
Run-time Accessible DRAM PUFs in
Commodity Devices

Wenjie Xiong1, André Schaller2, Nikolaos A. Anagnostopoulos2,
Muhammad Umair Saleem2, Sebastian Gabmeyer2,

Stefan Katzenbeisser2, and Jakub Szefer1

1 Yale University, New Haven, CT, USA
{wenjie.xiong,jakub.szefer}@yale.edu

2 Technische Universität Darmstadt and CASED, Darmstadt, Germany
{schaller,anagnostopoulos}@seceng.informatik.tu-darmstadt.de
{gabmeyer,katzenbeisser}@seceng.informatik.tu-darmstadt.de

muhammadumair.saleem@stud.tu-darmstadt.de

Abstract. A Physically Unclonable Function (PUF) is a unique and
stable physical characteristic of a piece of hardware, which emerges due
to variations in the fabrication processes. Prior works have demonstrated
that PUFs are a promising cryptographic primitive to enable secure key
storage, hardware-based device authentication and identification. So far,
most PUF constructions require addition of new hardware or FPGA im-
plementations for their operation. Recently, intrinsic PUFs, which can
be found in commodity devices, have been investigated. Unfortunately,
most of them suffer from the drawback that they can only be accessed
at boot time. This paper is the first to enable the run-time access of
decay-based intrinsic DRAM PUFs in commercial off-the-shelf systems,
which requires no additional hardware or FPGAs. A key advantage of
our PUF construction is that it can be queried during run-time of a
Linux system. Furthermore, by exploiting different decay times of indi-
vidual DRAM cells, the challenge-response space is increased. Finally,
we introduce lightweight protocols for device authentication and secure
channel establishment, that leverage the DRAM PUFs at run-time.

1 Introduction

Continued miniaturization and cost reduction of processors and System-on-Chip
designs have enabled the creation of almost ubiquitous smart devices, from smart
thermostats and refrigerators, to smartphones and embedded car entertainment
systems. While there are numerous advantages to the proliferation of such smart
devices, they create new security vulnerabilities [12, 1, 8, 6]. One major concern
is that they often lack the implementation of sufficient security mechanisms [34,
46]. Critical challenges in securing these devices are to provide robust device au-
thentication and identification mechanisms, and means to store long-term cryp-
tographic keys in a secure manner that minimizes the chances of their illegitimate
extraction or access.

A classic approach to device identification is to embed cryptographic keys in
each device by burning them in at manufacturing time. However, this solution
comes with potential pitfalls, such as increased production complexity as well
as rather limited protection against key extraction attempts [2]. In order to ad-
dress these issues, researchers have proposed Physically Unclonable Functions
(PUFs). PUFs leverage the unique behavior of a device due to manufacturing
variations as a hardware-based fingerprint. A PUF instance is extremely diffi-
cult to replicate, even by the manufacturer. Hence, PUFs have been proposed
as cryptographic building blocks in security primitives and protocols for: au-
thentication and identification [40, 18, 43], hardware-software binding [9, 10, 31,
19, 33], remote attestation [20, 37], and secret key storage [45, 44]. So far, most
types of PUFs in digital electronic systems (such as arbiter PUFs [7, 40]) require
addition of dedicated circuits to the device and thus increase manufacturing
costs and hardware complexity. Consequently, there is great interest in so-called
intrinsic PUFs [9], which are PUFs that are already inherent to a device.

Intrinsic PUFs are considered an attractive low-cost security anchor, as they
provide PUF instances within standard hardware that can be found in commer-
cial off-the-shelf devices [42, 26], without requiring any hardware modifications.
The most prominent example of an intrinsic PUF is a PUF based on Static
Random-Access Memory (SRAM) [31, 19, 35, 38, 25], which draws its character-
istics from the startup values of bi-stable SRAM memory cells. SRAM PUFs are
known to have good PUF characteristics [14]. However, PUF measurements must
be extracted during a very early boot stage (before the SRAM is used). Con-
sequently, the derived key can only be used at this time, or must be saved
to a different memory region, which may cause security problems. Recently,
a new error-based SRAM PUF, which can be accessed at run-time, was pro-
posed [3]. However, to query the PUF, the supply voltage needs to be lowered
to induce errors in SRAM cells, requiring special hardware in the processor.

Most recently, PUF-like behavior has been found in Dynamic Random-Access
Memory (DRAM) [28]. One approach to extract unique DRAM behavior induced
by manufacturing variations relies on startup tendencies of DRAM cells [41].
Another approach to extract DRAM PUFs is to leverage the unique decay char-
acteristics of DRAM cells. In [16], authors exploit the fact that charges of indi-
vidual DRAM cells, if not refreshed, decay over time in a unique manner. PUF
responses3 can be generated by initializing the DRAM cells with a specific value,
disabling DRAM refresh cycles and letting the cells decay for a defined decay
time. As a result of this decay, a DRAM chip exhibits unique bit flips at unique
locations, which in their entirety can be used as a PUF response by reading the
DRAM content after the decay time elapsed. However, current state of the art
requires custom hardware or FPGA-based platforms [41, 16], in order to modify
the DRAM refresh mechanism such that DRAM PUF extraction is possible.

This paper is the first to extract DRAM PUFs from commercial systems,
requiring no special hardware modifications or FPGA setup, and to provide a

3 In the rest of the paper we will use the terms PUF response and PUF measurement
interchangeably.

2

practical solution to query DRAM PUFs during run-time on a Linux system.
Our decay-based DRAM PUF allows for repeated access, which overcomes the
limitation of previous intrinsic memory-based PUFs that were available at device
startup only. Moreover, the capacity of DRAM is magnitudes larger than SRAM,
allowing to draw many more bits in order to derive larger cryptographic key
material, or to segment DRAM into several logical PUFs. Furthermore, DRAM
is an excellent candidate for an intrinsic PUF as DRAM is an integral part of
today’s commodity platforms and can be found in many “smart” devices, such
as smartphones or smart thermostats. Recent use of embedded DRAM [29, 4] in
low-cost microprocessors will further increase the availability of DRAM as part
of mobile and embedded computing platforms.

1.1 Related Work on DRAM PUFs

The earliest approach to exploit manufacturing variations of DRAM cells for
identification and random number generation was reported in [28, 29], in which
an embedded DRAM chip was designed to generate fingerprints to mitigate
hardware counterfeiting. In subsequent work [16, 22, 27], the decay of external
DDR3 modules was evaluated through memory controllers in FPGAs and was
used for identification and key storage. Other work has focused on the design
of a circuit exploiting the variation in write reliability of DRAM cells [11], and
presented an authentication scheme based on signatures generated using such
variations. Unlike our work, all previous research required dedicated circuits to
be designed or FPGAs to be used. To the best of our knowledge, this is the
first work to present an approach to enable the usage of intrinsic DRAM PUF
instances on commodity devices at run-time. Further, we provide a system-level
solution for querying the DRAM PUF while a Linux OS is running on same
hardware and is actively using DRAM chip wherein the PUF is located.

1.2 Contributions

– We extract decay-based DRAM PUF instances from unmodified commodity
devices, including the PandaBoard and the Intel Galileo platforms. Two
approaches are presented: (i) accessing the PUF at device startup using a
customized firmware, and (ii) querying the PUF with a kernel module, while
Linux OS is running on same hardware and is actively using DRAM chip
wherein the PUF is located.

