general, components) of the shares. A
monomial of degree d can have factors from at most d shares. So if there are d+ 1 shares,
such a monomial is incomplete: there is at least one share missing. It follows that to build
an incomplete sharing of a function of algebraic degree d, it suffices to take d + 1 shares.
Clearly, the implementation cost of a function increases exponentially with its degree: a
monomial of degree d requires d+1 shares and explodes into the sum of (d+1)d monomials.
To reduce the implementation cost, Stoffelen applies techniques for representing S-boxes
with minimum number of nonlinear operations [31]. Kutzner et al. on the other hand factor
S-boxes of some degree as the composition of functions of lower algebraic degree [21]. Such
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techniques, combined with tower field representation, are also applied in the sharing of the
AES S-box, that natively has algebraic degree 7. We refer again to De Cnudde et al. for
an example [14]. These publications demonstrate that these techniques are quite powerful,
but serial composition comes at a prize. It requires the insertion of registers (or latches)
between the combinatorial circuits that increase latency.

Constructing a correct, incomplete and uniform sharing is widely perceived as a chal-
lenge and an important research problem. Several publications have been devoted to the
classification of 3, 4 and 5-bit S-boxes with respect to cryptographic properties, and the
minimum number of shares for which a uniform sharing is known is an important criterion.
Examples include the study of Bilgin et al. [8] and that of Božilov et al. [10]. Other papers
propose solutions, sometimes only partial, for large classes of S-boxes. We refer again to
Bilgin et al. [9], Kutzner et al. [21], and Beyne et al. [5]. A well-known example of an S-box
that is problematic in this context is the Keccak S-box, known as χ. It has algebraic degree
2 and no uniform incomplete 3-share threshold implementations is known. We proposed a
number of different solutions with varying degrees of efficiency in [6]. One solution is the
transition from 3 to 4 or even 5 shares. Another is the compensation of loss of uniformity
by injecting fresh randomness. As argued by Reparaz et al. [29], this technique brings the
threshold scheme in the realm of private circuits as proposed by Ishai et al. [19].

Given a non-uniform threshold implementation, it is not immediate how to exploit its
non-uniformity in an attack. We made a start in explorations in that direction in [16,17].
However, uniformity of a threshold implementation is essential in its information-theoretical
proof of resistance against first-order DPA. In short, if one has a uniform sharing, one does
not have to give additional arguments why the threshold scheme would be secure against
first-order DPA.

In this paper we present a simple and efficient technique for building a threshold im-
plementation with d + 1 shares of any invertible S-box layer of degree d that is correct,
incomplete and uniform. When applied to the nonlinear layer in Keccak, χ, it can be
seen as the next logical step of the methods discussed in Section 3 of our paper [6]. In that
method 4 fresh random bits must be introduced every round to restore uniformity. The
added value of the technique in this paper is that it no longer needs any fresh random-
ness and that it can convert a correct and incomplete sharing of any S-box into a correct,
incomplete and uniform sharing of a layer of such S-boxes.

1.1 The “Changing of the Guards” idea in a nutshell

The basic method can be summarized as follows:

– The shared S-boxes are arranged in a linear array. These sharings must be correct and
incomplete.

– Each share at the output of S-box i is made uniform by bitwise adding to it one or two
shares from the input of S-box i− 1.
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– The state is augmented with d dummy components, called guards, to be added to the
output of the first S-box in the array.

– The new value of the guards are taken from the input of the last S-box in the array.
– Uniformity is proven by giving an algorithm that computes the shared input from the

shared output of this mapping.

For threshold sharings that have a so-called multi-transformation property, the guards can
be reduced in size and so does the amount of bits fed forward.

1.2 Notation

Assume we have a nonlinear mapping that consists of a layer of invertible S-boxes. We
denote the width of the S-boxes by n and their total number by m. So the layer operates
on an array of n×m bits. We denote the input as x = (x1, x2, x3, . . . xm) and the output
as X = (X1, X2, X3, . . . Xm), with each of the xi and Xi an n-bit array.

In general the S-boxes can differ per position. We denote the S-box at position i by Si,
so Xi = Si(xi).

