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Abstract. Rowhammer attacks have exposed a serious vulnerability in
modern DRAM chips to induce bit flips in data which is stored in mem-
ory. In this paper, we develop a methodology to combine timing analysis
to perform the hammering in a controlled manner to create bit flips in
cryptographic keys which are stored in memory. The attack would re-
quire only user level privilege for Linux kernel versions before 4.0 and is
unaware of the memory location of the key. An intelligent combination of
timing Prime + Probe attack and row-buffer collision is shown to induce
bit flip faults in a 1024 bit RSA key on modern processors using real-
istic number of hammering attempts. This demonstrates the feasibility
of fault analysis of ciphers using purely software means on commercial
x86 architectures, which to the best of our knowledge has not been re-
ported earlier. The attack is also relevant for the newest Linux kernel in
a Cross-VM environment where the VMs having root privilege are not
denied to access the pagemap.
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1 Introduction

Rowhammer is a term coined for disturbances observed in recent DRAM devices
in which repeated row activation causes the DRAM cells to electrically interact
among themselves [1–4]. This results in bit flips [2] in DRAM due to discharging
of the cells in the adjacent rows. DRAM cells are composed of an access transistor
and a capacitor which stores charge to represent a bit. Since capacitors loose their
charge with time, DRAM cells require to be refreshed within a fixed interval of
time referred to as the refresh interval. DRAM comprises of two dimensional
array of cells, where each row of cells have its own wordline and for accessing
each row, its respective wordline needs to be activated. Whenever some data
is requested, the cells in the corresponding row are copied to a direct-mapped
cache termed Row-buffer. If same row is accessed again, then the contents of
row-buffer is read without row activation. However, repeatedly activating a row
causes cells in adjacent rows to discharge themselves and results in bit flip.

The authors in [2] show that rowhammer vulnerability exists in majority of
the recent commodity DRAM chips and is most prevalent for sub 40nm mem-
ory technology. DRAM process technology over the years have seen continuous
reduction in the size of each cell and cell density has also increased to a great



extent reducing the cost per bit of memory. Smaller cells hold less charge and
this makes them even more vulnerable. Moreover, the increased cell density has
a negative impact on DRAM reliability [2] as it introduces electromagnetic cou-
pling effects and leads to such disturbance errors.

In [5], it was first demonstrated that rowhammer not only has issues regard-
ing memory reliability but also are capable of causing serious security breaches.
DRAM vulnerability causing bit flips in Native Client (NaCl) programwas shown
to gain privilege escalation, such that the program control escapes x86 NACL
sandbox and acquires the ability to trigger OS syscall. The blog also discusses
about how rowhammer can be exploited by user-level programs to gain kernel
privileges. In [5], the bit flips are targeted at a page table entry which after
flip points to a physical page of the malicious process, thus providing read-
write access to cause a kernel privilege escalation. A new approach for triggering
rowhammer with x86 non-temporal store instruction is proposed in [6]. The
paper discusses an interesting approach by using libc’s memset and memcpy

functions and the threats involved in using non-temporal store instructions for
triggering rowhammer. A vivid description of the possible attack scenarios ex-
ploiting bit flips from rowhammer are also presented in the paper.

A javascript based implementation of the rowhammer attack, Rowhammer.js [7]
is implemented using an optimal eviction strategy and claims to exploit rowham-
mer bug with high accuracy without using clflush instruction. Being imple-
mented in javascript, it can induce hardware faults remotely. But, in order to
mount a successful fault attack on a system the adversary should have the han-
dle to induce fault in locations such that the effect of that fault is useful in
making the attack successful. Another variant of rowhammer exists, termed as
double-sided-rowhammer [8]. This variant chooses three adjacent rows at a time,
targeting bit blips at the middle row by continuously accessing the outer rows
for hammering. The existing implementation [8] is claimed to work in systems
having a specific DRAM organization. In all of the existing works, precisely in-
ducing bit flip in the data used by a co-residing process has not been attempted.
None of the previous works attempted to demonstrate a practical fault analysis
attack using rowhammer. The address mappings to various components of the
LLC and DRAM being functions of physical address bits, inducing bit flip in a
data residing in an unknown location of DRAM seems to be a challenging task.

In this paper, we illustrate a software driven fault attack on public key ex-
ponentiation by inducing a bit flip in the secret exponent. It is well known
from [9], theoretically if any fault is induced while public key exponentiation
is taking place, then a single faulty signature is enough to leak the secret ex-
ponent in an unprotected implementation. However, to inflict the fault using
rowhammer on the secret exponent to lead to a usable faulty signature requires
further investigation. While [5] was able to successfully induce rowhammer flips
in the DRAM to cause a fault in a page table entry, the challenge to induce
faults to perform a fault attack on a cipher, requires a better understanding of
the location of the secret key in the corresponding row of a bank of the DRAM.
More recent developments of rowhammering, like double-sided-rowhammer [8],



while increasing the probability of a bit flip, cannot be directly applied to the
current scenario, as the row where the secret resides can be in any arbitrary lo-
cation in the target bank. The chance of the memory location for the secret key
lying between the rows of the allocated memory for rowhammer is low. In this
scenario a double-sided-rowhammer will reduce the probability of a successful
exploitable fault. Hence, it is imperative to ascertain the location of the secret
exponent before launching the rowhammer. Our novelty is to combine Prime +
Probe attack and row-buffer collision, detected again through timing channel, to
identify the target bank where the secret resides.

