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Abstract. Logic locking is a technique that has been proposed to pro-
tect outsourced IC designs from piracy and counterfeiting by untrusted
foundries. A locked IC preserves the correct functionality only when a
correct key is provided. Recently, the security of logic locking is threat-
ened by a new attack called SAT attack, which can decipher the correct
key of most logic locking techniques within a few hours [12] even for
a reasonably large number of keys. This attack iteratively solves SAT
formulas which progressively eliminate the incorrect keys till the circuit
unlocked. In this paper, we present a circuit block (referred to as Anti-
SAT block) to thwart the SAT attack. We show that the number of
SAT attack iterations to reveal the correct key in a circuit comprising
an Anti-SAT block is an exponential function of the key-size thereby
making the SAT attack computationally infeasible. Through our experi-
ments, we illustrate the effectiveness of our approach to securing modern
chips fabricated in untrusted foundries.

Keywords: Logic Locking; SAT Attack; Hardware IP Protection

1 Introduction

Outsourced fabrication of integrated circuit (IC) enables IC design companies
to access advanced semiconductor technology at a low cost. Although it is cost-
effective, the outsourced design faces various security threats since the offshore
foundry might not be trustworthy. Without close monitoring and direct con-
trol, the outsourced designs are vulnerable to various attacks such as Intellec-
tual Property (IP) piracy [10] and counterfeiting [3]. The malicious foundry can
reverse-engineer a GDSII layout file to obtain its gate-level netlist and claim the
ownership of the hardware IP design, or it can overbuild the IC and sell illegal
copies into the market. These security threats (also known as supply chain at-
tacks) pose a significant economic risk to most commercial IC design companies.

Logic locking is a technique that is proposed to thwart the aforementioned
supply chain attacks. The basic idea is to insert additional key-controlled logic
gates (key-gates), key-inputs and an on-chip memory into an IC design to hide
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Fig. 1. Logic locking techniques: (a) Overiew; (b) An original netlist; (c) XOR/XNOR
based logic locking; (d) MUX based logic locking; (e) LUT based logic locking.

its original functionality, as shown in Fig. 1. The key-inputs are connected to the
on-chip memory and the locked IC preserves the correct functionality only when
a correct key is set to the on-chip memory. To prevent the untrusted foundry
from probing internal signals of a running chip, a tamper-proof chip protection
shall be implemented. Recent years have seen various logic locking techniques
based on different key-gate types and key-gate insertion algorithms. Accord-
ing to the key-gate types, they can be classified into three major categories:
XOR/XNOR based logic locking [8, 9, 11], MUX based logic locking [7, 9, 13]
and Look-Up-Table (LUT) based logic locking [1, 5, 6], as shown in Fig. 1 (b-e).
Among all, the XOR/XNOR based logic locking has received the most atten-
tion mainly due to its simple structure and low performance overhead. Various
XOR/XNOR based logic locking algorithms have been proposed to identify the
optimal locations for inserting the key-gates, such as fault-analysis based inser-
tion [9] and interference-analysis based insertion [8]. The security objective of
these logic locking techniques is to increase the output corruptibility (i.e., pro-
duce more incorrect outputs for more input patterns) given an incorrect key, and
to prevent effective key-learning attacks.

The security of logic locking is threatened if the correct key values into the
key-gates are accessible to or can be learned within a practical time by the
malicious foundries. To learn the correct key, Subramanyan et al. [12] proposed
a satisfiability checking based attack (SAT attack) algorithm that can effectively
break most logic locking techniques proposed in [1, 2, 8, 9, 11] within a few hours
even for a reasonably large number of keys. The insight of SAT attack is to infer
the correct key using a small number of carefully selected input patterns and
their correct outputs observed from an activated functional chip (which can be
obtained from the open market). This set of correct input/output pairs together
ensures that only the correct key will be consistent with these observations.
The process of finding such input/output pairs is iteratively formalized as a
sequence of SAT formulas that can be solved by state-of-the-art SAT solvers. In
each of these iterations, the SAT formulation rules out a bunch of wrong key
combinations till it reaches a point where all the wrong keys have been removed.
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Fig. 2. SAT attack mitigation techniques: (a) Adding an AES circuit to increase the
time for solving a SAT formula [14]; (b) Adding our proposed Anti-SAT circuit block
to increase the number of SAT attack iterations.

The SAT attack is powerful as it guarantees that upon termination it can always
reveal the correct key. This guarantee can’t be achieved by other attacks on logic
locking such as the EPIC attack [7]. Hence in this paper we focus on the SAT
attack on logic locking.

Since the SAT attack needs to iteratively solve a set of circuit-based SAT
formulas to reveal the correct key, its efficiency is determined by two aspects:
a) the execution time for solving a SAT formula in one iteration and b) the
number of iterations required to reveal the correct key. The first aspect depends
on whether a locked circuit is easily solvable by a SAT solver (i.e., finding a
satisfiable assignment for the SAT formula based on this circuit). Based on this
idea, Yasin et al. [14] proposed adding an AES circuit (with a fixed AES key) to
enhance a locked circuit’s resistance to the SAT attack. The insight underlying
this proposal is shown in Fig. 2(a). A portion of key-inputs is firstly connected
to the AES inputs and the outputs of the AES are the actual key-inputs into
the locked circuit. As the AES circuit is hard to be solved by a SAT solver, the
SAT attack will fail to find a satisfiable assignment for the SAT attack formula
within a practical time limit. Although this approach can effectively increase the
SAT attack execution time, the AES circuit results in a significant performance
overhead since a standard AES circuit implementation requires a large number
of gates [4]. This makes the approach in [14] impractical.