We denote addition in GF(2) by +.

1.3 Overview of the paper

In Section 2 we explain and prove the soundness of the method applied to the simplest
possible case. In Section 3 we formulate the method for a more general case and in Section 4
we apply it to the nonlinear layer used in Keccak, Keyak and Ketje. Finally in Section 5
we discuss some implementation aspects.

2 The basic method applied to 3-share threshold schemes

Assume the same S-box is used for all positions and its algebraic degree is 2 over GF(2),
that we denote by S. In that case it is trivial to find a correct and incomplete threshold
scheme with 3 shares S by substituting the terms in the algebraic expression of the S-box
by their sum as components and appropriately distributing the monomials over the three
shares of the S-box sharing. We denote the three shares that represent xi by ai, bi and ci,
with xi = ai + bi + ci. Likewise, we denote the three shares that represent Xi by Ai, Bi and
Ci, with Xi = Ai +Bi +Ci. The sharing of S consists of three functions from 2n to n bits,
that we denote as (Sa, Sb, Sc). Correctness is satisfied if:

Sa(bi, ci) + Sb(ai, ci) + Sc(ai, bi) = S(ai + bi + ci) .

Incompleteness is implied by the fact that each of the three elements of (Sa, Sb, Sc) take
only two shares as inputs. In this scheme our m-component input x is represented by triplet
(a, b, c) with three shares.
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At the basis of our “Changing of the Guards” technique for achieving uniformity is
the expansion of the shared representation. In particular, for the input we expand share
b with an additional dummy component that we denote as b0 and do the same for c. In
this sharing x is represented by (a, b, c) where a has m components and both b and c have
m+ 1 components. A triplet (a, b, c) is a uniform sharing of x if all possible values (a, b, c)
compliant with x are equiprobable. As there are 2(3m+2)n possible triplets (a, b, c) and being
compliant with x requires the satisfaction of mn independent linear binary equations, there
are exactly 2(3m+2)n−mn = 22(m+1)n encodings (a, b, c) of any particular value x. The same
holds for the sharing (A,B,C) of the output X.

Definition 1. The Changing of the Guards sharing of an S-box layer where (Sa, Sb, Sc) is
a sharing of S, mapping (a, b, c) to (A,B,C), is given by:

Ai = Sa(bi, ci) + bi−1 + ci−1 for i > 0

Bi = Sb(ai, ci) + ci−1 for i > 0

Ci = Sc(ai, bi) + bi−1 for i > 0

B0 = cm

C0 = bm

The sharing is depicted in Figure 1.
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Fig. 1. Changing of the Guards sharing applied to simple S-box layer.

We can now prove the following theorem.

Theorem 1. If S is an invertible S-box and (Sa, Sb, Sc) is a correct and incomplete sharing
of S, the sharing of Definition 1 is a correct, incomplete and uniform sharing of an S-box
layer with S as component.

Proof. Correctness follows from the correctness of the S-box sharing and the fact that each
input components that is fed forward to the output of its neigboring components is added

5



twice. We have for all i > 0:

Ai +Bi + Ci = Sa(bi, ci) + bi−1 + ci−1 + Sb(ai, ci) + ci−1 + Sc(ai, bi) + bi−1

= Sa(bi, ci) + Sb(ai, ci) + Sc(ai, bi)

= S(ai + bi + ci) .

For incompleteness, we see in Definition 1 that the computation of Ai does not involve
components of a, the one of Bi does not involve components of b and the one of Ci does
not involve components of c. Note that making this statement valid for component i = 0
necessitates the swap when expressing the output guards from the input shares of the last
S-box: (C0, B0) = (bm, cm).

For uniformity, we observe that for each input x or each output X there are exactly
22(m+1)n valid sharings. If the mapping of Definition 1 is an invertible mapping from (a, b, c)
to (A,B,C), it implies that if (a, b, c) is a uniform sharing of x, then (A,B,C) is a uniform
sharing of X. It is therefore sufficient to show that the mapping of Definition 1 is invertible.
We will do that by giving a method to compute (a, b, c) from (A,B,C).