We combine knowledge of reverse engineering of LLC slice and DRAM ad-
dressing with timing side-channel to determine the bank in which secret resides.
We precisely trigger rowhammer to address in the same bank as the secret. This
increases probability of bit flip in the secret exponent and the novelty of our
work is that we provide series of steps to improve the controllability of fault in-
duction. The overall idea of the attack involves three major steps. The attacker
successfully identifies an eviction set which is a set of data elements which maps
to the same cache set and slice as that of the secret exponent by timing analysis
using Prime + Probe methodology. This set essentially behaves as an alterna-
tive to clflush statement of x86 instruction set. The attacker now observes
timing measurements to DRAM access to determine the DRAM bank in which
the secret resides in. The variation in timing is observed due to the row-buffer
conflict forced by the adversary, inducing bit flips by repeated row activation in
the particular bank where the secret is residing. Elements which map to same
bank but separate rows are accessed continuously to observe a successful bit flip.

The organization of the paper is as follows:- The following Section 2 provides
a brief idea on Cache and DRAM architecture and also the rowhammer bug.
In Section 3, we provide the algorithm using timing observations to determine
the LLC set, slice and also the DRAM banks in which the secret maps to.
Section 4 provides the experimental validation for a successful bit flip in the
secret exponent in various steps. Section 5 discusses the existing hardware and
software driven countermeasures to the rowhammer problem. Section 6 provides
a detailed discussion on the assumptions and limitations of our attack model on
bigger range of systems. The final section concludes the work we present here.

2 Preliminaries

In this section, we provide a background on some key-concepts, which include
some DRAM details, the rowhammer bug and details of cache architecture which
have been subjected to attack.

2.1 Dynamic Random Access Memory

Dynamic Random-Access Memory (DRAM) is a Random-Access Memory in
which each unit of charge is stored in a capacitor and is associated with an
access transistor, together they constitute a cell of DRAM. The DRAM cells
are organized in rows and columns. The access transistor is connected to the
wordline of a row, which when enabled, connects the capacitor to the bitline of
the column and allows reading or writing data to the connected row. The reading
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Fig. 1. DRAM Architecture [2]

or writing to cells in a row is done through row-buffer which can hold charges
for a single row at a time. There are three steps that are performed, when data
is requested to be read from a particular row:
Opening Row - The wordline connected to the row is enabled, which allows the

capacitors in the entire row to get connected to the bitlines. This results in the charge

of each cell to discharge through the bitlines to the row-buffer.

Reading or Writing to cells - The row-buffer data is read or written by the memory

controller by accessing respective columns.

Closing Row - The wordline of the respective row is disabled, before some other row

is enabled.

DRAM Architecture DRAM is hierarchically composed of Channels, Rank
and Banks. The physical link between the memory controller and the DRAM
module is termed as channel. Inside the channel, the physical memory mod-
ules connected to the motherboard are named as Dual Inline Memory Module
(DIMM) which typically comprises of one or two ranks as in Figure 1. Each
rank is further comprised of multiple banks, as for example, 8 banks exist in a
DDR3 rank. Each bank is a two-dimensional collection of cells having typically
214 to 217 rows and a row-buffer. Any row in a particular bank can only be read
and written by involving the row-buffer. The latency in DRAM access when two
access request concurrently map to same channel, rank, bank but different row is
termed as row-buffer conflict. The channel, rank, bank and the row index where
a data element is going to reside, is decided as functions of physical address of
the concerned data element.

The capacitors in each cell of DRAM discharges with time. The capacitor can
hold charge upto a specific interval of time before it completely looses its charge.
This interval is termed as retention time, which is guaranteed to be 64ms in
DDR3 DRAM specifications [10]. But it is shown, that repeated row activation
over a period of time leads to faster discharge of cells in the adjacent rows [2].

2.2 The Rowhammer Bug

Persistent and continuous accesses to DRAM cells, lead the neighboring cells
of the accessed cell to electrically interact with each other. The phenomenon of
flipping bits in DRAM cells is termed as the rowhammer bug [1,2]. As described
in Section 2.1, accessing a byte in memory involves transferring data from the
row into the bank’s row-buffer which also involves discharging the row’s cells.
Repeated discharging and recharging of the cells of a row can result in leakage
of charge in the adjacent rows. If this can be repeated enough times, before
automatic refreshes of the adjacent rows (which usually occur every 64ms), this
disturbance error in DRAM chip can cause bit flips.
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Code-hammer
{

mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y
clflush (X) // flush cache for address X

clflush (Y) // flush cache for address Y
jmp Code-hammer

}

In [2], a code snippet is provided in which the program generates a read
to DRAM on every data access. The mov instructions generate access request
to DRAM at X and Y locations. The following clflush instructions evict the
data elements from all levels of cache. However, if X and Y point to different
rows in the same bank, code-hammer will cause X and Y’s rows to be repeatedly
activated. This may lead to disturbance error in the adjacent cells of the accessed
rows, resulting in flipping bits in the adjacent row cells.

In the next subsection, we summarize some key concepts of cache architecture
in modern processors.

2.3 Cache Memory Architecture

In recent processors, there exists a hierarchy of cache memories where the size of
each cache level increases as we move to its higher level, but their access times
increases. L3 or Last Level Cache (LLC) is shared across processor cores, takes
larger time and is further divided into slices such that it can be accessed by
multiple cores concurrently. Figure 2 illustrates the architectural specification
for a typical Intel Ivy-Bridge architecture [11]. In Intel architecture, the data
residing in any of the lower levels of cache are included in the higher levels as
well. Thus are inclusive in nature. On a LLC cache miss, the requested element
is brought in the cache from the main memory, and the cache miss penalty is
much higher compared to the lower level cache hits.