In this paper, we propose a relatively lightweight circuit block (referred to as
Anti-SAT block) that can be embedded into a design to efficiently mitigate the
SAT attack. The basic structure of our Anti-SAT block is shown in Fig. 2(b).
While a portion of keys (key-inputs A) is connected to the original circuit to
obfuscate its functionality, another portion of keys (key-inputs B) is connected
to the Anti-SAT block to thwart the key-learning of SAT attack. The Anti-SAT
block is designed in a way that the total number of SAT attack iterations (and
thus the total execution time) to reveal the correct key in the Anti-SAT block is
an exponential function of the key-size in the Anti-SAT block. Therefore, it can
be integrated into a design to enhance its resistance to the SAT attack. The
contributions of this paper are summarized as follows:
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– We propose an Anti-SAT circuit block to mitigate the SAT attack on logic
locking. We illustrate how to construct the functionality of the Anti-SAT
block and use a mathematically rigorous approach to prove that if chosen
correctly, the Anti-SAT block makes SAT attack computationally infeasible
(exponential in key-size).

– The Anti-SAT block is integrated into a circuit to increase its resistance
to the SAT attack. To prevent the Anti-SAT block from being identified
(and removed by an attacker) we apply obfuscation techniques to hide the
functionality and structure of the Anti-SAT block.

– Rigorous analysis and experiments on 6 circuits from ISCAS85 and MCNC
benchmark suites have been conducted to validate the effectiveness of our
proposed technique against the SAT attack.

2 Background: SAT Attack

2.1 Attack Model

The SAT attack model [12] assumes that the attacker is an untrusted foundry
whose objective is to obtain the correct key of a locked circuit. The malicious
foundry has access to the following two components:

– A locked gate-level netlist, which can be obtained by reverse-engineering
a GDSII layout file. This is available because the fabrication is done by
the untrusted foundry which has the design details. The locked netlist is
represented as Y = fl(X,K) with primary inputs X, key inputs K and
primary outputs Y . Its SAT formula in conjunctive normal form (CNF) is
represented as C(X,K,Y ).

– An activated functional chip, which can be obtained from open market. This
IC can be used to evaluate a set of input patterns and observe their correct
output patterns as a black box model Y = eval(X).

2.2 Attack Insight

The key idea of the SAT attack is to reveal the correct key using a small number
of carefully selected inputs and their correct outputs observed from an activated
functional chip. These special input/output pairs are referred to as distinguishing
input/output (I/O) pairs. Each distinguishing I/O pair can identify a subset of
wrong key combinations and all together they guarantee that only the correct
key can be consistent with these correct I/O pairs. This implies that a key
that correctly matches the inputs to the outputs for all the distinguishing I/O
pairs must be the correct key. The crux of the SAT attack is to find this set of
distinguishing I/O pairs by solving a sequence of SAT formulas.

Definition 1: (Wrong key combination). Consider the logic function Y =
fl(X,K) and its CNF SAT formula C(X,K,Y ). Let (X,Y ) = (Xi,Y i), where
(Xi,Y i) is a correct I/O pair. The set of key combinations WKi which result
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in an incorrect output of the logic circuit (i.e., Y i ̸= fl(Xi,K), ∀K ∈ WKi) is
called the set of wrong key combinations identified by the I/O pair (Xi,Y i). In
terms of SAT formula, it can be represented as C(Xi,K,Y i) = False, ∀K ∈
WKi.

Definition 2: (Distinguishing input/output pair). As noted above, the
SAT attack shall solve a set of SAT formulas iteratively. In each iteration, it
shall find a correct I/O pair to identify a subset of wrong key combinations until
none of these are left. An I/O pair at i-th iteration is a distinguishing I/O pair
(Xd

i ,Y
d
i ), if it can identify a “unique” subset of wrong key combinations that

cannot be identified by the previous i− 1 distinguishing I/O pairs, i.e., WKi ̸⊂
(∪j=i−1

j=1 WKj), where WKi is the set of wrong key combinations identified by
the distinguishing I/O pair at i-th iteration.

The crux of the SAT attack algorithm relies on finding the distinguishing
I/O pairs iteratively to identify unique wrong key combinations (see definition 2)
until no further ones can be found. At this point, the set of all distinguishing I/O
pairs together identifies all wrong key combinations thereby unlocking the circuit.
Then, the correct key is the one that satisfies the following SAT formula G:

G :=

λ∧
i=1

C(Xd
i ,K,Y d

i ) (1)

where (Xd
i ,Y

d
i ) is the distinguishing I/O pair from i-th iteration and λ is the

total number of iterations. Basically it finds a key K which satisfies the correct
functionality for all the identified distinguishing I/O pairs. This must be the
correct key since no other distinguishing I/O pairs exist (see definition 2).

Take the XOR/XNOR based locked circuit in Fig. 1(c) as an example. At first
iteration, the I/O pair (Xd

1,Y
d
1) = (00, 10) is a distinguishing I/O pair because

it can rule out wrong key combinations K = (01), (10), and (11) as these
key combinations will result in incorrect outputs (y1y2) = (11), (00) and (01),
respectively. Since this single I/O observation has already ruled out all incorrect
key combinations, we have revealed the correct key K = (00). In general, a small
number of correct I/O pairs (compared to all possible I/O pairs) are usually
enough to infer the correct key [12]. As a result, the SAT attack is efficient
because it only requires a small number of iterations to find these distinguishing
I/O pairs.