– Through extensive experiments, we show that DRAM PUFs exhibit robust-
ness, reliability, and in particular allow usage of the decay time as part of
the PUF challenge.

– We introduce new metrics for evaluating DRAM PUFs, based on the Jac-
card index, and show they are significantly better suited for the decay-based
DRAM PUF evaluation over the classic Hamming-distance based metrics.

– Finally, we exploit time-dependent decay characteristics of DRAM cells in
the design of PUF-enhanced protocols. In particular, we show protocols for
device identification and authentication that draw their security from the
time-dependent decay of DRAM cells.

3

Fig. 1: A single DRAM cell consists of a ca-
pacitor and a transistor, connected to word-
lines (WL) and bit-lines (BL and BL*); ar-
rows indicate leakage paths for dissipation
of charges that lead to PUF behavior.

Fig. 2: Five steps required for run-
time access of a DRAM PUF. Only
during steps (b) – (d) the memory
associated with the PUF is not us-
able for other processes.

1.3 Paper Organization

The remainder of the paper is organized as follows. Section 2 presents back-
ground on DRAM and introduces our DRAM PUFs. Section 3 describes our
experimental setup and the implementation of software needed to realize the
DRAM PUFs. Section 4 contains our evaluation of DRAM PUFs character-
istics. Section 5 describes lightweight protocols for device authentication and
secure channel establishment. Section 6 presents open research issues. Section 7
concludes the paper.

2 Extracting DRAM PUFs from Commodity Devices

In a DRAM cell, a single data bit is stored in a capacitor and can be accessed
through a transistor, as shown in Figure 1. DRAM cells are grouped in arrays,
where each row of the array is connected to a horizontal word-line. Cells in
the same column are connected to a bit-line. All bit-lines are coupled to sense-
amplifiers that amplify small voltages on bit-lines to levels such that they can
be interpreted as logical zeros or ones. In order to access a row, all the bit-lines
will be precharged to half the supply voltage VDD/2; subsequently the word-line
is enabled, connecting every capacitor in that row with its bit-line. The sense
amplifier will then drive the bit-line to VDD or 0V, depending on the charge on
the capacitor. The amplifiers are usually shared by two bit-lines [15], of which
only one can be accessed at the same time. This structure makes the two bit-lines
complementary, which results in two kinds of cells: true cells and anti-cells. True
cells store the value 1 as VDD and 0 as 0V in the capacitor, whilst anti-cells
store the value 0 as VDD and 1 as 0V.

DRAM cells require periodic refresh of the stored charges, as otherwise the
capacitors lose its charge over time, which is referred to as DRAM cell decay or
leakage. The hardware memory controller takes care of periodic refresh, whose

4

interval is defined by the vendor and is usually 32ms or 64ms. Without this pe-
riodic refresh, some of the cells will slowly decay to 0, while others decay to 1,
depending on whether they are a true cell or an anti-cell. Because of the man-
ufacturing variations among DRAM cells, some cells decay faster than others,
which can be exploited as PUF.

2.1 Decay-based PUFs in DRAM

The process of exploiting the unique decay behavior of DRAM cells to extract
a PUF measurement is summarized in Figure 2. The starting point (a) com-
prises the DRAM module being configured for ordinary use, where the memory
controller periodically refreshes all of the cells’ content. In a first step (b), the
memory region defined by starting address (addr) and size (size) is reserved, e.g.,
using memory ballooning introduced in Section 2.2. Furthermore, the refresh for
the PUF region is disabled and the initialization value (initval) is written to
the region. Next, (c) for a given decay time (t), the memory region containing
the PUF is not accessed to let the cells decay. (d) After the decay time has
expired, the memory content is read in order to extract the PUF measurement.
At the end, (e) the normal operating condition of the memory is restored and
the memory region is made available to the operating system (OS) again.

We introduce here the concept of logical DRAM PUFs, which are memory
regions within a DRAM module that are used for obtaining the PUF measure-
ments. For a particular DRAM, each logical PUF is determined by: (i) addr,
the starting address of the logical PUF, and (ii) size, its size. A typical DRAM
memory can be divided into thousands or more logical PUFs.

To get a challenge/response, two additional parameters are needed. First, an
initial value (initval), which is written into the cells in the DRAM region before
any decay. Second, the desired decay time (t) that will cause enough charge
to have leaked in some cells such that their stored logical bits will flip. As the
decay time and the positions of the flipped bits are unique for individual DRAM
regions, the “pattern” of flipped bits for a given decay time t can serve as the
PUF response.

In order to derive a cryptographic key from the PUF response using a mini-
mum number of DRAM cells, the entropy within a logical DRAM PUF response
needs to be maximized. The value stored in a DRAM cell before it decays,
initval, plays an important role, as some DRAM cells decay to 0 and some to
1. Thus, for example, if a cell decays to 0, but its initial value is set to 0, the
decay effect cannot be observed. If the physical layout of the DRAM module is
known (i.e., the distribution of the true cells and anti-cells, and hence the indi-
vidual decay directions), it is possible to construct an initialization pattern that
maximizes the number of observable bit flips in the PUF response. However, the
physical layout is rarely known. Furthermore, the optimal initialization value
would need to be part of the challenge, or have to be stored on the device. In
our evaluation, we use a fixed initialization value initval = 0 to all cells. The
entropy of our measurements thus can be further improved.

5

Overall, the challenge of a DRAM PUF can be defined as a tuple (id, t),
where id denotes the logical PUF instance (addr and size) and t denotes the
decay time after which the memory content is read. We will not specify the
initval as we assume it is fixed.

Although SRAM and DRAM PUFs are both considered weak PUFs [30], the
DRAM PUF presented in this paper offers multiple challenges due to the ability
to vary decay times t. Given two PUF measurements mx and mx+1, taken at
corresponding decay times tx and tx+1 (tx+1 ≥ tx), both mx+1 and mx can serve
as PUF responses. With increasing decay times t, the number of DRAM cells
flipping is monotonically increasing. Thus, mx+1 consists of a number of newly
flipped bits as well as the majority4 of bits that already flipped in mx. In general,
if tx ≤ tx+1 and addrx = addrx+1, sizex = sizex+1, we observe mx ⊆ mx+1, up
to noise. However, note that it is not possible to measure responses for several
decay times t0, t1, ..., tn at once. In particular, reading the PUF response at one
decay time will cause the memory to be refreshed (the cells are re-charged as
the data is read from DRAM cells into row buffers). Querying a PUF response
with different decay time thus requires one to restart the experiment.

2.2 Run-time DRAM PUF Access

Deactivating DRAM refresh for PUF access during device operation is a non-
trivial task: when DRAM refresh cycles are disabled, critical data (such as data
belonging to the OS or user-space programs) will start to decay and the system
will crash. In our experiments, the Intel Galileo board with Yocto Linux crashes
about a minute after DRAM refresh is disabled. Therefore, we present a cus-
tomized solution which allows us to refresh critical code, but leaves PUF areas
untouched. This solution is based on two techniques dubbed selective DRAM
refresh and memory ballooning. The former allows for selectively refreshing the
memory regions occupied by the OS and other critical applications so that they
run normally and do not crash. Memory ballooning, on the other hand, safely
reserves the memory region that corresponds to a logical PUF without corrupt-
ing critical data and also protects the memory region from OS and user-space
programs accesses, to let the cells decay during PUF measurement.