We compute the components of (a, b, c) starting from index m down to 0. First we
compute the shares bm and cm from the output guards. We have bm = C0 and cm = B0.
Then we use the correctness property to compute the component xm from Xm = Am+Bm+
Cm by applying the inverse S-box yielding am = xm + bm + cm. From this we compute
the output components of the S-box. This allows us again to compute bm−1 and cm−1.
Concretely, we can iterate the following loop for i going from m down to 1:

ai = S−1(Ai +Bi + Ci) + bi + ci

bi−1 = Sc(ai, bi) + Ci

ci−1 = Sb(ai, ci) +Bi .

ut

The term “guards” refers to the dummy components b0 and c0 that are there to guard
uniformity and that are “changed” to B0 and C0 by the shared implementation of the
S-box layer.

The cost of this method is the addition of 4 XOR gates per bit of x and the expansion of
the representation by 2n bits. The cost of additional XOR gates is typically not negligible
but still relatively modest compared to the gates in the S-box sharing. For a typical S-box
layer the expansion of the state is very small.

When applying this method to an iterated cipher that has a round function consisting
of an S-box layer and a linear layer, one can do the following. The sharing of the S-box layer
maps (a, b, c) to (A,B,C) and the linear layer is applied to the shares separately. In the
linear mapping the guard components B0 and C0 are simply mapped to the components
b0 and c0 of the next round by the identity.

It is likely that the swapping that takes place between the guards is not necessary, but
it does simplify the proof for the incompleteness aspect.
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3 Generalization to any invertible S-box layer

Here we give a method for an S-box layer with only restriction that the component S-boxes
have the same width and are all invertible. So this includes the case that the S-boxes
are different and even the case that they have different algebraic degrees. We assume the
maximum degree over all S-boxes of the layer is d and so we can produce a correct and
incomplete threshold scheme with d + 1 shares. We denote the shares by x0 to xd and
component j of share i by xji .

In the generalization there are d guard components instead of two. Similarly to the
three-share implementation, there is no guard for the first share (a or x0). The schedule for
adding shares from the neighboring S-box is somewhat more complicated. There are four
cases, depending on the index j of the output share considered:

j > 2 : add input shares j − 1 and j − 2 of its neighboring S-box;

j = 2 : add input share 1 of its neighboring S-box;

j = 1 : add input share d of its neighboring S-box;

j = 0 : add input shares d and d− 1 of its neighboring S-box.

Clearly, input shares with index 0 are not added to the neighboring S-box output share.
All other input shares are added to exactly two output shares of the neighboring S-box. We
depict the treatment of the output of shared S-box of index i for a threshold scheme with
6 shares in Figure 2. The S-box inputs have been omitted for not crowding the picture. We
now provide the more formal definition.

Fig. 2. Example of the generic method, depicting treatment of output of shared S-box i.

Definition 2. The Changing of the Guards sharing of an S-box layer with (S0
i , S

1
i , . . . , S

d
i )

a sharing of Si, mapping (x0, x1, x2, . . . , xd) to (X0, X1, X2, . . . , Xd), is given by (with
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xi \ xji denoting the vector of d elements xj
′

i for j′ 6= j):

X0
i = S0

i (xi \ x0i ) + xd−1i−1 + xdi−1 for i > 0

X1
i = S1

i (xi \ x1i ) + xdi−1 for i > 0

X2
i = S2

i (xi \ x2i ) + x1i−1 for i > 0

· · ·
Xj

i = Sj
i (xi \ xji ) + xj−2i−1 + xj−1i−1 for i > 0

· · ·
Xd

i = Sd
i (xi \ xdi ) + xd−2i−1 + xd−1i−1 for i > 0

Xj
0 = xj+1

m for j > 0

Xd
0 = x1m

We can now prove the following theorem.

Theorem 2. Let S be an S-box layer consisting of invertible n-bit S-boxes Si with 1 ≤ i ≤
m, where the S-boxes Si may be different and where d is the maximum degree over all these
S-boxes. Let (S0

i , S
1
i , . . . S

d
i ) with 1 ≤ i ≤ m be correct and incomplete sharing of Si with

d+ 1 shares. Then the sharing of Definition 2 is a correct, incomplete and uniform sharing
of the S-box layer with Si as components.