2.3 Attack Algorithm

As noted above, the central theme of SAT attack algorithm is to iteratively find
distinguishing I/O pairs till no new ones can be found. To find such distinguishing
I/O pairs, the SAT attack algorithm iteratively formulates a SAT formula that
can be solved by SAT solvers. The SAT formula Fi at i-th iteration is:

Fi :=C(X,K1,Y 1) ∧ C(X,K2,Y 2) ∧ (Y 1 ̸= Y 2)

(

j=i−1∧
j=1

C(Xd
j ,K1,Y

d
j )) ∧ (

j=i−1∧
j=1

C(Xd
j ,K2,Y

d
j ))

(2)
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Algorithm 1 SAT Attack Algorithm [12]

Input: C and eval
Output: KC

1: i := 1;
2: Gi := True;
3: Fi := C(X,K1,Y 1) ∧ C(X,K2,Y 2) ∧ (Y 1 ̸= Y 2);
4: while sat[Fi] do
5: Xd

i := sat assignmentX [Fi];
6: Y d

i := eval(Xd
i );

7: Gi+1 := Gi ∧ C(Xd
i ,K,Y d

i );
8: Fi+1 := Fi ∧ C(Xd

i ,K1,Y
d
i ) ∧ C(Xd

i ,K2,Y
d
i );

9: i := i+ 1;
10: end while
11: KC := sat assignmentK(Gi);

where C(X,K,Y ) is the SAT formula (CNF form) for a locked circuit and
(Xd

{1...i−1},Y
d
{1...i−1}) are the distinguishing I/O pairs that are found in previous

i−1 iterations. If satisfiable, an assignment for variablesX,K1,K2, Y 1, Y 2 will
be generated. The first line in the formula (2) evaluates the circuit functionality
for a specific X = Xd

i at two different key values K1 and K2 such that the
outputs are different (see Y 1 ̸= Y 2). This guarantees that the input X = Xd

i is
capable of identifying two keys K1, K2 which produce different outputs. Hence
at least one of the two keys must be wrong. This in itself is not enough to
call X = Xd

i as a distinguishing input because previous iteration may have
found another input assignment that could have differentiated between K1 and
K2. According to definition 2, a distinguishing input in the i-th iteration must
find “unique” wrong key combinations that have not been identified by previous
i − 1 distinguishing I/O pairs. This condition is checked by the SAT clauses in
the second line. In the second line Xd

j is the distinguishing input identified in

the previous j-th iteration and Y d
j is the corresponding correct output. This

correct output is know from the activated functional chip obtained from the
open market. The clauses in the second line guarantee that the keys K1 and K2

which result in “different” outputs in line 1 of this formula produce the “correct”
outputs for all previous distinguishing I/O pairs. Hence in this iteration we could
identify at least one incorrect key combination which previous iterations could
not. Therefore by definition 2 the input Xd

i (obtained from the SAT solver) and
the corresponding “correct” output Y d

i = eval(Xd
i ) (obtained from the activated

chip) represent the i-th distinguishing I/O pair.

The SAT attack algorithm is shown in Algorithm 1. Basically it starts by
first solving the line one of the formula (2) and as iterations progress it adds
the clauses comprised in line two of the formula (2). It stops when the resulting
SAT formula is unsatisfiable indicating no further distinguishing I/O pairs exist.
The correct key is obtained by finding a key value which satisfies the correct
I/O behavior of all the distinguishing I/O pairs. This algorithm is guaranteed
to find the correct key. Please refer to [12] for any further theoretical details.
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3 Efficiency Analysis of SAT Attack

The efficiency of SAT attack can be evaluated by the total execution time:

T =
λ∑

i=1

ti (3)

where λ is the total number of SAT attack iterations and ti is the SAT solving
time for i-th iteration. Consequently, the SAT attack can be mitigated if ti is
large and/or λ is large.

The SAT solving time ti is dependent on benchmark characteristics as well
as the efficiency of the SAT solver used. To increase ti, Yasin et al. [14] proposed
to add an AES circuit to protect the locked circuit, as shown in Fig. 2(a). As the
AES circuit is hard to be solved by a SAT solver, the SAT attack will fail to find
a satisfiable assignment for the SAT attack formula. Although this approach is
effective, the AES circuit leads to a large performance overhead since a standard
AES circuit implementation requires a large number of gates [4].

Increasing the number of iterations λ is another approach to mitigate the
SAT attack. λ depends on the key-size and key location in the locked circuit.
However, simply increasing the key-size or trying different key locations may
not effectively thwart the SAT attack. As shown in the SAT attack results [12],
even with large number of keys (50% area overhead), for six previously proposed
key-gate insertion algorithms [1, 2, 8, 9, 11], 86% benchmarks on average can still
be unlocked in 10 hours.

4 Anti-SAT Block Design

To mitigate the SAT attack, we propose to insert a relatively light-weight circuit
block (referred to as Anti-SAT block) that can efficiently increase the number of
iterations λ so as to increase the total execution time T . Fig. 3(a) and Fig. 3(b)
illustrate two configurations of the proposed Anti-SAT block. They consist of two
logic blocks B1 = gl1(X,Kl1) and B2 = gl2(X,Kl2). These two logic blocks
share the same set of inputs X and their original functionalities (before locking)
g and g are complementary, but are locked with different keys (Kl1 and Kl2) at
different locations (l1 and l2). The one-bit output Y is the AND (for Fig. 3(a))
or OR (for Fig. 3(b)) operation of two logic blocks.