Requested data are brought from the main memory in the cache in chunks of
cache lines. This is typically of 64 Bytes in recent processors. The data requested
by the processor is associated with a virtual address from the virtual address
space allocated to the running process by the Operating System. The virtual
address can be partitioned into two parts: the lower bits in Figure 3 is the
offset within the page typically represented by log2(page size) bits, while the
remaining upper bits forms the page number. The page number forms an index to
page table and translates to physical frame number. The frame number together
with the offset bits constitute the physical address of the element. The translation
of virtual to physical addresses are performed at run time, thus physical addresses
of each elements are most likely to change from one execution to another.

The physical address bits decide the cache sets and slices in which a data is
going to reside. If the cache line size is of b bytes, then least significant log2(b)
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bits of the physical addresses are used as index within the cache line. If the
target system is having k processor cores, the LLC is partitioned into k slices
each of the slice have c cache sets where each set is m way associative.

The log2(k) bits following log2(b) bits for cache line determines the cache set in

which the element is going to reside. Because of associativity, m such cache lines having

the identical log2(k) bits reside in the same set. The slice addressing in modern pro-

cessors is implemented computing a complex Hash function. Recently, there has been

works which reverse engineered [12,13] the LLC slice addressing function. Reverse en-

gineering on Intel architectures has been attempted in [13] using timing analysis. The

functions differ across different architectures and each of these functions are docu-

mented via successful reverse engineering in [12,13].

In the following sections, we use this knowledge of underlying architecture to
build an attack model which can cause successful flips in a secret value.

3 Combining Timing Analysis and Rowhammer

In this section we discuss the development of an algorithm to induce bit flip in
the secret exponent by combining timing analysis and DRAM vulnerability.

3.1 Attack Model

In this paper, we aim to induce bit fault in the secret exponent of the public
key exponentiation algorithm using rowhammer vulnerability of DRAM with
increased controllability. The secret resides in some location in the cache memory
and also in some unknown location in the main memory. The attacker having
user-level privileges in the system, does not have the knowledge of these locations
in LLC and DRAM since these location are decided by mapping of physical
address bits. The threat model assumed throughout the paper allows adversary
to send known ciphertext to the algorithm and observe its decrypted output.

Let us assume that the adversary sends input plaintext to the encryption
process and observes the output of the encryption. Thus the adversary gets hold
of a valid plaintext-ciphertext pair, which will be used while checking for the
bit flips. The adversary has the handle to send ciphertext to the decryption
oracle, which decrypts the input and sends back the plaintext. The decryption
process constantly polls for its input ciphertexts and sends the plaintext to the
requesting process. The adversary aims to reproduce bit flip in the exponent
and thus first needs to identify the corresponding bank in DRAM in which



the secret exponent resides. Let us assume, that the secret exponent resides in
some bank say, bank A. Though the decryption process constantly performs
exponentiation with accesses to the secret exponent, but such access requests
are usually addressed from the cache memory itself since they result in a cache
hit. In this scenario it is difficult for the adversary to determine the bank in
which the secret resides because the access request from the decryption process
hardly results in main memory access.

According to the DRAM architecture, the channel, rank, bank and row ad-
dressing of the data elements depend on the physical address of the data ele-
ments. In order to perform rowhammering on the secret exponent, precise knowl-
edge of these parameters need to be acquired, which is impossible for an adver-
sary since the adversary does not have the privilege to obtain the corresponding
physical addresses to the secret. This motivates the adversary to incorporate
a spy process which probes on the execution of the decryption algorithm and
uses timing analysis to successfully identify the channel, rank and even the bank
where the secret gets mapped to.

The adversary introduces a spy process which runs everytime, before each
decryption is requested. The spy process issues accesses to data elements of
the eviction set, which eventually flushes the existing cache lines with its own
data requests and fills the cache. Thus during the next request to the decryp-
tion process, the access to the secret exponent results in a cache miss and the
corresponding access request is addressed from the bank A of main memory.
Effectively, a spy process running alternate to the decryption process, makes
arbitrary data accesses to ensure that every access request from the decryption
process is addressed from the corresponding bank of the main memory.

3.2 Determining the Eviction Set

As mentioned before, the attack model is assumed to be such that the adversary
has access to a system where the decryption is running. The decryption algorithm
performs exponentiation involving the secret exponent and initially the adversary
aims to determine the cache sets in which the secret exponent bits maps to.
The adversary is oblivious of the virtual address space used by the decryption
engine and thus involves a spy process which uses Prime + Probe [11, 14, 15]
cache access methodology to identify the target sets. The execution scenario of
the decryption and the adversarial processes running concurrently on the same
system are depicted in Figure 4. In this context, the spy process targets the
Last Level cache (LLC) since it is shared within all cores of the system. The
adversary sends input to the decryption engine which performs decryption on
request, otherwise remains idle. Figure 4 illustrates the following steps.

1. Step 1: The adversary starts the spy process, which initially allocates a set of
data elements and consults its own pagemap to obtain the corresponding physical
addresses for each element. The kernel allows userspace programs to access their
own pagemap (/proc/self/pagemap) 1 to examine the page tables and related

1(for all Linux kernels before version 4.0, the versions released from early 2015
requires administrator privilege to consult pagemap, refer to Section 6.2)
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information by reading files in /proc. The virtual pages are mapped to physical
frames and this mapping information is utilized by the spy process in the following
steps.

2. Step 2: Once the physical addresses are obtained, the Last level cache set number
and their corresponding LLC slice mappings are precomputed by the spy with the
address mapping functions as explained in Section 2.3. Let us suppose, that the
target system is having k processor cores, thus the LLC is partitioned into k slices,
each of the slice have c cache sets where each set is m way associative. All elements
belonging to the same cache line are fetched at a time.