Proof. Correctness follows from the correctness of the individual S-box sharings and the
fact that each input component that is fed forward to the output of its neigboring compo-
nents is added twice. We have for all i > 0:

∑
j

Xj
i =

∑
j

Sj
i (xi \ xji )

+

∑
j>2

xj−2i−1 + xj−1i−1

+
(
xd−1i−1 + xdi−1

)
+
(
xdi−1

)
+
(
x1i−1

)

= Si(xi) +

 ∑
0<j<d−1

xji−1

+

 ∑
1<j<d

xji−1

+ xd−1i−1 + x1i−1

= Si(xi) .

For incompleteness, we see in Definition 2 that the computation of Xj
i does not involve

components of xj as in the S-box input xji is excluded and the inputs of the neighboring
S-box that are added are taken from shares j − 1 and j − 2 (modulo d + 1 for j < 2).
Moreover, there is a (cyclic) swap taking place in the mapping from the input shares of
the last S-box to the output guards to ensure this.

For uniformity, it is again sufficient to show that the mapping of Definition 2 is invert-
ible. We give a method to compute (x0, x1, x2, . . . , xd) from (X0, X1, X2, . . . , Xd).
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We compute the components of (x0, x1, x2, . . . , xd) starting from index m down to 0.
From Definition 2 it is immediate that x1m = Xd

0 and then x2m = X1
0 , x

3
m = X2

0 , x
4
m =

X3
0 , . . . x

d
m = Xd−1

0 . Then we can iterate the following loop for i going from m down to 1:

x0i = S−1i (
∑
j

Xj
i ) +

∑
j>0

xji

xdi−1 = S1
i (xi \ xji ) +X1

i

x1i−1 = S2
i (xi \ x2i ) +X2

i

x2i−1 = S3
i (xi \ x3i ) +X3

i + x1i−1

x3i−1 = S4
i (xi \ x4i ) +X4

i + x2i−1

· · ·
xd−1i−1 = Sd

i (xi \ xji ) +Xd
i + xd−2i−1 .

ut

As said, our method applies also to heterogeneous S-box layers, i.e., S-box layers with
different S-boxes. Such layers are quite rare in modern cryptography, especially after the
benefits of symmetry became clear. The block cipher DES [26] is a notable exception to
this, but one may argue whether that is a modern cipher. In any case, one may ask how
the method applies to S-box layer in the DES F-function as it consists of non-invertible
S-boxes. Remarkably, as was stated by Boss et al. [11] and mathematically explained by
the same team [12], in Feistel networks where the S-box layer is embedded in a function
whose output is (bitwise) added to part of the state, uniformity is achieved automatically.
Basically, thanks to the Feistel construction the shared round function is a permutation
and hence uniform. So, if the algebraic degree of the S-box layer is d, it is sufficient to
represent the state by d + 1 shares and have a threshold implementation for the S-boxes
that is correct and incomplete.

4 Application to the sharing χ′ for Keccak

Keccak-p is the permutation underlying our hash function Keccak [28,2], our authenti-
cated encryption schemes Keyak [4] and Ketje [3] and is defined in the Keccak reference
[2] and NIST standard [28].

4.1 The sharing χ′ of the nonlinear layer in Keccak

The nonlinear layer in Keccak-p is called χ. It has algebraic degree 2 over GF(2) and
operates independently on 5-bit rows. If we denote the elements of a row by x0 to x4, the
mapping χ applied to a single row is defined as (with addition and multiplication over
GF(2) and indices ` ∈ Z5 taken modulo 5):

X` = x` + (x`+1 + 1)x`+2 .
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Note that the state of Keccak-p is a three-dimensional array and we only represent the
intra-row index here by ` for clarity as we look here at a single row.