Constant-output Property : one basic property of Anti-SAT block is that when
the key vector is correctly set, the output Y is a constant (e.g. always equals to 0
for Fig. 3(a) or 1 for Fig. 3(b)). Otherwise, Y can output either 1 or 0 depending
on the inputs. This property enables it to be integrated into the original circuit.
As shown in Fig. 3(c), the inputs of Anti-SAT block X are from the wires in
the original circuit. The output Y is connected into the original circuit using an
XOR gate (or a XNOR gate + inverter). When a correct key is provided, the
output Y always equals to 0 (XOR gate behaves as a buffer) and thus will not
affect the functionality of the original circuit. If a wrong key is provided, Y can
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Fig. 3. Anti-SAT block configuration: (a) An Anti-SAT block that always outputs 0 if
key values are correct; (b) An Anti-SAT block that always outputs 1 if key values are
correct. (c) Integrating the Anti-SAT block into a circuit.

be 1 for some inputs (XOR gate behaves as an inverter) and thus can produce
a fault in the original circuit.

In the subsequent sections, we provide details on constructing the Anti-SAT
block (i.e., the functionality of g) and its impact on SAT attack complexity. We
provide a rigorous mathematical analysis which give a provable lower bound to
the number of SAT attack iterations. For some constructions of g, this lower
bound is exponential in the number of keys thereby making the SAT-attack
complexity very high. In the remaining of this paper, we take Fig. 3(a) as the
configuration in our analysis and experiments (without loss of generality).

4.1 Construction of Anti-SAT Block

Now we describe how the Anti-SAT block can be constructed. Note that this
construction may not be unique and other constructions may also be feasible.
Consider the circuit illustrated in Fig. 4(a). Here a set of key-gates (XORs)
are inserted at the inputs of two logic blocks, so B1 = g(X ⊕ Kl1) and B2 =
g(X ⊕Kl2), where |Kl1| = |Kl2| =n. Hence the key-size is 2n. The outputs B1

and B2 are fed into an AND gate and produce an output Y . As a result, we have
Y = g(X ⊕Kl1) ∧ g(X ⊕Kl2).

Note that here we are using only XOR gates as key-gates for the sake of ease
of explanation. The key-gates used in Fig. 4(a) could be either XOR or XNOR
gates based on a user-defined key. Similar to conventional XOR/XNOR base logic
locking [9], if a correct key-bit is 0, the key-gate can be XOR or XNOR+inverter.
If the key-bit is 1, the key-gate can be XNOR or XOR+inverter. The usage
of inverters can remove the association between key-gate types and key-values
(e.g. the correct key into an XOR gate can now be either 0 or 1). Moreover,
as discussed in [9], the synthesis tools can “bubble push” the inverters to their
fan-out gates and an attacker cannot easily identify which inverters are part of
the key-gates. Besides, the XOR/XNOR gates can be synthesized using other
gate types. Combined with obfuscation techqniues which will be discussed in
Section 4.4, the attacker cannot obtain the correct key-values based on the types
of gates connected to the key-inputs.

Since the Anti-SAT block has 2n keys, the total number of wrong key com-
binations is 22n − c, assuming there exists c correct key combinations. Because
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Fig. 4. Anti-SAT block construction: (a) basic Anti-SAT block construction and (b)
one possible construction to ensure large number of SAT attack iterations.

correct key input (for Fig. 4(a)) happens when i-th key from Kl1 and i-th key
from Kl2 have the same value, the number of correct key combinations c = 2n.

4.2 SAT Attack Complexity Analysis

Here we analyze the complexity of a SAT attack on the Anti-SAT block con-
struction of Fig. 4(a) (assuming this is the circuit being attacked to decode the
2n key bits).
Terminology Given a Boolean function g(L) with n inputs, assuming there
exists p input vectors that make g equal to one (denote p as output-one count,
1 ≤ p ≤ 2n − 1), we can classify the input vectors L into two groups LT and
LF , where one group makes g = 1 and another makes g = 0:

LT = {L|g(L) = 1}, (|LT | = p)

LF = {L|g(L) = 0}, (|LF | = 2n − p)
(4)

The function g and its complementary function g are used to construct the
Anti-SAT block as shown in Fig. 4(a).

Theorem 1: Assuming the output-one count p of function g is sufficiently close
to 1 or sufficiently close to 2n − 1, the number of iterations needed by the SAT
attack (see λ in equation 3) to decipher the correct key is lower bounded by 2n.
Proof:

As described in Section 2, the SAT attack algorithm will iteratively find a
distinguishing I/O pair (Xd

i , Y
d
i ) to identify wrong key combinations in the

Anti-SAT block until all wrong key combinations are identified. In the i-th iter-
ation, the corresponding distinguishing I/O pair can identify a subset of wrong
key combinations, denoted as WKi. Notice that for any input combinations (in-
cluding the distinguishing inputs Xd

i ), the correct output (when provided the
correct key) is 0. Therefore, a wrong key combination K = (Kl1,Kl2) ∈ WKi

which was identified by (Xd
i , Y

d
i ) must produce the Anti-SAT block output as 1.

This condition is described below.

Y d
i = g(Xd

i ⊕Kl1) ∧ g(Xd
i ⊕Kl2) = 1.