Selective DRAM Refresh. On some devices, such as the PandaBoard, DRAM
consists of several physical modules or logical segments, where the refresh of
each module/segment can be controlled individually. In this case, the PUF can be
allocated in a different memory segment from the OS and user-space programs.
When querying the PUF, only the refresh of the segment holding the PUF is
deactivated, while the other segments remain functional.

On other devices, e.g., the Intel Galileo, the refresh rate can only be con-
trolled in the granularity of the entire DRAM5. Refresh at segment granularity

4 Due to noise, the set of flipping cells for a fixed time tx will not be completely stable.
Nevertheless, our experiments in Section 4 show very low amounts of noise.

5 Although the test boards do have multiple DRAM modules, DRAM refresh cannot
be disabled individually. In particular, on the Galileo board, one DRAM chip is used

6

is not possible. However, memory rows can be refreshed implicitly once they
are accessed due to a read or a write operation. When a word line is selected
because of a memory access, the sense amplifier drives the bit-lines to either
the full supply voltage VDD or back down to 0V, depending on the value that
was in the cell. In this way, the capacitor charge is restored to the value it had
before the charges leaked. Using the above principle, even if refresh of the whole
memory is disabled, selective memory rows can be refreshed by issuing a read
to a word within each of the selected memory rows. This functionality can be
implemented in a kernel module by reading a word within each memory row to
be refreshed (Section 3).

Ballooning System Memory. To query a chosen logical PUF, the DRAM por-
tion given by addr and size is overwritten by the respective initialization value
(initval) and refresh is deactivated. To prohibit applications from accessing the
PUF and thus implicitly refreshing them, we use memory ballooning concepts
developed for virtual machines [47]. Memory ballooning is a mechanism for re-
serving a portion of the memory so as to prevent the memory region from being
used by the kernel or any application. This approach allows to specify the phys-
ical address (addr) and size (size) of the memory region that will be reserved,
i.e., the PUF. Once PUF memory is “ballooned”, DRAM refresh can be disabled
and selective refresh enabled for the non-PUF memory region. After PUF access
is finished, the balloon can be deflated and the memory restored to normal use.

2.3 Security Assumptions

DRAM PUFs differ from classic memory-based PUFs, as they can be evaluated
during run-time. An attacker, who wants to evaluate the PUF has less capa-
bilities in doing so due to the fact that disabling and enabling DRAM refresh
includes writing to hardware registers, a task which can only be performed by
the kernel. An attacker thus requires root privileges. Furthermore, accessing the
memory dedicated to the PUF is restricted to the kernel as well. Thus, a crucial
security assumption is that firmware and operating system are trusted and an
attacker never gains root privileges.

An attacker may try to change the ambient temperature in order to influence
the bit flip characteristics, but a legitimate user can compensate the temperature
effect by adjusting the decay time (as discussed in Section 4). The attacker
could also try to adapt the “rowhammering” approach presented in [17], i.e.,
inducing random bit flips into DRAM cells by repeatedly accessing adjacent rows.
However, he or she would not succeed, as DRAM PUFs allocate a continuous
chunk of memory. Rowhammering would only apply at the borders of the PUF
area. Using voltage variations in order to manipulate PUF behavior, as done
in [11, 28], is out of scope of this paper, as we are focussing on intrinsic PUFs
on commodity hardware where such voltage control is not possible.

to store the most significant 8 bits of every 16 bits, while the other chip is used to
store the least significant 8 bits of every 16 bits. Disabling refresh on a single chip
is not possible, as half of each memory word would be lost.

7

3 Implementation & Performance

We implemented and tested our DRAM PUF construction on two popular plat-
forms, the PandaBoard ES Revision B3 and the Intel Galileo Gen 2. The Panda-
Board houses a TI OMAP 4460 System-on-Chip (SoC) module that implements
1 GB of DDR2 memory fron ELPIDA in a Package-on-Package (PoP) configu-
ration, which operates at 1.2V. The Intel Galileo has an Intel Quark SoC X1000
SoC with two 128MB DDR3 from Micron, operating at 1.5V. The two physi-
cal DRAM modules are accessed in parallel and located on the same PCB as
the processor.

We implemented two different approaches to query the PUF. The first ap-
proach uses a modified firmware in order to obtain PUF measurements during
the boot phase. Second, we implemented a kernel module-based solution that
enables PUF queries during run-time of a Linux operating system. The firmware
solution is easy to implement and was used to take most of the measurements
from the Intel Galileo. The kernel module-based solution was used for obtain-
ing measurements on the PandaBoard platform and for gathering temperature
stability measurements on the Galileo. The kernel module thus also serves as
a general proof-of-concept of the run-time accessibility of the proposed DRAM
PUF. We present implementation details of both approaches in the following.

3.1 Firmware-based PUF Access

The firmware is the first code to be executed upon device start. During the
DRAM initialization phase, the firmware itself does not require the use of DRAM.
This makes it ideal for gathering PUF measurements.

In the case of the Galileo platform, we modified the Quark EDKII firmware.
PUF measurement code was inserted just before DRAM refresh is enabled in
order to access the PUF, comprising the following steps: writing the initial value
(initval) to the specific logical PUF (as defined by addr and size), waiting for
the decay time t to elapse, and then reading back the PUF response via the
console. After the PUF response is retrieved, normal firmware execution and
eventual boot of the OS can resume. The firmware patch consists of about 60
lines of C code. Most of the code implements initializing the PUF parameters
and accessing the PUF memory region. The PUF response is read and printed
to the console for later analysis.

On the PandaBoard, the implementation is similar: DRAM is initialized with
initval, the auto-refresh of the memory controller is disabled, and after decay
time t, the memory content is sent over UART to a workstation. Our firmware
patch for the PandaBoard consists of about 50 lines of C code.

3.2 Linux Kernel Module-based PUF Access

In order to be able to access the DRAM PUF during run-time, we implemented
a kernel module for each platform, which can be inserted at run-time. The kernel
module is designed to work in three phases: (1) Upon loading, the kernel module

8

overwrites the cells in the desired logical PUF region by the initval. (2) The
kernel module then modifies the memory controller via writes to configuration
registers to disable DRAM refresh, while memory holding the OS and application
is selectively refreshed. (3) After the decay time of t seconds elapsed, memory
refresh is enabled again and the PUF response is read out.

On the PandaBoard, DRAM can be accessed using two individual external
memory interfaces (EMIF), with each EMIF covering 512MB. Thus, memory in-
terfaced by the first EMIF can be used by the kernel and user space applications,
while memory covered by the second EMIF can be used exclusively as DRAM
PUF. In case of the PandaBoard, in order to implement this configuration, the
interleaving mechanism that alternately maps subsequent logical addresses to
physical addresses from both modules must first be disabled within the boot-
loader. Next, measurements can be obtained by turning off the refresh rate of
the module that implements the logical PUFs and reading the memory contents
after the decay time t, while the kernel and user space applications are residing
functional on the other DRAM module. The kernel module takes about 100 lines
of C code in total.

On the Intel Galileo, the refresh of the whole DRAM has to be disabled
as it is not possible to control refresh at granularity smaller than a DRAM
module. Consequently, the kernel module must selectively refresh memory used
by the kernel and applications. The kernel module schedules selective refresh
tasks6 every Nms, where N is the desired refresh rate. For selective refresh, the
module loops over all memory addresses that need to be refreshed, issuing a read
to a memory word in every DRAM row. The kernel module takes about 300 lines
of C code in total.