In [1] we proposed a correct and incomplete sharing of χ with 3 shares and called it χ′.
As she mapping χ operates independently on 5-bit rows and consequently χ′ operates in
parallel on 15-bit units. If we denote the three shares by a, b and c, χ′ is defined as:

A` = b` + (b`+1 + 1)b`+2 + b`+1c`+2 + b`+2c`+1, (1)

B` = c` + (c`+1 + 1)c`+2 + c`+1a`+2 + c`+2a`+1, (2)

C` = a` + (a`+1 + 1)a`+2 + a`+1b`+2 + a`+2b`+1, (3)

4.2 The multi-transformation property

The mapping χ′ has a remarkable property that we can exploit to reduce the overhead due
to the “Changing of the Guards” method. We call this a multi-transformation property,
inspired by the concept of multi-permutations proposed by Schnorr and Vaudenay [30].
Loosely speaking, an n-bit transformation has a multi-transformation property of order r
if for any input, the bits in r specific positions in the input and the bits in n − r specific
positions in the output, with r < n, together fully determine the remaining n − r bits of
the input. We now give a more rigorous definition.

Definition 3 (Transformation property with respect to an index subset). Let f
be a transformation operating on vectors of n bits (x0, x1, . . . , xn−1) and let us denote the
bits of f(x0, x1, . . . , xn−1) by (xn, xn+1, . . . , x2n−1). We can now represent f by a set F of
2n vectors of the form (x0, x1, . . . , x2n−1). Let S be a subset with n elements of the set of
indices of these vectors, i.e., S ⊂ Z2n. Then we say f has the transformation property
with respect to S if the set F has no two elements that are equal in all components in S,
or equivalently:

∀x ∈ F : #{y | ∀i ∈ S : xi = yi} = 1 .

We call r = #(S ∩ Zn) the order of the transformation property.

Clearly, any n-bit transformation f has a transformation property of order n with respect
to S = Zn. So if it has the transformation property with respect to an additional set S, we
call it a multi-transformation. Note that any permutation f has a transformation property
of order 0 with respect S = Z2n \ Zn. In the context of this paper we are interested in
finding a multi-transformation property in S-box threshold implementations that are not
uniform and hence are not permutations.

4.3 Using the multi-transformation property of χ′

The mapping χ′ restricted to a single row is a transformation operating on 15 bits. We
can show it has a transformation property of order 6. The consequence of this is that we
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can reduce the size of the guards from 10 bits to 4 bits and the number of bitwise addition
operations per row to 8.

We first need to introduce some notation. For a 5-bit vector s, let L(s) , (s0, s1, s2)
and R(s) , (s3, s4). Similarly, we define L(a, b, c) , (a0, b0, c0, a1, b1, c1, a2, b2, c2) and
R(a, b, c) , (a3, b3, c3, a4, b4, c4).

Lemma 1. For any of the 215 choices of L(A,B,C),R(a, b, c), there is exactly one solution
L(a, b, c),R(A,B,C) such that (A,B,C) = χ′(a, b, c).

Proof. We describe how to compute L(a, b, c),R(A,B,C) from L(A,B,C),R(a, b, c). We
rewrite each of the Equations (1) by switching lefthand term and first terms on the right-
hand from side:

b` = A` + (b`+1 + 1)b`+2 + b`+1c`+2 + b`+2c`+1,

c` = B` + (c`+1 + 1)c`+2 + c`+1a`+2 + c`+2a`+1,

a` = C` + (a`+1 + 1)a`+2 + a`+1b`+2 + a`+2b`+1,

We can use these equations for computing (a2, b2, c2) by taking ` = 2. Clearly the first
term on the righthand side is part of L(A,B,C) and the remaining terms are expressed in
terms of bits in R(a, b, c). We can now use this equation with ` = 1 to compute (a1, b1, c1)
using the acquired value of (a2, b2, c2). This can be repeated for ` = 0 giving us the full
knowledge of (a, b, c). From (a, b, c) we can compute (A,B,C) using Equations (1) and
hence we also know R(A,B,C). ut

We can use Lemma 1 to apply a variant of the “Changing of the Guards” method to χ′

that requires less state expansion and XOR gates due to the feedforward. We call it χ′′.