⇔ (g(Xd
i ⊕Kl1) = 1) ∧ (g(Xd

i ⊕Kl2) = 0)

⇔ ((Xd
i ⊕Kl1) ∈ LT ) ∧ ((Xd

i ⊕Kl2) ∈ LF )

(5)
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Basically equation (5) states that the wrong key identified in the i-th iteration
must be such that its corresponding output Y should be 1. This implies that both
g and g must evaluate to 1. This means that the input to g, which is Xd

i ⊕Kl1,
should be in LT and the input to g, which is Xd

i ⊕Kl2, should be in LF .
Since Xd

i ⊕ Kl1 is the input vector to g, for any given Xd
i , we can always

find a key Kl1 such that Xd
i ⊕Kl1 ∈ LT . Basically Xd

i ⊕Kl1 flips some of the
bits of Xd

i (for which corresponding Kl1 bits are 1) while keeping other bits the
same (for which corresponding Kl1 bits are 0). Hence for a given Xd

i , we can
always choose Kl1 such that the resulting input to g is in LT . However note
that |LT | = p in (4). Hence for any given Xd

i , we can select Kl1 in p different
ways such that Xd

i ⊕Kl1 ∈ LT .
Similarly, for any given Xd

i , we can always find a key Kl2 such that Xd
i ⊕

Kl2 ∈ LF . Note that |LF | = 2n−p in (4). Hence for any given Xd
i , we can select

Kl2 in 2n − p different ways such that Xd
i ⊕Kl2 ∈ LF .

Now, as noted above, for a given Xd
i , a wrong key K = (Kl1,Kl2) should

be such that Xd
i ⊕Kl1 ∈ LT and Xd

i ⊕Kl2 ∈ LF . The total number of ways in
which we can select a wrong key K = (Kl1,Kl2) are p · (2n − p).

Now in any given iteration i, for a given Xd
i , the maximum number of in-

correct keys identified is p · (2n − p). This follows naturally from the discussion
above. The reason this is the maximum number because it is very much possible
that some of these keys were identified in previous iterations. Hence the total
number of “unique” incorrect keys UKi identified in iteration i is bounded by
p · (2n − p). This is noted in the equation below.

p · (2n − p) ≥ UKi (6)

where UKi is the number of unique incorrect keys identified at iteration i. The
SAT attack works by iteratively removing all incorrect keys till only the correct
ones are left (assuming after λ iterations). Hence the following holds true.

λ(p · (2n − p)) ≥
λ∑

i=1

UKi (7)

Since
∑λ

i=1 UKi is the total number of incorrect key combinations, its value
must be = 22n − c. The equation above can be rewritten as follows.

λ ≥ λl =
22n − c

p(2n − p)
(8)

Here λl is the lower bound on λ. As noted in Fig. 4(a) the correct key happens
when the i-th bit from K1 and i-th bit from K2 have the same value. Hence
c = 2n. When p → 1 or p → 2n − 1, we have the lower bound as follows:

λl =
22n − 2n

p(2n − p)
→ 22n − 2n

1× (2n − 1)
= 2n (9)

Hence Proved.
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Therefore, if we choose a g function such that p is either very low or very high
then the SAT attack would at least require an exponential number of iterations
in n. One possible choice of g is indicated in Fig. 4(b) where g is chosen to be
a simple AND gate. For AND gates p = 1 which clearly results in exponential
complexity of SAT attack. Experimental results to indicate that shall be indi-
cated subsequently. Moreover, we can see that the lower bound λl is tight when
p = 1 or p = 2n−1. This is because that for a n-input Anti-SAT block, the total
number of input combinations is 2n so the number of iterations to find distin-
guishing inputs is upper-bounded λ ≤ 2n. This combined with the equation (9)
shows that the lower bound is tight when p = 1 or p = 2n − 1.

4.3 Anti-SAT block location

When the Anti-SAT block is integrated into a circuit, a set of wires in the original
circuit are connected to the inputs X of the Anti-SAT block and the output Y
of the Anti-SAT block is integrated to a wire in the original circuit (as shown
in Fig. 3(c)). If X are connected to wires that are highly correlated (e.g. two
nets with identical logic), then the overall security of the block shall be reduced
because less possible input combinations can occur at the input of the Anti-SAT
block. The location for Y is also important. An incorrect key causes Y = 1 for
some inputs. This incorrect output must impact the overall functionality of the
original circuit. Otherwise the logic will continue to function correctly despite
wrong key inputs. In conclusion, the best location of the Anti-SAT block is such
the inputs X are highly independent and Y has high observability at the POs
(i.e., change in Y can be observed by the POs of the original circuit). The
impact of Anti-SAT block location on the overall security shall be evaluated in
the experiments.

4.4 Anti-SAT Block Obfuscation

Since the Anti-SAT block is independent of the locked circuit, it may be removed
or nullified by an attacker if it is identified, thereby leaving only the locked
circuit. Then, the SAT attack can be launched to unlock the circuit without the
Anti-SAT block. Note that a similar criticism is possible for the AES based logic
locking approach [14] which is very strong in presence of SAT attack but might
be easily circumvented by an attacked due to its large footprint. To prevent
such an identification and nullification, we apply both functional and structural
obfuscation techniques to obfuscate the Anti-SAT block such that it can be
covertly embedded in the original design.

Functional Obfuscation In the Anti-SAT block, the logic blocks g and g
have complementary functionality. An attacker can simulate the circuit and find
potential complementary pairs of signals leading to potential identification of
the Anti-SAT block. To prevent such attacks, we propose to insert additional
key-gates at internal wires of two logic blocks (and the internal wires of 2n
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XOR/XNORs at the inputs since they can be synthesized using other gates) to
obfuscate their functionalities. With an incorrect key, the functionalities of these
two logic blocks are different and an attacker will fail to find the complementary
pairs of signals through simulation. Besides, the logic blocks g and g and the
key-gates can be synthesized using different logic gates to reduce their similarity.