During a PUF query, the OS and other applications can operate normally,
but some CPU resources must be spent on selective memory refresh. If the size
of the memory region is too large, the CPU core will spend the majority of its
time refreshing the defined memory area, leaving little resources to user space
applications. Furthermore, if the time required to refresh the whole memory
region is much longer then the required refresh period, critical portions of code
and data may have decayed before they can be accessed by the kernel module.

Table 1 shows the time required to perform selective refresh of memory re-
gions of various sizes, ranging from 32MB up to 128MB. We see that selective
refresh takes between 7.6ms and 21.2ms for a single run. The last two columns in
Table 1 show the CPU time spent on selective refresh, assuming 64ms and 200ms
refresh rates. For an active memory size of 128MB, the system will spend 33% of
CPU time on selective refresh, when a target refresh period of 64ms is selected.
However, at room temperature, the 64ms refresh period, picked by most vendors,
is very conservative, and our experiments suggest that even with a refresh rate of
200ms our setup is stable. Previous work on DRAM retention time support our
results [21]. Thus, depending on the operating conditions and required stability
guarantees, the selective refresh period can be increased, allowing larger DRAM

6 A key feature of Linux, the so-called workqueues, allowing tasks to be scheduled at
specific time intervals, is used for this purpose.

9

Table 1: Time needed to perform memory reads (i.e. the selective refresh) to refresh
varying sizes of memory regions on the Intel Galileo board with DDR3 memory.

memory size selective refresh time %CPU time
(64ms refresh period)

%CPU time
(200ms refresh period)

32MB 7.6ms 12% 4%

64MB 12.1ms 19% 6%

128MB 21.2ms 33% 10%

to be refreshed, or leaving more CPU resources for computation. In our setup,
we were able to reduce the memory footprint of Yocto Linux, commonly used
on Intel Quark devices, down to 32MB without any special modifications.7 At
32MB, only 7.6ms are needed for selective refresh at 64ms, making more than
87% CPU time available for other applications. These numbers demonstrate that
selective refresh is viable for realistic code sizes.

4 Evaluation of DRAM PUF Characteristics

We measured the PUF instances on the Intel Galileo and PandaBoard, as de-
scribed in Section 3. We performed measurements using four different Panda-
Boards and five Intel Galileo devices. Furthermore, given the large amount of
memory present, we measured two 32KB logical PUFs on each device, resulting
in eight different logical PUFs for the PandaBoard as well as ten logical PUFs for
the Intel Galileo. Each logical PUF was measured at five different decay times t,
with 50 measurements each. Based on these measurements we evaluated robust-
ness, uniqueness, and randomness, as well as time and temperature dependency,
and stability of the DRAM PUFs.

The characteristics of the DRAM PUFs are different compared to the SRAM
PUFs. Rather than being considered as an array of bits, a DRAM PUF response
mainly comprises the positions of flipped bits in a memory region. Thus, classic
metrics that are used to evaluate memory-based PUFs, which are usually based
on fractional Hamming distances, do not properly reflect the properties of the
DRAM PUFs. This effect is particularly noticeable when evaluating the unique-
ness of PUF instances. In case of the SRAM PUF, uniqueness is expressed due
to differences in the startup values of all SRAM cells amongst different devices.
Consequently, uniqueness is measured using the fractional Hamming distance
between startup values taken from different PUF instances (inter-Hamming Dis-
tance, inter-HD). However, in case of the DRAM PUF it is rather the location,
i.e., the indices, of the cells that flip, which is the root cause for the uniqueness.
If one would apply the fractional inter-Hamming Distance, the whole 32KB

7 One required change is disabling or limiting the journaling service. Other options
available are to reduce the size of the journal so it does not take much memory, or
using persistent storage for the journal.

10

Table 2: Metrics of logical PUF instances measured at different decay times.

decay
time

device family min.
Jintra

max.
Jinter

fractional
entropy
Ht/N

avg.
decay
rate

max.
fractional
intra-HD

min.
fractional
inter-HD

120s
PandaBoard 0.4634 0.0102 0.0271 0.0041 0.0045 0.0038
IntelGalileo 0.7712 0.0038 0.0062 0.0009 0.0003 0.0012

180s
PandaBoard 0.4382 0.0168 0.0754 0.0102 0.0083 0.0139
IntelGalileo 0.8361 0.0044 0.0169 0.0024 0.0005 0.0032

240s
PandaBoard 0.4087 0.0258 0.0893 0.0159 0.0101 0.0244
IntelGalileo 0.6261 0.0049 0.0250 0.0041 0.0020 0.0057

300s
PandaBoard 0.4222 0.0405 0.1478 0.0202 0.0123 0.0238
IntelGalileo 0.7944 0.0055 0.0353 0.0061 0.0013 0.0080

360s
PandaBoard 0.3484 0.0342 0.1440 0.0234 0.0206 0.0279
IntelGalileo 0.8276 0.0072 0.0541 0.0093 0.0022 0.0124

measurement would be considered, including those cells that did not flip within
the observed time period, resulting in a very low value, which does not capture
uniqueness to the full extent.

Thus, we propose new metrics to evaluate robustness and uniqueness of the
DRAM PUF that are based on the Jaccard index[13]. The Jaccard index is a well
known metric to quantify the similarity of two sets of different size: the index
results in a value of zero if both sets share no common elements and a value
of one if both sets are identical. A summary of our results is shown in Table 2.
Only for comparison to the case of SRAM PUFs we also give numbers for the
classic fractional Hamming-distance based metrics.

Uniqueness. In order to evaluate the uniqueness of the PUF, we consider the
set of indices of DRAM cells that flipped due to decay among different PUFs.
In particular, based on two measurements m1,m2 that were obtained from two
different logical PUFs for the same decay time t, we construct two corresponding
sets v1 and v2 that store the indices of the flipped cells. Uniqueness is measured
by the Jaccard index Jinter(v1, v2):

Jinter(v1, v2) =
|v1 ∩ v2|
|v1 ∪ v2|

. (1)

For an ideal PUF, the value of Jinter(v1, v2) should be close to zero, indicating
that two logical PUFs rarely share flipped bits. Indeed, as Table 2 shows, our
DRAM PUFs depict an almost perfect behavior with the Intel Galileo having a
maximum of Jinter = 0.0072 at t = 360s. The PandaBoard shows larger values
with a maximum value of 0.0405 at t = 300s which, however, is still close to the
optimal value of zero.

Robustness. In order to quantify the inherent noise in the PUF measurements
and consequently PUF robustness, we computed the Jaccard index Jintra(v1, v2)
between two sets containing the indices of flipped bits in two measurements of

11

Jaccard index between pairs of measurements
0 0.2 0.4 0.6 0.8 1

P
ro

b
a
b
il
it
y

0

0.05

0.1

0.15

Jinter

Jintra

Jaccard index between pairs of measurements
0 0.2 0.4 0.6 0.8 1

P
ro

b
a
b
il
it
y

0

0.05

0.1

0.15

0.2

0.25

Jinter

Jintra

Fig. 3: Distribution of Jintra and Jinter values for (left) the PandaBoard and (right)
the Intel Galileo.

the same logical PUF at identical decay times. An ideal PUF should show values
close to one, indicating that responses are stable.