– If the cache line size is of b bytes, then least significant log2(b) bits of the
physical addresses are used as index within the cache line.

– As described in Section 2.3, the log2(k) bits following these log2(b) bits deter-
mine the cache set in which the element is going to reside.

– Because of associativity, m such cache lines having identical log2(k) bits reside
in the same set.

– In modern processors, there exists one more parameter that determines which
slice the element belongs to. Computing the Hash function reverse engineered
in [12, 13], we can also compute the slice in which a cache set gets mapped.
The functions are elaborated in the experimental Section 4.1.

Thus, at the end of this step, the spy simulates the set number and slice number
of each element in its virtual address space.

Repeat the following steps for all of the c sets in the LLC.

3. Priming Target set t: The spy primes the target Set t and becomes idle. This
is the most crucial step for the entire procedure since the success of correctly
determining the cache sets used by spy process entirely depends on how precisely
the existing cache lines have been evicted from the cache by the spy in the Prime
phase. In order to precisely control the eviction of existing cache lines from set t, a
selection algorithm is run by the spy which selects an eviction set of m∗k elements
each belonging to set t from its defined memory map.

– Thus the selection algorithm selects elements belonging to distinct cache lines
for each of the k cache slices where their respective physical addresses maps



to the same set t. These selected data elements constitutes the eviction set for
the set t.

– In addition to this, since each set of a slice is m way associative, the selec-
tion algorithm selects m such elements corresponding to each k cache slice
belonging to set t.

– The spy process accesses each of these m∗k selected memory elements repeat-
edly in order to ensure that the cache replacement policy has evicted all the
previously existing cache lines.

This essentially ensures that the target set t of all slices is only occupied with
elements accessed by the spy.

4. Decryption Runs: The adversary sends the chosen ciphertext for decryption and
waits till the decryption engine sends back the message. In this decryption process,
some of the cache lines in a particular set where the secret maps, gets evicted to
accommodate the cache line of the secret exponent.

5. Probing LLC: On getting the decrypted output the adversary signals the spy to
start probing and timing measurements are noted. In this probing step, the spy
process accesses each of the selected m elements (in Prime phase) of eviction set t
for all slices and time to access each of these elements are observed.
The timing measurements will show a variation when the decryption algorithm
shares same cache set as the target set t. This is because, after the priming step
the adversary allows the decryption process to run. If the cache sets used by the
decryption is same as that of the spy, then some of the cache lines previously
primed by the spy process gets evicted during the decryption. Thus, when the spy
is again allowed to access the same elements, if it takes longer time to access then
it is concluded that the cache set has been accessed by the decryption as well. On
the other hand, if the cache set has not been used by the decryption, then the time
observed during probe phase is less since no elements primed by spy have been
evicted in the decryption phase.

Determining the LLC Slice where the Secret Maps The Prime + Probe
timing analysis elaborated in the previous discussion successfully identifies the
LLC set in which the cache line containing the secret exponent resides. Thus
at the end of the previous step we obtain an eviction set of m ∗ k elements
which map to the same set as the secret in all of the k slices. Now, this time
the adversary can easily identify the desired LLC slice by iteratively running the
same Prime + Probe protocol separately for each of the k slices with the selected
m elements for that particular slice. The timing observations while probing will
show significant variation for a set of m elements which corresponds to the same
slice where the secret maps. Thus we further refine the size of eviction set from
m ∗ k to m elements.

3.3 Determining the DRAM Bank that the Secret Maps

In this section, we describe a timing side channel analysis performed by the
adversary to successfully determine the bank of the DRAM in which the se-
cret exponent maps to. In the previous section, a timing analysis is elaborated
which finally returns an eviction set of m elements which maps to the same set
as well as the same slice as the secret exponent. Thus, if the adversary allows
the spy and the decryption engine to run in strict alternation, then the decryp-
tion engine will always encounter a cache miss for the secret exponent, and the



access request shall always result in a main memory access. As described in Sec-
tion 2.1, DRAMs are primarily partitioned into channel, ranks and banks where
each bank access is serviced through a buffer termed as row-buffer. Concurrent
accesses to different rows in the same DRAM bank results in row-buffer conflict
and automatically leads to higher access time. The functions which decide the
channel, rank and bank mapping from the physical addresses are not disclosed
by the architecture manufacturers. In some recent works, reverse engineering of
these unknown mappings have been targeted. A successful deployment of a high
speed covert channel has also been reported [16].

In this paper, we illustrate a timing analysis of accessing separate DRAM
banks using this knowledge of reverse engineering and the following steps high-
light how this is achieved. In order to exploit timing variation occurring due to
the row-buffer collision, accesses requested from the decryption process as well
as the adversarial spy process must result in main memory accesses. Intuitively,
DRAM access time will increase only if addresses map to the same bank but to
a different row. Thus to observe row-buffer conflict between the decryption and
adversarial spy the major challenges are:

– To ensure that every access to secret exponent by the decryption process results
in LLC cache miss and thus automatically result in main memory access. This is
elaborated in the previous subsection, as to how the spy determines the eviction
set and selectively accesses those elements to evict existing cache lines from the
set. Let the spy generates an eviction set C with data elements in distinct cache
lines mapping to the same set and slice as the secret.

– This suggests that before each decryption run, the spy has to fill the particular
cache set by accessing elements in eviction set C.