Structural Obfuscation Besides functional obfuscation, we need to obfuscate
the structure of the Anti-SAT block to prevent any structure-based attacks which
are independent of functionality. In the Anti-SAT block, the internal wires in g
and g do not have connections with the locked circuit. This makes the Anti-SAT
block a relatively isolated and separable structure. When the size of the Anti-
SAT block is roughly known, it’s possible for an attacker to utilize a partitioning
algorithm to partition the whole circuit into two parts while ensuring that small
partition has about the same size as the Anti-SAT block. If a large portion of
gates of the Anti-SAT block is moved to the small partition, then the attacker
will have less difficulty to identify the Anti-SAT block. In order to prevent such
attacks, we utilize the MUX-based logic locking (as shown in Fig. 1(d)) to in-
crease the inter-connectivity between the locked circuit and the Anti-SAT block.
A set of two-input MUX gates is utilized to connect these two parts. One input
of the MUX is from a random wire w1 of the locked circuit and the other input
is from a random wire w2 of the Anti-SAT block. The output of MUX replace
the original signal (either w1 or w2) and is connected to the fan-outs of either
w1 or w2. The selection bit of MUX is the key-input. After inserting the MUXes,
the whole circuit is re-synthesized so as to obscure the boundary between two
parts. With more MUXes inserted, the interconnections between the Anti-SAT
block and the locked circuit will be increased and it’s difficult for an attacker to
partition and isolate the Anti-SAT block from the locked circuit, which will be
validated in Section 5.3.

Combined with Conventional Logic Locking Techniques As noted be-
fore, conventional logic locking techniques as indicated in Fig. 1 try to avoid an
unauthorized user who does not have a key from accessing the chip’s function-
ality. They attempt to insert key gates in a way to force the chip to deviate
substantially from the actual functionality whenever a wrong key is provided.
These techniques are not immune to SAT attack (as noted in [12] and also in-
dicated in our simulations). While our Anti-SAT block can provide provable
measures to increasing the SAT attack complexity, they may not necessarily
cause substantial deviation in the chip functionality for incorrect keys. Hence
an unauthorized end user may still be able to use the chip correctly for “many”
inputs (but not all). Therefore, conventional logic locking techniques need to be
combined with our Anti-SAT block designs for achieving foolproof logic locking.
Moreover, the key-gates inserted at the original circuit can make the Anti-SAT
block less distinguishable with the original circuit. Without these key-gates in
the original circuit, an attacker has less difficulty to locate the Anti-SAT block
by inspecting the only key-inputs into the Anti-SAT block.
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Table 1. Impact of output-one count p on the security level of the n = 16-bit baseline
Anti-SAT block. Timeout is 10 hours.

p 1 81 243 2187 30375 63349 65293 65455 65535
# Iteration - 10675 4760 901 273 898 4647 - -
Time (s) timeout 16555.8 8746.12 174.743 3.24 307.104 12932.3 timeout timeout

Table 2. Impact input-size n on the security level of the baseline Anti-SAT block
(output-one count p = 1). Timeout is 10 hours.

n 8 10 12 14 16
# Iteration 255 1023 4095 16383 -
Time (s) 1.14569 20.024 324.727 4498.03 timeout

5 Experiments and Results

In this section, we evaluate the security level of our proposed Anti-SAT blocks.
The security level is evaluated by the number of SAT attack iterations as well as
the execution time to infer the correct key. The SAT attack tools and benchmarks
used are from [12]. The CPU time limit is set to 10 hours as [12]. The experiments
are running on an Intel Core i5-2400 CPU with 16GB RAM.

5.1 Anti-SAT Block Design

We firstly evaluate the security level of the Anti-SAT block with respect to
different design parameters: a) the input-size n and output-one count p of func-
tion g and b) the Anti-SAT block location. The n-bit baseline Anti-SAT
(BA) block is constructed using a n-input AND gate and a n-input NAND
gate (output-one count p = 1) as g and g to ensure large number of iterations.
However notice that this is not the only possible choice for g and g. As we have
shown in Section 4.2, other function g that has sufficiently large n and suffi-
ciently small (or large) p can also guarantee large number of iterations. The
key-gates (XOR/XNOR) are inserted at the inputs of g and g with key-size
|Kl1| = |Kl2| = n. Obfuscation techniques proposed in Section 4.4 are not ap-
plied here but they will be evaluated in the Section 5.3 when the Anti-SAT block
is integrated into a circuit.

Input-size n and output-one count p As shown in equation (8), the lower
bound of SAT attack iterations λl to unlock the Anti-SAT block is related to
the input-size n and output-one count p of function g.

If n is fixed, λl is maximized when p → 1 or p → 2n − 1. To evaluate the
impact of p, we replace some 2-input AND gates with 2-input OR gates in a
n = 16-bit baseline Anti-SAT block to gradually increase p. Table 1 illustrates
the impact of p on the security level of the 16-bit Anti-SAT block. For p = 1 and
p = 216−1 = 65535, the SAT attack algorithm fails to unlock the Anti-SAT block
in 10 hours. This is because that it requires a large number of iterations (≈ 216)
to rule out all the incorrect key combinations. As p → 216/2 (the worst case),

13



Table 3. Impact of Anti-SAT block location on security level of the baseline n-bit
Anti-SAT blocks (n = 8, 12, 16) inserted at c1355 circuit. Timeout is 10 hours. The
random case is averaged over 5 trials.

|Kl1| = |Kl2| = n 8 12 16

Random
Avg. # Iteration 151 1748 11461
Avg. Time (s) 1.4296 162.529 10272.4

Secure
# Iteration 255 4095 -
Time (s) 3.452 759.924 timeout

the SAT attack begins to succeed using less and less iterations and execution
time. This result validates that when p is very small or very large for a fixed n,
the iterations λ will be large and the SAT attack will fail within a practical time
limit.