Figure 3 displays the distributions of Jintra(v1, v2) and Jinter(v1, v2) of all
measurements, corresponding to identical decay times, for both device types.
A clear divide between the two distributions indicates that individual devices
can be distinguished perfectly, while the PUF response is stable over subsequent
measurements.

Again, for comparison, we also provide data on the fractional intra-Hamming
Distance (intra-HD) in Table 2, i.e., the Hamming distance between subsequent
measurements. In comparison to SRAM PUFs, the Hamming distance values
are much smaller due to the lower number of bit flips within the DRAM PUF.
Nevertheless, except for one case, also the minimum inter-HD is multiply larger
than the maximum intra-HD, indicating close to perfect separability.

Entropy . In order to generate cryptographic keys from the PUF response, PUF
measurements must exhibit sufficient entropy. We estimate the Shannon entropy
of DRAM PUF responses as follows. We again consider the set v of indices
of DRAM cells that flipped after time t. Denote with k the cardinality of v
and with N the total number of DRAM cells. Assuming that the flipped bits
are distributed uniformly, as confirmed by our experiments, the probability of
observing one set v is: P (v) = 1/

(
N
k

)
. The Shannon entropy of the DRAM PUF

for a given decay time can thus be calculated using

Ht = log2

(
N

k

)
. (2)

Note, that simply observing the number of bits decaying after time t has
elapsed, is not sufficient for determining k, as the bit decay will be due to two
effects: (i) short-term noise that must be corrected and (ii) stable long-term de-
cay characteristics. In order to approximate k, indicating the stable PUF char-
acteristics, multiple measurements for a single PUF can be averaged in order
to eliminate the noise component. Table 2 lists the fractional entropy Ht/N
computed this way. We observe that the entropy is significantly bigger on the

12

Decay time (sec)
120 180 240 300 360

D
ec

ay
ra

te

0

0.005

0.01

0.015

0.02

0.025

Decay time (sec)
120 180 240 300 360

D
ec

ay
ra

te

0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 4: Time-dependency of decay rate for DRAM modules on the (left) PandaBoard
and the (right) Intel Galileo at room temperature.

PandaBoard, indicating more bit flips than on the Intel Galileo. This is most
likely due to the different technologies used to implement DRAM cells.

It is noteworthy to compare the entropy that can be extracted from different
PUF implementations. While SRAM PUFs usually show min-entropy values
of around 0.7 − 0.9 bits per cell, the entropy of the proposed DRAM PUF is
one order of magnitude smaller. This can be explained as follows: whilst within
SRAM the majority of cells have a unique startup pattern, in case of DRAM only
some cells will flip during the observed decay time. However, this lower entropy
can be easily compensated by the magnitudes higher (usually a thousand times)
amount of DRAM cells available.

Decay Dependency on Time and Temperature. Figure 4 shows the decay rate as
a function of decay time for both the PandaBoard and Intel Galileo. All mea-
surements were taken at ambient room temperature with DRAM chips operating
at around 40◦C. Every data point shows the average of all logical PUFs. We see
that the decay rate significantly increases with time on the Galileo. The Panda-
Board shows an s-like decay that has a steep beginning and saturates towards
t = 360s.

This plot allows us to estimate the number of time-dependent challenges
that a logical PUF can provide. In order to allow for unique identification at
any given decay time, the set of decay times t1, t2, ..., tn must be chosen such
that the corresponding measurements show a minimum number of new bits
flips, referred to as εbits, which is greater than the inherent noise. Given εbits,
the set of viable decay times (and thus the challenges of a logical PUF) can be
chosen accordingly. We used the maximum noise level previously observed for
each respective decay time t in order to get a conservative approximation of the
maximum number of challenges per logical PUF. We experimentally determined
the maximum number of decay times to be n = 7 for the Intel Galileo and n = 2
for the PandaBoard. The number assumes a maximum decay time tn ≤ 360s and
possible challenges are indicated by vertical red lines in Figure 4. The smaller
number for the PandaBoard is mainly due to higher noise. In particular, we

13

Temperature (/C)
40 60 80

D
ec

ay
ra

te

0

0.05

0.1

0.15

0.2

t1 = 120s
t2 = 180s
t3 = 240s
t4 = 300s
t5 = 360s

Temperature (/C)
40 60 80

D
ec

ay
ra

te

0

0.05

0.1

0.15

0.2

0.25

0.3

t1 = 120s
t2 = 180s
t3 = 240s
t4 = 300s
t5 = 360s

Fig. 5: Relation between the temperature and the decay rate measured on (left)
the PandaBoard and (right) the Intel Galileo.

observe that for the PandaBoard the Jintra values can be comparably low, i.e.
Jintra = 0.3484 at t = 360s. However, given Jinter is a magnitude different from
Jintra, unique identification ability is preserved.

A second factor influencing the decay rate of DRAM cells is temperature.
In Figure 5 we show the dependency between temperature and decay rate for
DRAM modules on the Intel Galileo and the PandaBoard. In order to control
the temperature, we used a metal ceramic heater to heat the surface of DRAM
modules to the desired temperature and took the measurements.

Although temperature affects the decay rate significantly, it does not change
the decay characteristics much; instead, it affects decay time: We observed that
by using a carefully chosen smaller decay time t′T ′ < t at a larger temperature
T ′ > T , the same PUF response can be obtained as with decay time t at tem-
perature T . In our experiments, we derive the following dependency for the Intel
Galileo boards:

t′T ′ = t ∗ e−0.0662∗(T
′−T). (3)

Hence, if the PUF is evaluated at a different temperature than during en-
rollment, this can be compensated through adapting the decay time according
to Equation (3). In order to support this statement, we calculated the noise
Jintra between an enrollment measurement at room temperature (40◦C) and a
measurement taken at a different temperature by adjusting decay time. For this
purpose, we created reference measurements at room temperature with decay
times tx = {120s, 180s, 240s, 300s, 360s}. In a next step, we used equivalent
decay times t′T ′ that correspond to temperatures T ′ = {40◦C, 50◦C, 60◦C} and
measured the PUF accordingly. As shown in Figure 6, for all measurements,
Jintra lies within the usual noise level. Thus, differences in temperature can be
accommodated by adjusting decay time accordingly.

Stability over Time. During extended lifetime of devices, DRAM aging effects
will begin to take place. Existing work on SRAM PUFs has explored aging ef-

14

J
in

tr
a

0

0.2

0.4

0.6

0.8

1

t
1

t
2

t
3

t
4

t
5

t
1

t
2

t
3

t
4

t
5

t
1

t
2

t
3

t
4

t
5

40/C 50/C 60/C

Fig. 6: Jintra values (i.e., similarity) of enroll-
ment measurements taken at room temper-
ature and measurements at higher tempera-
tures T ′ = {40◦C, 50◦C, 60◦C}, with adjusted
decay times t′.

Jaccard index between pairs of measurements
0.75 0.8 0.85 0.9 0.95

P
ro

b
ab

il
it
y

0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 7: Distribution of Jintra of
enrollment, reconstruction measure-
ments pairs taken from the same log-
ical PUF instances on Intel Galileo
over four months.

fects [38, 25, 23, 32]. We are aware of limited work on aging-related effects in
DRAM cells with regard to security [36]. Figure 7 shows the histogram of Jintra
values for measurements of an Intel Galileo, taken 4 months apart. Three logic
PUFs were measured, and results are combined. Note that the measurements also
include the noise introduced by temperature changes in our lab. Jintra values
were computed of measurement pairs that comprise an enrollment and a recon-
struction measurement each. The values are similar to the Jintra results shown
in Table 2, suggesting sufficient stability of DRAM PUFs over a long-term usage
time period.