– In addition to this, row-buffer conflict and access time delay can only be observed
if two independent processes concurrently request data residing in the same bank
but in different rows. In order to produce a row-buffer conflict with the secret
exponent requested by the spy, the adversary has to produce concurrent access
requests to the same bank.

The adversary allows the spy process to mmap a chunk of memory and the spy
refers to its own pagemap to generate the physical addresses corresponding to
each memory element. Following the functions reverse engineered in [16, 17] the
spy pre-computes the channel, rank and bank addressing for the corresponding
physical addresses. As illustrated in Figure 5, the timing analysis has to be
performed by accessing elements from each bank. After each access request by
the spy, the elements are flushed deliberately from the cache using clflush.

The adversary sends an input to the decryption engine and waits for the
output to be received. While it waits for the output, the spy process targets one
particular bank, selects a data element which maps to the bank and accesses the
data element. This triggers concurrent accesses from the spy and the decryption
to the DRAM banks. Repeated timing measurements are observed for each of
the DRAM bank accesses by the spy, and this process is iterated for elements
from each DRAM bank respectively.
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3.4 Performing Rowhammer in a Controlled Bank

In the previous subsections, we have discussed how the adversary performs tim-
ing analysis to determine cache set collision and subsequently use it to determine
DRAM bank collisions to identify where the secret data resides. In this section,
we aim to induce fault in the secret by repeatedly toggling DRAM rows belonging
to the same DRAM bank as the secret.

Inside the DRAM bank, the cells are two-dimensionally aligned in rows and
columns. The row index in which any physical address maps is determined by
the most significant bits of the physical address. Thus it is absolutely impossi-
ble for an adversary to determine the row index of the secret exponent. Thus
rowhammer to the secret exponent has to be performed with elements which
map to the same DRAM bank as the secret, but on different row indices until
and unless the secret exponent is induced with a bit flip.

The original algorithm for rowhammer in [2], can be modified intelligently to
achieve this precise bit flip. The algorithm works in following steps:

– A set of addresses are chosen which map to different row but the same bank of
DRAM.

– The row indices being a function of the physical address bits are simulated while
execution. Elements of random row indices are selected and accessed repeatedly
by the adversary to induce bit flips in adjacent rows.

– The detection of bit flip in secret can be done easily, if and only if the output of
decryption differs.

The rowhammering attempts required to produce a suitable bit flip on the
secret depends on the total number of rows in a bank, since the adversary has no
handle to know in which row in the bank the secret exponent is residing. Neither
it has handle to place its own mmap-ed data deliberately adjacent to the secret,
such that it can easily exploit the rowhammer bug. Thus the adversary can only
select those elements which belong to the same bank as secret and access them



repeatedly to induce bit flips in the secret. To increase the probability of bit flip
in the secret exponent, the adversary needs to mmap multiple times to generate
data which belong to different rows.

4 Experimental Validation for Inducing Bit Flips on

Secret

In this section we present the validation of our previous discussion through
experiments. Our experiments are framed with the following assumptions:

– We target an 1024 bit RSA implementation using square and multiply as the un-
derlying exponentiation algorithm. We have used the standard GNU-MP big integer
library (version number 2:5.0.2+dfsg-2) for our implementation. The adversary
sends a chosen ciphertext for decryption which involves an exponentiation using
the secret exponent.

– The experimentations are performed considering the address bit mappings of Intel
Ivy Bridge micro-architecture. These are the line of processors based on the 22nm
manufacturing process. The experiments are performed on Intel Core i5-3470 pro-
cessor running Ubuntu 12.04 LTS with the kernel version of 3.2.0-79-generic.

– The adversary is assumed to have user-level privileges to the system where decryp-
tion process runs. It uses mmap to allocate a large chunk of data and accesses its own
pagemap (/proc/self/pagemap) to get the virtual to physical address mappings.
The Linux kernel version for our experimental setup being older than version 4.0,
we did not require administrator privileges to perform the entire attack.

4.1 Identifying the Cache Set

The experiments being performed on RSA, the 1024 bit exponent resides in
consecutive 1024 bit locations in memory. Considering the cache line size as 64
bytes, 1024 bits of secret maps to 2 cache lines. As described in Section 2.3, 11
bits of physical address from b6, b7, · · · b16 refer to the Last Level cache set. More-
over, the papers [12, 13] both talk about reverse engineering of the cache slice
selection functions. The authors in paper [13], used Prime + Probe methodology
to learn the cache slice function, while the authors in [12] monitored events from
the performance counters to build the cache slice functions. Though it has been
observed that the LLC slice functions reported in these two papers are not same.

In our paper, we devised a Prime + Probe based timing observation setup
and wished to identify the target cache set and slice which collides with the
secret. Thus we were in the lines of [13] and used the function from [13] in our
experiments for Prime + Probe based timing observations. As illustrated in the
following section, the timing observations using functions from [13] can correctly
identify the target cache slice where the secret maps to. Reverse engineering of
Last Level Cache (LLC) slice for Intel Ivy Bridge Micro-architecture in [13] uses
the following function:
b17 ⊕ b18 ⊕ b20 ⊕ b22 ⊕ b24 ⊕ b25 ⊕ b26 ⊕ b27 ⊕ b28 ⊕ b30 ⊕ b32.