Moreover, as described in Section 4.2, λl is an exponential function of n
when p is very low (p → 1) or very high (p → 2n − 1). Table 2 shows the
exponential relationship between λ and n when p = 1 for five baseline Anti-SAT
block (n = 8, 10, 12, 14, 16). It can be seen that as n increases, the simulated
SAT iterations and execution time grows exponentially. Besides, the number of
iterations validates that the lower bound λl is tight when p = 1, as discussed in
Section 4.2.

Anti-SAT block location As noted in Section 4.3, the Anti-SAT block location
may impact the its security in terms of SAT attack iterations and execution
time. We compare two approaches of integrating the Anti-SAT block with the
original circuit, namely secure integration and random integration. For the secure
integration, n inputs of the Anti-SAT block X are connected to n PIs of the
original circuit. The output Y is connected to a wire which is randomly selected
from wires that have the top 30% observability. The randomness of the location
of Y can assist in hiding the output of the Anti-SAT block. For the random
integration, the inputs X are connected to random wires of the original circuit,
and the output Y is connected to a random wire. For both cases, the wire
for Y has a latter topological order than that of the wires for X to prevent
combinational loop. Table 3 compares two integration approaches when three
baseline Anti-SAT block of different sizes (n = 8, 12, 16) are integrated into the
c1355 circuit from ISCAS85. It can be seen that for three Anti-SAT blocks,
secure integration is more secure than random integration as the former requires
more iterations (∼ 2×) and execution time (∼ 3×) for the SAT attack algorithm
to reveal the key. Therefore, in the following experiments, we adopt the secure
integration as the way to integrate the Anti-SAT block into a circuit.

5.2 Anti-SAT Block Application

We evaluate the security level of the Anti-SAT block when it’s applied to 6
circuits of different sizes from ISCAS85 and MCNC benchmark suites. The
benchmark information is shown in Table 4. We compare three logic locking
configurations as follows:
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Table 4. Benchmark information of 6 cir-
cuits from ISCAS85 and MCNC benchmark
suites and the key-sizes of three logic lock-
ing configurations.

Circuit #PI #PO #Gates

Key-size
TOC13 n-bit n-bit
(5%) BA OA

c1355 41 32 546 29

2n 4n

c1908 33 25 880 46
c3540 50 22 1669 86
dalu 75 16 2298 119
des 256 245 6473 336
i8 133 81 2464 130
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Fig. 5. HD v.s. key-gate ratio for
TOC13 logic locking.

– TOC13: The original circuit is locked using TOC13 logic locking algo-
rithm [9] which inserts XOR/XNOR gates into the circuit to obfuscate its
functionality. Fig. 5 shows that TOC13 is effective in increasing the output
corruptibility (in terms of the Hamming distance (HD) between the output
of an original circuit and a locked circuit given a random key). Also, it can
be seen that 5% overhead (ratio between # key-gates and # original gates)
is roughly enough to approach 50% HD for all benchmarks.

– TOC13(5%) + n-bit BA: In this configuration, the original circuit is
locked with TOC13 with 5% overhead. Besides, we integrate a n-bit baseline
Anti-SAT (BA) block into the locked circuit using the secure integration, i.e.,
the n inputs of the Anti-SAT block are connected to n PIs of the original
circuit, and the output of the Anti-SAT block is connected to a wire in the
original circuit which is randomly selected from the wires that have the top
30% observability. For a n-bit BA, its key-size is kBA = 2n because 2n keys
are inserted at the inputs of g and g.

– TOC13(5%) + n-bit OA: In this configuration, the obfuscation techniques
proposed in Section. 4.4 are applied to make the baseline Anti-SAT block
less distinguishable from the locked circuit. In our experiment, we insert n
MUXes to increase the inter-connectivity between a n-bit baseline Anti-SAT
block and the locked circuit. Besides, we insert additional n XOR/XNOR
gates at random internal wires of the logic blocks g and g to obfuscate their
functionality to prevent the detection of complementary pairs of signals.
Thus, the keys in a n-bit obfuscated Anti-SAT (OA) block is kOA = 4n.

We compare the security level of three configurations when the same number
of keys are used in each configuration. We investigate the sensitivity of SAT
attack complexity on the increase of key-size. For TOC13, the increased keys are
inserted to the original circuit. For TOC13(5%) + n-bit BA/OA, the increased
keys are used in the Anti-SAT block and increasing the key-size also indicates
increasing the Anti-block size (in terms of input-size n) because we construct the
BA and OA with kBA = 2n and kOA = 4n, respectively. In this experiment, we
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Fig. 6. SAT attack results on 6 benchmarks with three logic locking configurations:
TOC13 only, TOC13(5%)+BA, and TOC13(5%)+OA. Timeout is 10 hours (3.6× 104

s). The dashed line in the top figure (execution time) is the curve fitting result when
the SAT attack has time-outed after certain key-size.

integrate the baseline Anti-SAT blocks of input-size nBA = 8, 10, 12, 14, 16, 18, 20
and the obfuscated Anti-SAT blocks of input-size nOA = 4, 5, 6, 7, 8, 9, 10. The
input-size of BA is twice the size of OA (nBA = 2nOA) when their key-sizes are
the same kBA = kOA.