5 Lightweight Protocols for Device Authentication and
Secure Channel Establishment

In the this section we propose two novel PUF-based protocols that draw their
security from the time-dependent decay characteristics of a DRAM PUF instance
when queried at different decay times. Both protocols involve two parties, a client
C and server S. Whilst the first protocol authenticates C towards an honest S,
the second protocol establishes a secure channel between C and S. The protocols
leverage PUF instances extracted from DRAM modules and thus require C to
own a device D that implements a DRAM PUF during the course of the protocol.
For the sake of clarity, we will refer to the PUF instance on the client’s device
as C itself. Further, we omit the full specification parameters of the logical PUF
instance to be queried. Instead of stating all parameters (addr, size) in every
protocol, we refer to one logical PUF instance as id.

Adversary and Threat Model. Our adversary model for the protocols considers a
passive attacker, who is able to observe the network traffic between client and
server and who can capture transmitted messages, in particular previous PUF
measurements that were sent by the client. Furthermore, we consider the Fuzzy

15

Extractor construction, in particular the ECC parameters as well as the Helper
Data, to be public and thus known by the attacker.

Enrollment. An enrollment phase precedes both protocols, which is assumed to
be conducted at a trusted party SYS, such as a manufacturer or a system integra-
tor. For each logical PUF instance, during the enrollment phase, SYS queries the
PUF n times in order to get a set of measurementsM = {mid,0,mid,1, ...,mid,n}
at a defined set of decay times T = {t0, t1, ..., tn}, i.e., mid,x = PUF (id, tx).
Decay times t0, t1, ..., tn are carefully chosen such that t0 < t1 < ... < tn and
for every tuple of subsequent decay times the number of newly introduced bit
flips in PUF measurements is always greater than a security parameter εbits. The
parameter εbits can be changed to adjust security and usability of the protocol
(see the end of this section).

To generate keys for the secure channel establishment protocol, SYS chooses
a set K = {kid,0, kid,1, ..., kid,n} containing uniformly distributed keys and uses a
Fuzzy Extractor to create a set of Helper DataW = {wid,0, wid,1, ..., wid,n}, such
that (kid,x, wid,x) = GEN(mid,x), where GEN(·) denotes the generation func-
tion of the Fuzzy Extractor. While the current Fuzzy Extractor constructions [5,
24] might leak entropy from the helper data in case of biased PUF, we assume
there is a construction tailored for DRAM PUFs. Eventually, T , M W and K
will be given to S, whilst the device will be handed to C in a secure manner.

Device Authentication. In order to authenticate the client C towards an honest
server S, the server chooses the smallest decay time tx not previously used for
logical PUF id in a run of the authentication protocol. Next, S transmits id
and tx to C, who uses it as input to his or her PUF to retrieve a measurement
m′id,x, which is sent back to S. S checks if m′id,x is close enough to a stored
measurement mid,x. This is done by checking whether the Jaccard index of m′id,x
and mid,x is larger than a given threshold εauth, defined based on the noise
of measurement mx. This authentication protocol is depicted on the left side
of Figure 8. Note that for subsequent authentication trials, decay times are
monotonically increasing.

The authentication is designed to be lightweight for the client in terms of
computational overhead and memory footprint. It does not require C to store
any long-term Helper Data or perform expensive decoding that is usually part
of the key reconstruction process performed by classical Fuzzy Extractors. This
is especially useful in the context of highly resource-constrained low-cost devices
that have to be authenticated towards a server repeatedly.

Secure Channel Establishment. Using similar ideas, a secure channel can be es-
tablished between C and S, see Figure 8 (right side). Again, S sends the smallest,
not previously used decay time tx for logical PUF id, this time along with the
corresponding Helper Data wid,x. The client evaluates his PUF instance id using
tx in order to retrieve m′id,x, which is used in combination with wid,x to recon-
struct k′id,x = REC(m′id,x, wid,x). If the measurement m′x was obtained using
the correct logical PUF, the resulting key k′id,x will be identical to the key kid,x
stored at the server in K. Thus, both parties C and S will share the same key.

16

Client C Server S

D T ,M,W,K
authreq, id

tx, id
m′

id,x
m′

id,x
d = J(m′

id,x,mid,x)

d > εauth : auth

d ≤ εauth : noauth

auth / noauth

Client C Server S

D T ,M,W,K
channelreq, id

tx, wid,x
m′

id,x
kid,x

kid,x kid,x

Fig. 8: Sequence diagram of (left) the device authentication protocol and (right) the
secure channel establishment protocol.

In contrast to the authentication protocol depicted above, secure channel estab-
lishment is less lightweight, as it requires the evaluation of the Fuzzy Extractor
on the client.

On The Choice of Security Parameters. Following our threat model, the attacker
can obtain all previously used PUF measurements mx by eavesdropping the au-
thentication protocol, the security of the protocol is inherently based on the
number of newly flipped bits εbits that emerge between measurements for sub-
sequent decay times tx, tx+1. The value of εbits, and correspondingly the decay
times, must be chosen in a way that a new PUF measurement has enough new
entropy, even if the attacker knows the previous measurements.

In order to forge authentication or to derive the session key, the attacker
has to guess the PUF measurement corresponding to the next unused decay
time. In order to do so, the best strategy, without the knowledge of the physical
PUF characteristics, is to randomly guess where the bit flips in the subsequent
measurement will occur, knowing the previous measurement mx. Suppose that
the attacker guesses M new bit flips. Then, he can use these M flips together
with the bit flips in the old response mx as his guess of the new PUF measure-
ment mx+1. In the next paragraphs we estimate the probability of success for
such a strategy. This allows us to fix the security parameter εbits, such that the
probability of a successful guess is small.

We estimate the success probability as follows. The space of potential new
bit flips is of size N , which is the number of bits that did not flip in mx. Out
of the remaining N bits, the attacker can guess M bits and combine them with
mx in order to generate m′x+1. Note that the attacker does not need to guess
the exact pattern mx+1. Instead, the attacker will be successful, if the guessed
measurement m′x+1 is a noisy version of the true measurement, i.e., m′x+1 lies
within the error-correction bounds of the Fuzzy Extractor.

The probability that an attacker guesses M random bits and l of them hap-

pen to be real new bit flips of the subsequent measurement is
(εbitsl)(N−εbitsM−l)

(NM)
.

17

Note that in this case, the Jaccard index of the attacker’s guess and the true

measurement is J(m′x+1,mx+1) = l+|mx|
εbits+M−l+|mx| , where |mx| is the number of

bit flips in the previous measurement mx. Assuming the authentication and key
generation is successful if J(m′x+1,mx+1) > ∆, the attacker will only be suc-

cessful if l is greater than (εbits+M)∗∆
1+∆ − |mx|∗(1−∆)

1+∆ . Thus, the probability for an
attacker to make a successful guess is:

PM =

εbits∑
l=d (εbits+M)∗∆

1+∆ − |mx|∗(1−∆)
1+∆ e

(
εbits
l

)(
N−εbits
M−l

)(
N
M

) . (4)

The attacker can chose any M , which will maximize the success probability PM .
If N is large and M is between Mmin = εbits ∗ ∆ − (1 − ∆)|mx| and Mmax =
εbits+(1−∆)∗|mx|

∆ , PM is monotonically decreasing with M .8 Hence, the attacker
can choose M = Mmin to maximize the success probability.