But the architectural specification described in [13], documented that their se-
lected system for Ivy Bridge architecture has LLC size of 3MB. In our experi-
mental setup, instead of 3MB we had 6MB LLC with is divided among 4 cores.
Thus we adopted the functions documented for Haswell, and the function worked
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successfully. The functions used for slice selection are:
h0 = b17 ⊕ b18 ⊕ b20 ⊕ b22 ⊕ b24 ⊕ b25 ⊕ b26 ⊕ b27 ⊕ b28 ⊕ b30 ⊕ b32
h1 = b18 ⊕ b19 ⊕ b21 ⊕ b23 ⊕ b25 ⊕ b27 ⊕ b29 ⊕ b30 ⊕ b31 ⊕ b32
Our host machine has LLC with 12 way associativity and having 4 cache slices
each consisting of 2048 sets. The adversary mmaps a large chunk of memory, and
consults its own pagemap to obtain the physical addresses corresponding to each
element in the memory map. Using the equations mentioned above, the adver-
sarial process simulates the cache set and slice in which their respective physical
address points to. The experimental setup being 12-way associative, the selec-
tion algorithm for each set and slice selects the eviction set with 12 elements
belonging to distinct cache lines and mapping to the same set for a particular
slice. The host machine having 4 LLC slice for 4 cores selects the eviction set
having altogether 12 ∗ 4 = 48 data elements in distinct cache lines mapped to
same set and all 4 slices.

In our experimental setup, the adversary runs the Prime + Probe cache
access methodology over each of the 2048 sets in each of the LLC slices. Each of
the 2048 sets are targeted one after another. The cycle starts with priming a set
with elements from eviction set and then allowing the decryption to happen and
again observing the timings required for accessing selected elements from the set.
The timing observations from the probe phase on 2 such LLC sets are illustrated
in Figure 6. The sets are chosen such that one of them is having a collision with
the secret exponent and the other set does not have any collision. The variation
of timing in these two sets is apparent in Figure 6, where the set which observes
a collision observes higher access time to the other set. The average access time
of the these two sets during the probe phase differs by approximately 80 clock
cycles. This implies that the LLC cache set having collision with the secret
exponent cache line can be identified from the other sets which does not have
collision with the decryption algorithm.

4.2 Alternative Strategy to Determine the Target Cache Set

In the previous subsection, we observed that timing observations obtained by
repeating the m ∗ k accesses to the individual set on all k slices is sufficient
for identification of the target cache set. Though in [7], it has been stated that
only m ∗ k accesses may not be sufficient to guarantee the existing cache lines
to be evicted from the cache. In this context, we argue that the cache eviction
sets are identified in [7] so that accessing the elements of this set in a prede-
termined order results in an equivalent effect of clflush to induce rowhammer
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flips. Since to exhibit successful bit flips, hammering of rows needs to satisfy
various preconditions, it was crucial for authors in [7] to generate an optimal
eviction set.

In our paper the conditions are little less stringent, since we are using clflush
to induce bit flips. In addition to this, we constrain the hammering to the target
bank. The identification of this bank has a series of experiments to be performed.
In this scenario, we claimed that accessing the near-optimal eviction set of m∗k

accesses for each cache set for all k slices repeatedly will result in eviction of
secret from the respective cache set and result in DRAM accesses of the secret
key. In addition, we have again performed our experiments by implementing the
optimal eviction set as described in [7]. The results we obtain in Figure 8a can be
compared with Figure 6. The separation of timing and identification of collision
set from the non-collision set definitely improves upon accessing the eviction set
with parameters defined in [7].

4.3 Identifying the LLC Slice

Once the cache set is identified, the variation from timing observations for dif-
ferent LLC slices leak the information of which LLC slice the secret maps to.
In the same experimental setup as in the previous section, we identify the slice
in which the actual secret resides, using timing analysis with the slice selection
function. Since we have already identified the LLC cache set with which the
secret collides, 12 data elements belonging to each slice of the particular set are
selected. Prime + Probe timing observations are noted for the set of 12 elements
for each slice. The slice observing collision with the secret exponent will suffer
from cache misses in the probe phase and thus have higher access time to other
slices.

We illustrate the timing observations for two scenarios in Figure 7a,b. In
Figure 7a, the secret is mapped to LLC slice 0, while in Figure 7b, the secret
gets mapped to LLC slice 2. In both of the figures, access time for probing
elements for the cache slice for which the secret access collides is observed to
be higher than the other cache slice which belongs to the same set but do not
observe cache collision. Thus because of collision of accesses of both the processes
to the same slice, the spy observed higher probe time for slice 0, than slice 2 in
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Figure 7a. On the contrary, in a different run, the secret exponent got mapped
to LLC slice 2, which in Figure 7b shows higher probe time than slice 0. Thus
we can easily figure out the cache slice for the particular set for which both the
decryption and the spy process accesses actually collides.

We also extended our experiment with the reverse engineered cache slice
functions from [12]. Figure 8b shows the timing observations when we use the
slice selection functions for a 4-core processor. The functions [12] are:
o0 = b6⊕b10⊕b12⊕b14⊕b16⊕b17⊕b18⊕b20⊕b22⊕b24⊕b25⊕b26⊕b27⊕b28⊕b30⊕b32⊕b33
o1 = b07⊕b11⊕b13⊕b15⊕b17⊕b19⊕b20⊕b21⊕b22⊕b23⊕b24⊕b26⊕b28⊕b29⊕b31⊕b33⊕b34
Similar to our previous observations, Figure 8b shows that we were able to identify the
target cache slice from the timing observations using cache slice reverse engineering
functions from [12].

Determining the LLC set and slice in which secret maps, actually gives the control
to the adversary to flush the existing cache lines in these locations, and thus everytime
the decryption process have to access the main memory. In simple words, accesses made
by the adversary to this particular LLC set and slice acts as an alternative to clflush

instruction being added to the decryption process.