Definition 4. The χ′′ sharing of χ is given by:

R(Ai) = R(χ′a(bi, ci)) + R(bi−1) + R(ci−1) for i > 0

R(Bi) = R(χ′b(ai, ci)) + R(ci−1) for i > 0

R(Ci) = R(χ′c(ai, bi)) + R(bi−1) for i > 0

L(Ai) = L(χ′a(bi, ci)) for i > 0

L(Bi) = L(χ′b(ai, ci)) for i > 0

L(Ci) = L(χ′c(ai, bi)) for i > 0

R(B0) = R(cm)

R(C0) = R(bm) .

Here the indexing i assumes rows arranged in a one-dimensional array. In Keccak-p this
is a two-dimensional array indexed by y and z. It is however simple to adopt a convention
for converting this to a single-dimensional one, e.g. i = y + 5z.
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Note that L(b0), L(c0), L(B0) and L(C0) do not occur in the computations. We can therefore
reduce the guards to their 2-bit right parts: R(b0), R(c0), R(B0) and R(C0).

The total expansion of the state reduces from 2 times the S-box width (totalling to
10 bits) to 4 bits. Moreover, there are only 8 XOR gates per S-box, i.e. 1.6 per native
bit instead of 4 additional XOR gates per native bit. In the context of the χ′ sharing the
computational overhead is very small, as implementing Equation (1) requires 9 XOR gates
and 9 (N)AND gates per native bit. Note that the multi-transformation technique can be
applied to other primitives that use a variant of χ as nonlinear layer.

We can now prove the following theorem.

Theorem 3. χ′′ as defined in Definition 4 is a correct, incomplete and uniform sharing
of χ.

Proof. Correctness and incompleteness is immediate. For proving uniformity we describe
how to compute (a, b, c) from (A,B,C). We compute the components of (a, b, c) starting
from index m down to 0. First we have R(bm) = R(C0) and R(cm) = R(B0). Then we
can iterate the following loop going from m down to 1, computing ai,L(bi),L(ci) and
R(bi−1),R(ci−1):

– R(ai) = R(S−1(Ai +Bi + Ci)) + R(bi) + R(ci)
– compute L(ai, bi, ci) from L(Ai, Bi, Ci),R(ai, bi, ci) using Lemma 1
– R(bi−1) = R(Sc(ai, bi)) + R(Ci)
– R(ci−1) = R(Sb(ai, ci)) + R(Bi).

ut

5 Implementation aspects

In this section we discuss suitability of our method for decomposed S-boxes, parallel and
serial architectures.

5.1 Compatibility with serial decomposition of S-boxes

To reduce the number of shares, one has proposed the serial decomposition of S-boxes in
S-boxes of lower degree. Notably, Kutzner et al. decomposed all 4-bit S-boxes of algebraic
degree 3 into component degree-2 mappings [21] in such a way that for each of the compo-
nents a correct, incomplete and uniform 3-share threshold scheme can be found. One may
wonder whether our method can be combined with such decomposition.

As a matter of fact, when “Changing of the Guards” is applied, the requirements on
the decomposition due to sharing vanish: it suffices to find a decomposition of an invertible
S-box as the series of two degree-2 S-boxes. If such a decomposition exists, but if no uniform
sharing for one or both component S-boxes can be found, our method comes to the rescue.
In Figure 3 we illustrate it for the case that the “Changing of the Guards” is applied to
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both layers. Note that the uniformity of the composed mapping follows directly from the
uniformity of the component mappings.

One can see that in between the two layers, there is a register or latch. This results
in an increase of latency. The output guards of the first step are used as input guards for
the second step. If one of the two layers would not require “Changing of the Guards”, the
guards would just skip that step. For example, if the first layer would not use the method,
the incoming guards b0, c0 would not be used the first layer but directly in the second layer
and the outcoming guards A0, B0 would be produced by the second layer.

a1
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aʹ1

b0 c0 b1

Sb

bʹ1

c1

Sc

cʹ1

a2

Sa

aʹ2

b2

Sb

bʹ2

c2
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cʹ2
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b3
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bʹ3
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cʹ3
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Sʹa

A1

bʹ0 cʹ0
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Sʹa
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Sʹb

B2

Sʹc

C2

Sʹa
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Sʹb

B3 C0

Sʹc

C3 B0

Fig. 3. Changing of the Guards applied to a layer of serially decomposed S-boxes.