In order to provide 128-bit security, P = maxM{PM} must be smaller
than 2−128. Given Formula 4 and PUF characteristics, one can fix N and ∆,
then derive εbits for different |mx|, and subsequently estimate the feasible decay
time. For the Intel Galileo, as a conservative estimation, the space of potential
new bit flips is of size N = 30KB (assuming that out of a 32KB logical PUF,
less than 2KB are flipping in mx), and the threshold is ∆ = 0.6. To set |m0|, a
point where the decay is larger than the noise should be found. To be conser-
vative, minimum max intra-HD is used as a reference for |m0|.9 Hence, we set
|m0| = 80, and then we can get εbits1 = 73, and |m1| = |m0|+ εbits2 = 153. Then
with |m1|, we can get εbits2 = 122 and thus |m2| = 275, etc. Consequently, in
the Galileo, a 32KB logical PUF can provide 7 challenges, each with the decay
time shorter than 360s.

6 Open Research Topics

This novel work on run-time accessible DRAM PUFs still leaves a number of open
research issues and questions that need to be addressed. This creates opportuni-
ties for the community to refine and further improve the concept of DRAM PUFs.

Temperature dependency of the DRAM cell decay allows physical attackers
to control the decay rate by adjusting the ambient temperature. For example,
heating a DRAM chip may “speed up” the decay rate, shortening the time
needed for an attacker to observe certain bits flip. Further investigation on the
temperature dependence is needed and counter-measures need to be developed
to thwart such attacks.

Voltage dependency of the DRAM cell decay was not considered in this paper,
as commodity devices usually give no control over DRAM voltages. However,
voltage dependency could be another viable characteristic used for the run-time

8 PM > 0 when M is between εbits ∗∆− (1−∆)|mx| and εbits+(1−∆)∗|mx|
∆

.
9 If the PUF characteristic is better understood for t < 120s, a smaller |m0| may be

chosen.

18

accessible DRAM PUFs, if future commodity devices provide interfaces that
allow for fine-grained control of DRAM voltages.

Readout time of the DRAM PUFs is in the order of minutes. This can be
seen as a disadvantage, although in many cases it can be compensated by the
advantage of being able to access the DRAM PUFs at run-time. Use cases that
allow for such relatively long readout times need to be better understood. At
the same time, improving the readout time is critical in order to broaden the
applicability of DRAM PUFs.

Security assumptions, e.g., the trusted firmware and the operating system,
may be considered as too strong. While these are also required for the other
PUFs in commodity devices, one may look for solutions requiring a smaller
trusted computing base.

Fuzzy Extractor constructions are needed that are either specifically tailored
towards heavily biased PUF responses, found in decay-based DRAM PUFs, or
that use the introduced Jaccard distances. Classic Fuzzy Extractors are based on
Hamming distance-related metrics and are not secure for heavily biased PUFs.
Thus, new constructions for biased PUFs, such as [24, 39], should be developed.

7 Conclusion

In this work we presented intrinsic PUFs that can be extracted from Dynamic
Random-Access Memory (DRAM) in commodity devices. An evaluation of the
DRAM PUFs found on unmodified, commodity devices, in particular the Panda-
Board and Intel Gallileo, showed their robustness, uniqueness, randomness, as
well as stability over period of at least few months. Moreover, in contrast to
existing DRAM and SRAM PUFs, we demonstrate a system model that is able
to query the PUF instance directly during run-time using a Linux kernel module,
based on the ideas of selective DRAM refresh and memory ballooning. We further
presented protocols for device authentication and identification that draw their
security from time-dependent decay characteristics of our DRAM PUF. Our
intrinsic DRAM PUFs overcome two limitations of the popular intrinsic SRAM
PUFs: they have the ability to be accessed at run-time, and have an expanded
challenge-response space due to use of decay time t as part of the challenge.
Consequently, our work presents a new alternative for device authentication by
leveraging DRAM in commodity devices.

8 Acknowledgements

This work has been co-funded by the DFG as part of project P3 within the CRC
1119 CROSSING. This work was also partly funded by CASED. The authors
would like to thank Kevin Ryan and Ethan Weinberger for their help with build-
ing the heater setup used in the experiments, and Intel for donating the Intel
Galileo boards used in this work. The authors would also like to thank anony-
mous CHES reviewers, and especially our shepherd, Roel Maes, for numerous
suggestions and guidance in making the final version of this paper.

19

References

1. Hacking DefCon 23’s IoT Village Samsung fridge, https://www.pentestpartners.
com/blog/hacking-defcon-23s-iot-village-samsung-fridge/, accessed Feb.
2016

2. Armknecht, F., Maes, R., Sadeghi, A.R., Sunar, B., Tuyls, P.: Memory leakage-
resilient encryption based on physically unclonable functions. In: Towards
Hardware-Intrinsic Security, pp. 135–164. Springer (2010)

3. Bacha, A., Teodorescu, R.: Authenticache: harnessing cache ECC for system au-
thentication. In: Proceedings of International Symposium on Microarchitecture.
pp. 128–140. ACM (2015)

4. Batra, P., Skordas, S., LaTulipe, D., Winstel, K., Kothandaraman, C., Himmel, B.,
Maier, G., He, B., Gamage, D.W., Golz, J., et al.: Three-dimensional wafer stacking
using Cu TSV integrated with 45 nm high performance SOI-CMOS embedded
DRAM technology. Journal of Low Power Electronics and Applications pp. 77–89
(2014)

5. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Advances in Cryptology – Eurocrypt.
pp. 523–540. Springer (2004)

6. Foster, I., Prudhomme, A., Koscher, K., Savage, S.: Fast and vulnerable: a story
of telematic failures. In: USENIX Workshop on Offensive Technologies (2015)

7. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Delay-based circuit authen-
tication and applications. In: Proceedings of the ACM Symposium on Applied
Computing. pp. 294–301. ACM (2003)

8. Greenberg, A.: Hackers remotely kill a jeep on the highway–with me in it. Wired,
21 July (2015)

9. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. Springer (2007)

10. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Brand and IP protection with
physical unclonable functions. In: IEEE International Symposium on Circuits and
Systems. pp. 3186–3189 (2008)

11. Hashemian, M.S., Singh, B., Wolff, F., Weyer, D., Clay, S., Papachristou, C.: A ro-
bust authentication methodology using physically unclonable functions in DRAM
arrays. In: Proceedings of the Design, Automation & Test in Europe Conference.
pp. 647–652 (2015)

12. Hernandez, G., Arias, O., Buentello, D., Jin, Y.: Smart nest thermostat: A smart
spy in your home. Black Hat USA (2014)

13. Jaccard, P.: Etude comparative de la distribution florale dans une portion des
Alpes et du Jura. Impr. Corbaz (1901)

14. Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.R., Verbauwhede, I., Wachs-
mann, C.: PUFs: Myth, fact or busted? A security evaluation of physically unclon-
able functions (PUFs) cast in silicon. In: Cryptographic Hardware and Embedded
Systems, pp. 283–301. Springer (2012)