4.4 Identifying the DRAM Bank

From the previous subsections, we identified particularly the LLC set and the slice
mappings for the decryption process. Thus if the adversary selects data elements which
belong to same set as well slice as to the secret exponent, and alternatively primes the
LLC before running each decryption, each time the decryption process will encounter
a cache miss and which will eventually get accessed from the main memory. This aids
the adversary to identify the respective bank of DRAM, where the secret exponent is
mapped. For the 1024-bit RSA exponentiation secret key, the channel, rank and bank
mappings of DRAM will be decided by the equations reverse engineered in [16, 17].
In our experimental setup, there exists 2 channel, 1 DIMM per channel, 2 ranks per
DIMM, 8 banks per rank and 214 rows per bank.

– The DRAM bank equations for Ivy Bridge [16] is decided by the physical address
bits: ba0 = b14 ⊕ b18, ba1 = b15 ⊕ b19, ba2 = b17 ⊕ b21,

– Rank is decided by r = b16 ⊕ b20 and the
– Channel is decided by, C = b7 ⊕ b8 ⊕ b9 ⊕ b12 ⊕ b13 ⊕ b18 ⊕ b19.
– The DRAM row index is decided by physical address bits b18, · · · , b31.

In the same experimental setup as previous, the adversary targets each bank at a
time and selects elements from the memory map for which the physical addresses map
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to that particular bank. The following process is repeated to obtain significant timing
observations:

1. The spy primes the LLC and requests decryption by sending ciphertext.
2. While the spy wait for the decrypted message, it selects an element for the target

bank from the memory map, clflush’es it from cache, and accesses the element.
The clflush instruction removes the element from all levels of cache, and the
following access to the element is addressed from the respective bank of the DRAM.

3. The time to DRAM bank access is also noted.

It is important to note that, there is no explicit synchronization imposed upon the
the two concurrent processes in their software implementation. The decryption and the
spy both requests a DRAM bank access. If the target bank matches with the bank in
which the secret is mapped, then we expect to have higher access time. Figure 9a, b
are the timing observations noted by the spy process while it accesses elements selected
from the target bank. Figure 9a refers to the the case where the higher access times
are observed due to the row-buffer collision as the bank accessed by the spy is same as
the secret mapped bank. While Figure 9b refers to the situation where the elements
accessed by the spy are from an arbitrary different bank than the bank where secret
maps. In both of the figures, the significant high peak has been observed in timing
range of 350−400 clock cycles. While in Figure 9a, the row-buffer collision is apparent
because there are significant number of observations which have timings greater than
the region where the peak is observed. Had there been an absolute synchronization of
two processes accessing the same DRAM bank, each access to DRAM bank, by either of
the two process would have suffered from row-buffer collision. Thus in our scenario, we
claim that in majority of cases, though the accesses are addressed from the same bank
they seldom result in row-buffer collision, which justifies the peak around 350 − 400
clock cycles. From this we conclude that detection of row-buffer collision can only be
identified over a significant number of timing observations. The DRAM bank which
shows such higher access times is identified to be the bank where secret data resides.

4.5 Inducing Bit Flip using Rowhammer

In the previous section, we have illustrated that how the adversary is able to distinguish
the bank in which the secret exponent resides. The software implementation of the
induction of bit flip is performed by repeated access to the elements of the same bank.
The following pseudo-code is used to hammer rows in specific banks After each access
to the element it is deliberately flushed from the cache using the clflush instruction
by the adversary.
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Code-hammer-specific-bank

{
Select set of 10 data elements mapping to specific bank

Repeat
{

Access all elements of the set

Clflush each element of the set
}

jmp Code-hammer-specific-bank
}

A statistic over observations of bit flips in respective banks is reported in Figure 10.
The bar graph shows the number of bit flip instances we were able to observe for
respective banks of a single Dual In-line Memory Module (DIMM). The bit faults that
we have observed in our experiments are bit-reset faults.

The row index of the location of the secret in the DRAM bank is determined by
the physical address bits of the secret. Thus this implies that the secret exponent can
sit in any of the rows in the target bank. Accordingly, we restricted our hammering
attempts in the target bank and we selected random accesses to the target bank which
eventually resulted in bit flips. Thus we slightly modified our setup such that the code
iteratively runs until and unless the decryption output changes, which signifies that
secret exponent bits have been successfully flipped. The fault attack in [9] requires a
single faulty signature to retrieve the secret. Thus, bit flip introduced in the secret
exponent by the rowhammer in a specific bank can successfully reveal the secret by
applying fault analysis techniques in [9]. The probability of bit flip is 1/214, since there
are 214 rows in a particular bank. Interestingly, the size of the secret key has an effect
on the probability of bit flip in the secret exponent. In other words, we can say that
the probability of bit flip in the secret exponent will be more if the secret exponent
size is larger.

5 Possible Countermeasures

There has been various countermeasures of rowhammer attacks proposed in literature.
In [2], seven potential system level mitigation techniques were proposed which range
from designing secure DRAM chips, enforcing ECC protection on them, increasing the
refresh rate, identification of victim cells and retiring them and refreshing vulnerable
rows (for which the adjacent rows are getting accessed frequently). As mentioned in [2],
each of these solutions suffers from the trade-off between feasibility, cost, performance,
power and reliability. In particular, the solution named as Probabilistic Adjacent Row
Activation (PARA) has the least overhead among the solutions proposed in [2]. The
memory controller in PARA is modeled such that every time a row closes, the controller
decides to refresh its adjacent rows with probability p (typically 1/2). Because of its
probabilistic nature, the approach is low overhead as it does not require any complex
data structure for counting the number of row activations.