In the case of more complex decompositions that combine serial and parallel composi-
tion, our “Changing of the Guards” cannot be readily applied. Especially if the decompo-
sition contains building blocks that are not permutations. A well-known example of such
decompositions are the ones applied to the S-box of our cipher Rijndael [15] by Moradi
et al. [22] and Bilgin et al. [7]. As the Rijndael S-box has algebraic degree 7 in GF(2) and
hence would require 8 shares, a straightforward implementation of our proposed method
would be very expensive. Due to the status of Rijndael as worldwide block cipher stan-
dard [27], it would be interesting further work to find a decomposition of the Rijndael
S-box in terms of components that are all permutations of low algebraic degree.
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5.2 Implementation cost in parallel architectures

In a parallel architecture where the full round function is implemented in a block of com-
binatorial logic, the cost of the basic method is d XOR gates per bit plus d/m additional
registers per bit. Introducing an extra share costs a single additional register per bit, plus
possibly additional combinatorial logic. It follows that in parallel architectures the method
becomes less and less interesting as d grows. It is at its best for protecting degree-2 func-
tions, especially when a multi-transformation property can be exploited as in Keccak. As
a matter of fact, Bilgin et al. [6] compare Keccak 4-share circuits with ones protected
with a method that only differs from our method by the fact that the 4 bits of additional
state are generated randomly every round, and hence the numbers reported there are ex-
pected to be very close to what we would achieve. A 4-share fully parallel implementation
of Keccak-f [1600] turns out to be about 20 % more expensive than a 3-share guards-like
one.

5.3 Implementation cost in serial architectures

In serial architectures, the combinatorial logic can be limited to a fraction of the round
function and one round takes multiple cycles. In the extreme case, this logic would only
contain a single implementation of the (shared) S-box. In Figure 4 we illustrate two cases
to show that our method is compatible with such an architecture, both zooming in on
the circuit implementing the shared S-box. It can be seen that the combinatorial logic is
extended with two registers (called guard) for keeping the inputs of the previous S-box
computation. Figure 4 should give a good idea of how these circuits operate, but are not
fully self-explanatory as we omit some details to not overload the pictures. The single-stage
circuit operates as follows:

– The S-box input arrives in the boxes indicated by in. Depending on the architecture
these can be registers, the output of another combinatorial block or a multiplexer.

– The operation of the guard registers:
• At the beginning of the computation, they are initialized to random values (not

depicted).
• While processing an S-box layer, they get their input from the in boxes.
• After processing the last S-box of a layer, they keep their value but swap contents

(not depicted).
– The S-box output is presented in the boxes indicated by out for further processing or

storage. The guards never leave the guard registers.

The two-stage circuit is a pipeline and operates similarly to the single-stage one, with the
following refinements:

– During operation the first stage will always be one S-box ahead of the second stage.
This implies that the processing of a layer of m S-boxes will take m+ 1 cycles.
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– The guard register of the first stage operate similarly to the single-stage case. The only
difference is that after the last S-box of a layer has been processed, they get their values
from the guard registers of the second stage (not depicted to not overload the figure).

– The operation of the guard registers of the second stage:

• At the beginning of the computation, they are initialized to random values (not
depicted).

• While processing an S-box layer, they get their input from the from the registers or
latches, indicated by reg, in between the two stages.

• After processing the last S-box of a stage, they get their value from the guard
registers of the first stage.

In a serial implementation the guard registers have a higher relative overhead when
comparing to the combinatorial circuit alone. However, when the real estate for keeping
the state is also counted, an additional share is much more expensive than some additional
XOR gates and guard registers. The exercise by Bilgin et al. [6] reports on 4-share serialized
architectures that are 30% more expensive than a 3-share guards-like one.