15. Keeth, B.: DRAM circuit design: fundamental and high-speed topics. John Wiley
& Sons (2008)

16. Keller, C., Gurkaynak, F., Kaeslin, H., Felber, N.: Dynamic memory-based physi-
cally unclonable function for the generation of unique identifiers and true random
numbers. In: IEEE International Symposium on Circuits and Systems. pp. 2740–
2743. IEEE (2014)

20

17. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping bits in memory without accessing them: An experimental study
of DRAM disturbance errors. In: ACM SIGARCH Computer Architecture News.
pp. 361–372 (2014)

18. Kocabaş, Ü., Peter, A., Katzenbeisser, S., Sadeghi, A.R.: Converse PUF-based
authentication. Springer (2012)

19. Kohnhäuser, F., Schaller, A., Katzenbeisser, S.: PUF-Based Software Protection
for Low-End Embedded Devices. In: Trust and Trustworthy Computing, pp. 3–21.
Springer (2015)

20. Kong, J., Koushanfar, F., Pendyala, P.K., Sadeghi, A.R., Wachsmann, C.: PU-
Fatt: Embedded platform attestation based on novel processor-based PUFs. In:
ACM/EDAC/IEEE Design Automation Conference. pp. 1–6 (2014)

21. Liu, J., Jaiyen, B., Kim, Y., Wilkerson, C., Mutlu, O.: An experimental study
of data retention behavior in modern DRAM devices: Implications for retention
time profiling mechanisms. In: ACM SIGARCH Computer Architecture News. pp.
60–71 (2013)

22. Liu, W., Zhang, Z., Li, M., Liu, Z.: A Trustworthy Key Generation Prototype Based
on DDR3 PUF for Wireless Sensor Networks. Sensors pp. 11542–11556 (2014)

23. Maes, R., van der Leest, V.: Countering the effects of silicon aging on SRAM PUFs.
In: IEEE International Symposium on Hardware-Oriented Security and Trust. pp.
148–153 (2014)

24. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key genera-
tion from biased pufs. In: Cryptographic Hardware and Embedded Systems–CHES
2015, pp. 517–534. Springer (2015)

25. Maes, R., Rožić, V., Verbauwhede, I., Koeberl, P., Van der Sluis, E., Van der Leest,
V.: Experimental evaluation of Physically Unclonable Functions in 65 nm CMOS.
In: Proceedings of the ESSCIRC. pp. 486–489 (2012)

26. Phone as a Token - turn your phone into an authentication token, https://www.
intrinsic-id.com/technology/phone-as-a-token/, accessed Feb. 2016

27. Rahmati, A., Hicks, M., Holcomb, D.E., Fu, K.: Probable cause: the deanonymizing
effects of approximate DRAM. In: Proceedings of the International Symposium on
Computer Architecture. pp. 604–615 (2015)

28. Rosenblatt, S., Chellappa, S., Cestero, A., Robson, N., Kirihata, T., Iyer, S.S.: A
Self-Authenticating Chip Architecture Using an Intrinsic Fingerprint of Embedded
DRAM. IEEE Journal of Solid-State Circuits pp. 2934–2943 (2013)

29. Rosenblatt, S., Fainstein, D., Cestero, A., Safran, J., Robson, N., Kirihata, T.,
Iyer, S.S.: Field tolerant dynamic intrinsic chip ID using 32 nm high-K/metal gate
SOI embedded DRAM. IEEE Journal of Solid-State Circuits pp. 940–947 (2013)

30. Rührmair, U., Sölter, J., Sehnke, F.: On the Foundations of Physical Unclonable
Functions. IACR Cryptology ePrint Archive 2009, 277 (2009)

31. Schaller, A., Arul, T., van der Leest, V., Katzenbeisser, S.: Lightweight Anti-
counterfeiting Solution for Low-End Commodity Hardware Using Inherent PUFs.
In: Trust and Trustworthy Computing, pp. 83–100. Springer (2014)

32. Schaller, A., Škorić, B., Katzenbeisser, S.: On the systematic drift of physically
unclonable functions due to aging. In: Proceedings of the International Workshop
on Trustworthy Embedded Devices. pp. 15–20. ACM (2015)

33. Scheel, R.A., Tyagi, A.: Characterizing composite user-device touchscreen physical
unclonable functions (pufs) for mobile device authentication. In: Proceedings of the
International Workshop on Trustworthy Embedded Devices. pp. 3–13. ACM (2015)

34. Schneier, B.: The internet of things is wildly insecure—and often unpatchable.
Wired, Jan (2014)

21

35. Schrijen, G.J., van der Leest, V.: Comparative analysis of SRAM memories used
as PUF primitives. In: Proceedings of the Conference on Design, Automation and
Test in Europe. pp. 1319–1324. EDA Consortium (2012)

36. Schroeder, B., Pinheiro, E., Weber, W.D.: DRAM errors in the wild: a large-scale
field study. In: ACM SIGMETRICS Performance Evaluation Review. pp. 193–204
(2009)

37. Schulz, S., Sadeghi, A.R., Wachsmann, C.: Short paper: lightweight remote attesta-
tion using physical functions. In: Proceedings of the ACM Conference on Wireless
Network Security. pp. 109–114 (2011)

38. Selimis, G., Konijnenburg, M., Ashouei, M., Huisken, J., De Groot, H., Van der
Leest, V., Schrijen, G.J., Van Hulst, M., Tuyls, P.: Evaluation of 90nm 6T-SRAM
as Physical Unclonable Function for secure key generation in wireless sensor nodes.
In: IEEE International Symposium on Circuits and Systems. pp. 567–570 (2011)

39. Skoric, B.: A trivial debiasing scheme for helper data systems. Cryptology ePrint
Archive, Report 2016/241 (2016)

40. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the Design Automation Conference.
pp. 9–14 (2007)

41. Tehranipoor, F., Karimina, N., Xiao, K., Chandy, J.: DRAM based Intrinsic Phys-
ical Unclonable Functions for System Level Security. In: Proceedings of the Great
Lakes Symposium on VLSI. pp. 15–20 (2015)

42. Intrinsic-ID to Showcase TrustedSensor IoT Security Solution at InvenSense
Developers Conference, https://www.intrinsic-id.com/intrinsic-id-to-showcase-
trustedsensor-iot-security-solution-at-invensense-developers-conference/, accessed
Feb. 2016

43. Tuyls, P., Batina, L.: RFID-tags for Anti-Counterfeiting. In: Topics in Cryptology,
pp. 115–131. Springer (2006)

44. Tuyls, P., Schrijen, G.J., Willems, F., Ignatenko, T., Skoric, B.: Secure key storage
with PUFs. Security with Noisy Data–On Private Biometrics, Secure Key Storage
and Anti-Counterfeiting pp. 269–292 (2007)

45. Tuyls, P., Škorić, B.: Secret key generation from classical physics: Physical unclone-
able functions. In: AmIware Hardware Technology Drivers of Ambient Intelligence,
pp. 421–447. Springer (2006)

46. Viega, J., Thompson, H.: The State of Embedded-Device Security (Spoiler Alert:
It’s Bad). IEEE Security & Privacy pp. 68–70 (2012)

47. Waldspurger, C.A.: Memory Resource Management in VMware ESX Server. ACM
SIGOPS Operating Systems Review pp. 181–194 (2002)

22