Another hardware level mitigation is reported in [5], where it is mentioned that
the LPDDR4 standard for the DRAM incorporated two features for the hardware



level mitigation such as Targeted Row Refresh (TRR) and Maximum Activate Count
(MAC). Among which, it is reported that TRR technique is getting deployed in the next
generation DDR4 memory units [18,19]. TRR incorporates a special module which can
track the frequently made row-activations and can selectively refresh the rows adjacent
to these aggressor rows. All of the above discussed protections have to be incorporated
in hardware, but this does not eliminate the threat from rowhammer attacks since
many of the manufacturers refer to these as optional modules.

There are few attempts which provide software level protection from rowhammer
attacks. The clflush instruction was responsible for removing the target element from
the cache and that resulted in DRAM accesses. In order to stop the security breaches
from NaCl sandbox escape and privilege escalation [5], Google NaCl sandbox was
recently patched to disallow applications from using the clflush instruction. The other
software level mitigation is to double the refresh rate from 64ms to 32ms by changing
the BIOS settings, or alternatively upgrading own BIOS with a patched one. It has been
reported in [20], that system manufacturers such as HP, Lenovo and Apple have already
considered updating the refresh rate. But both of the techniques such as doubling
refresh rate and removing access to clflush instruction as a prevention technique has
been proved to be ineffective in [20]. The paper illustrates a case study of introducing
bit flips inspite of having refresh interval as low as 16ms and the method does not use
the clflush instruction. The paper also propose an effective, low cost software based
protection mechanism named ANVIL. Instead [20] propose a two-step approach which
observe the LLC cache miss statistics from the performance counters for a time interval,
and examines if the number of cache misses crosses the predetermined threshold. If
there are significantly high number of cache misses, then the second phase of evaluation
starts, which samples the DRAM accesses of the suspected process and identifies if rows
in a particular DRAM bank is getting accessed. If repeated row activation in same bank
is detected, then ANVIL performs a selective refresh on the rows which are vulnerable.

6 Further Discussion

The present paper’s main focus is to show that targeted faults can be inflicted by
rowhammer. As a consequence, we have cited the example of a fault analysis on RSA,
which is not protected by countermeasures. One of the objectives of this paper, is to
show that fault attacks are serious threats even when triggered using software means.
This makes the threat more probable as opposed to a fault injection by hardware means:
like voltage fluctuations etc. Thus, this emphasizes more the need for countermeasures,
at the software level.

Having said that, even standard libraries like OpenSSL use fault countermeasures,
but they are not fully protected against these class of attacks. For example, in Black
Hat 2012 [21], a hardware based fault injection was shown to be of threat to OpenSSL
based RSA signature schemes. It was reported that the initial signature is verified by
the public key exponent, however in case of a fault, another signature is generated and
this time it is not verified [21]. The final signature is not verified because it is widely
assumed that creating a controlled fault on a PC is impractical. More so, the faults
are believed to be accidental computational errors, rather than malicious faults. Hence,
the probability of inflicting two successive faults is rather low in normal computations!
However, in case of rowhammer, as the fault is created in the key, repeating the process
would again result in a wrong signature and thus get released.

Hence, the objective of the current paper is to highlight that inflicting controlled
faults are more probable through software techniques than popularly believed, and



hence ensuring that verification should be a compulsory step before releasing signatures.

6.1 Assumptions of the Proposed Attack

In our proposed attack, we assumed that the secret decryption exponent resides in a
particular location of the DRAM and the decryption oracle continuously polls for input
ciphertexts. In addition we also assume that the secret resides in the same location in
the DRAM through out the duration of the attack and is not page-swapped by other
running processes.

6.2 Limitations and Practicality of our Attack

In this paper, the access to pagemap is assumed to be available at user privilege level
since our setup has 3.2.0-79-generic version of Linux kernel. But from early 2015, for
versions of kernel 4.0 onwards, the access to this pagemap has been restricted to pro-
cesses with root privileges. However, the attack would still be relevant in a cross-VM
environment as in [22], where the users of the co-located VMs actually have the ad-
ministrator privilege and can consult the pagemap for the required virtual to physical
address translation. In such a scenario, the attacker is assumed to be mounted on a
VM which is co-resident to the VM which hosts the decryption oracle. Timing informa-
tion obtained from Prime + Probe methodology in this experimental setup along with
the reverse engineering knowledge can be used to precisely induce fault in the secret
of the co-resident VM. Our paper primarily focuses on the vulnerability analysis of
rowhammer in context to Linux kernels, but the vulnerability may be equally or more
relevant in context to other operating systems where the access to a data structure
such as pagemap (in context to Linux kernels) is not restricted only to administrator
privileges. Moreover, the attack in its original form might be relevant in customized
embedded system applications, thus it would be an interesting exercise to ascertain the
security impact of rowhammer in such applications.

7 Conclusion

In this paper, we claim to illustrate in steps a combination of timing and fault analysis
attack exploiting vulnerability of recent DRAM’s disturbance error to induce a bit flip
targeting the memory bank shared by the secret. This is a practical fault model and
uses Prime + Probe cache access attack methodology to narrow down the search space
where the adversary is supposed to induce flip. The experimental results illustrate that
the timing analysis shows significant variation and leads to the identification of LLC
set and slices. In addition row-buffer collision has been exploited to identify the DRAM
bank which holds the secret. The worst case complexity of inducing fault by repeated
hammering of rows in the specific memory bank typically is same as the number of rows
in bank. The proposed attack finds most relevance in cross-VM setup, where the co-
located VMs share the same underlying hardware and thus root privileges are usually
granted to the attack instance.
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