Fig. 4. Circuit for shared S-box computation in serial architecture, single-stage (left), two-
stage (right)
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6 Conclusions

In this paper we introduce a simple and low cost technique for achieving a 3-share correct,
incomplete and uniform threshold implementation of the nonlinear layer in Keccak. We
have generalized this to a generic technique for achieving a d+ 1-share correct, incomplete
and uniform threshold implementation of any S-box layer of invertible S-boxes that have
degree at most d. Looking for S-boxes with uniform threshold implementations with the
minimum (d + 1) number of shares has therefore lost relevance. On the other hand, it
becomes now interesting to look for S-boxes that have d+ 1-share implementations with a
suitable multi-transformation property, such as observed in the nonlinear layer of Keccak.
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11. Erik Boss, Vincent Grosso, Tim Güneysu, Gregor Leander, Amir Moradi, and Tobias Schneider, Strong
8-bit sboxes with efficient masking in hardware, in Gierlichs and Poschmann [18], pp. 171–193.

12. , Strong 8-bit sboxes with efficient masking in hardware extended version, J. Cryptographic
Engineering 7 (2017), no. 2, 149–165.

13. Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla Nikova, and Vincent
Rijmen, Does coupling affect the security of masked implementations?, IACR Cryptology ePrint Archive
2016 (2016), 1080.

14. Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen,
Masking AES with d+1 shares in hardware, in Gierlichs and Poschmann [18], pp. 194–212.

15. J. Daemen and V. Rijmen, The design of Rijndael — AES, the advanced encryption standard, Springer-
Verlag, 2002.

16. Joan Daemen, Spectral characterization of iterating lossy mappings, IACR Cryptology ePrint Archive
2016 (2016), 90.

17. , Spectral characterization of iterating lossy mappings, Security, Privacy, and Applied Cryptog-
raphy Engineering - 6th International Conference, SPACE 2016, Hyderabad, India, December 14-18,
2016, Proceedings (Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, eds.), Lecture Notes in
Computer Science, vol. 10076, Springer, 2016, pp. 159–178.

18. Benedikt Gierlichs and Axel Y. Poschmann (eds.), Cryptographic hardware and embedded systems -
CHES 2016 - 18th international conference, santa barbara, ca, usa, august 17-19, 2016, proceedings,
Lecture Notes in Computer Science, vol. 9813, Springer, 2016.

19. Yuval Ishai, Amit Sahai, and David Wagner, Private circuits: Securing hardware against probing at-
tacks, Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings (Dan Boneh, ed.), Lecture Notes in
Computer Science, vol. 2729, Springer, 2003, pp. 463–481.

20. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun, Differential power analysis, Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings (Michael J. Wiener, ed.), Lecture Notes in Computer Science, vol.
1666, Springer, 1999, pp. 388–397.

21. Sebastian Kutzner, Phuong Ha Nguyen, and Axel Poschmann, Enabling 3-share threshold implemen-
tations for all 4-bit s-boxes, Information Security and Cryptology - ICISC 2013 - 16th International
Conference, Seoul, Korea, November 27-29, 2013, Revised Selected Papers (Hyang-Sook Lee and Dong-
Guk Han, eds.), Lecture Notes in Computer Science, vol. 8565, Springer, 2013, pp. 91–108.

22. Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang, Pushing the limits: A
very compact and a threshold implementation of AES, Advances in Cryptology - EUROCRYPT 2011
- 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings (Kenneth G. Paterson, ed.), Lecture Notes in Computer
Science, vol. 6632, Springer, 2011, pp. 69–88.

23. Svetla Nikova, Christian Rechberger, and Vincent Rijmen, Threshold implementations against side-
channel attacks and glitches, Information and Communications Security, 8th International Conference,
ICICS 2006, Raleigh, NC, USA, December 4-7, 2006, Proceedings (Peng Ning, Sihan Qing, and Ninghui
Li, eds.), Lecture Notes in Computer Science, vol. 4307, Springer, 2006, pp. 529–545.

24. Svetla Nikova, Vincent Rijmen, and Martin Schläffer, Secure hardware implementation of non-linear
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