The SAT attack result on three configurations w.r.t increasing key-size are
shown in Fig. 6. For each benchmark, the top figure shows the SAT attack exe-
cution time and the bottom figure shows the number of SAT attack iterations,
both in log scale. It can be seen that for TOC13, increasing the key-size can-
not effectively increase SAT attack complexity. For all benchmarks locked with
TOC13, they can be easily unlocked using at most 48 iterations and 8.48 seconds.
On the other hand, when the Anti-SAT blocks are integrated, the SAT attack
complexity increases exponentially with the key-size in the Anti-SAT block. This
holds for both the baseline Anti-SAT block and the obfuscated Anti-SAT block.
Also the results show that with the same key-size, the grow rate of n-bit OA is
slower than n-bit BA. This is because that for OA, a portion of keys are utilized
to obfuscate the design and the resulting OA is half the size as the BA (in terms
of n) as described earlier. Finally, we can see that for all benchmarks, the SAT
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Table 5. Percentage of a 14-bit obfuscated Anti-SAT block isolated to a small partition
when a min-cut partitioning algorithm is utilized. Area estimation error is percentage
error of an attacker’s estimation about the size of the Anti-SAT block.

Circuits

Area Estimation Error
0% 5% 15% 25%

NO MUX With MUX No MUX With MUX No MUX With MUX No MUX With MUX
c1355 99.07% 0.00% 99.07% 0.93% 40.74% 0.93% 0.00% 0.00%
c1908 99.07% 0.93% 99.07% 0.00% 0.00% 0.93% 0.00% 0.00%
c3540 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
dalu 99.07% 0.00% 99.07% 0.00% 99.07% 0.00% 0.00% 0.00%
des 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
i8 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Average 66.20% 0.16% 66.20% 0.15% 23.30% 0.31% 0.00% 0.00%

attack fails to unlock the circuits within 10 hours when a 14-bit BA (kBA = 28)
is inserted or when a 10-bit OA (kOA = 40) is inserted.

5.3 Anti-SAT Obfuscation

In Section 4.4, we claim that the Anti-SAT block has a separable structure
because it has few interconnections with the locked circuit. When the size of
the Anti-SAT block is roughly known, it’s possible for an attacker to utilize a
min-cut partitioning algorithm to partition the whole circuit into two parts while
ensuring that small partition has about the same size as the Anti-SAT block. If
a large portion of gates of the Anti-SAT block is moved to the small partition,
an attacker will have less difficulty to identify the Anti-SAT block. In order
to prevent the Anti-SAT block from being identified, we propose to use MUX-
based logic locking to increase the inter-connectivity between the locked circuit
and the Anti-SAT block. Table 5 shows the percentage of gates of a n = 14-bit
OA (with or without MUXes) that are isolated to the small partition after min-
cut partitioning. The reason for using a 14-bit OA is because that it can achieve
a sufficiently large SAT attack time (according to the fitting result in Fig. 7
which will be discussed later). Because the Anti-SAT block can be synthesized
with different types of gates, it’s difficult for an attacker to obtain the exact size
of the Anti-SAT block. Therefore, we perform the partitioning algorithm while
assuming a certain area estimation error for the Anti-SAT block and analyze its
impact on the attack results.

As shown in Table 5, when the area estimation error is 0% and no MUXes are
inserted, the Anti-SAT block in 4 circuits (c1355, c1908, dalu, and i8) can be iso-
lated. In these circuits, the percentages of gates of the Anti-SAT block isolated by
the partitioning algorithm are almost 100%. However, with the increase of area
estimation error, the partitioning fails to isolate the Anti-SAT block. Besides,
when n = 14 MUXes are inserted to increase the inter-connectivity between the
Anti-SAT block and the locked circuit, the percentages of isolated Anti-SAT
block are almost 0% for four assumptions of area estimation error. This is be-
cause that the number of interconnections between the Anti-SAT block and the
locked circuit is increased and partitioning them will result in a large cut-size,
so the partitioning algorithm will avoid to separate the Anti-SAT block.
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n-bit obfuscated Anti-SAT block

Fig. 7. SAT attack execution time (in log scale) and area overhead for the des circuit
integrated with n-bit obfuscated Anti-SAT. The original circuit is locked with TOC13
(5% overhead). The blue dashed line is the fitting curve for CPU time.

5.4 Performance Overhead of the Anti-SAT Block

In our construction, a n-bit obfuscated Anti-SAT block consists of logic blocks
g and g, a 2-input AND gate, 3n + 1 XOR/XNOR gates and n 2-input MUX
gates. These extra logic gates will introduce performance overhead such as area,
power and delay. Different implementation of g and g will result in different
overhead. The performance overhead will be increased when sub-optimal syn-
thesis is utilized to obfuscate the Anti-SAT block. In our experiments, we utilize
a n-bit AND gate and a n-bit NAND gate to implement the function g and g.
The estimated SAT attack complexity and area overhead of inserting a n-bit OA
into the des circuit are shown in Fig. 7. The overhead is evaluated in terms of
the ratio between the total size of extra gates and the total size of original gates.
It can be seen that a slight increase in area overhead can result in exponential
increase in SAT attack’s computation complexity. It’s also important to notice
that the design of the Anti-SAT block does not scale with the benchmark size; it
only scales with the attacker’s computation power. Compared to the technique
proposed in [14] which inserts an AES circuit to defend the SAT attack, our
proposed technique has much less overhead.

6 Conclusion

In this paper, we present a circuit block called Anti-SAT to mitigate the SAT
attack on logic locking. We show that the iterations required by the SAT attack
to reveal the correct key in the Anti-SAT block is an exponential function of the
key-size in the Anti-SAT block. The Anti-SAT block is integrated to a locked
circuit to increase its resistance against SAT attack. Compared to adding a large
hard-SAT circuit (e.g. AES), our proposed Anti-SAT block has a much smaller
overhead, which makes it a cost-effective technique to mitigate the SAT attack.
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