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Abstract. In recent years, methods to securely mask S-boxes against
side-channel attacks by representing them as polynomials over finite bi-
nary fields have become quite efficient. A good cost model for this is
to count how many non-linear multiplications are needed. In this work
we improve on the current state-of-the-art generic method published by
Coron–Roy–Vivek at CHES 2014 by working over slightly larger fields
than strictly needed. This leads us, for example, to evaluate DES S-boxes
with only 3 non-linear multiplications and, as a result, obtain 25% im-
provement in the running time for secure software implementations of
DES when using three or more shares.

On the theoretical side, we prove a logarithmic upper bound on the
number of non-linear multiplications required to evaluate any d-bit S-
box, when ignoring the cost of working in unreasonably large fields. This
upper bound is lower than the previous lower bounds proved under the
assumption of working over the field F2d , and we show this bound to be
sharp. We also achieve a way to evaluate the AES S-box using only 3
non-linear multiplications over F216 .

Keywords: side-channel countermeasure, masking, probing security, block ci-
pher, software implementation, polynomial evaluation.

1 Introduction

Side-channel attacks are a realistic and serious threat for cryptographic imple-
mentations [Koc96,KJJ99]. These attacks have the potential to leak one or more
sensitive intermediate variables that would otherwise be unavailable in a black-
box execution of a cryptographic primitive. Block ciphers are typical targets of
such attacks. Secret sharing, a.k.a. masking, is a popular technique to protect
block cipher implementations against leakage of one or more sensitive inter-
mediate variables. Depending on how a sensitive variable is split into shares,
processed and then re-combined, and the formal leakage model used for secu-
rity analysis, there are several generic higher-order masking schemes that can
secure block cipher computations, with the secrets shared into as many shares as



we desire [ISW03,GM11,PR11,CGP+12,BFGV12,Cor14,BFG15]. Indeed, these
schemes can be used to secure any circuit.

The most popular among existing generic masking schemes for block ci-
pher implementations are those where the secrets are additively shared. This
is in part due to the effectiveness, efficiency and simplicity of additive masking
[CJRR99,ISW03,PR13,DDF14,DFS15,BFG15]. Over binary fields this type of
masking has also been called as Boolean masking. In fact, the very first generic
higher-order masking scheme, due to Ishai, Sahai and Wagner [ISW03] (hence-
forth referred to as the ISW method), is based on additive masking. Their method
can be used to secure arbitrary Boolean circuits in the so-called probing model,
where an adversary can choose to leak, say, t intermediate variables and the
scheme is secure so long as the number of shares s ≥ 2t + 1. Though work-
ing with Boolean circuits is probably well-suited to hardware implementations,
representing a computation as a Boolean circuit will lead to huge overheads in
software implementations. Nonetheless, this method and the probing security
framework introduced in their work formed the basis for most of the later mask-
ing schemes. Rivain and Prouff [RP10] adapted the ISW method to secure AES
by representing its S-box as an arithmetic circuit over F28 .

CGPQR Method. Carlet et al. [CGP+12] adapted the ISW method to secure
software implementations of arbitrary block ciphers over binary finite fields F2n

(hereafter referred to as the CGPQR method). For an additive masking scheme
processing F2-linear or affine functions in the presence of shares is straightfor-
ward. Hence the main challenge is to securely process non-linear functions. Since
in a block cipher the only non-linear operations are the S-box table lookups, the
technique used in the CGPQR method to securely mask such table lookups is
to first represent a d-to-r-bit S-box function (d ≥ r) as a univariate polynomial
over a binary finite field F2d . Then this polynomial is evaluated in the presence
of shares using the following operations: addition (of two polynomials over F2d),
scalar multiplication (i.e., multiplication of a polynomial by a constant from
F2d), squaring (of a polynomial over F2d), and multiplications of two distinct
polynomials (a.k.a. non-linear multiplications). While additions, scalar multipli-
cations and squarings are F2-linear operations, the non-linear multiplications, as
the name suggests, are not F2-linear. To process a non-linear multiplication in
the CGPQR method, an adaptation of the technique used in the ISW method to
mask (non-linear) AND gates is utilised. The overhead caused by the CGPQR
method (relative to unshared evaluation), in terms of both the time and the ran-
domness required, to securely mask a non-linear multiplication is O(s2), where
s is the number of input shares. For a linear or affine function the overhead is
only O(s).

Relation to Polynomial Evaluation. One of the relatively well-understood
approaches to analysing and improving the efficiency of the CGPQR method is
to investigate the problem of evaluating polynomials over binary finite fields. The
goal is to minimise the number of non-linear multiplications needed to evaluate a
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polynomial over F2d , while ignoring the cost of additions, scalar multiplications
and squarings. As the works of Carlet et al. [CGP+12], Roy and Vivek [RV13],
and Coron, Roy and Vivek [CRV14,CRV15] demonstrate, this cost model of
minimising the non-linear multiplications while evaluating an S-box polynomial
has turned out to be a reasonably effective way to model the overall cost of
processing a block cipher in software implementations, as long as one makes
sure that the use of linear operations is not made “unreasonably” large.

In [CGP+12], two methods to evaluate arbitrary polynomials over F2d are
presented that are tailored to the non-linear cost model: the cyclotomic-class
method (having complexity Ω(2d/d)) and the parity-split method (having proven
complexity O(2d/2). These two methods were applied to various S-box polyno-
mials to understand their complexity in terms of non-linear multiplications. In
[RV13], improved evaluation techniques for various specific S-box polynomials
were presented. In particular, it was shown that the 6-to-4-bit DES S-boxes
can be evaluated with 7 non-linear multiplications, while 8-bit (i.e., 8-to-8-bit)
CAMELLIA and CLEFIA S-boxes can be evaluated with 15 or 16 non-linear
multiplications. The work of [RV13] also initiated a formal analysis of this cost
model and established lower bounds on the necessary number of non-linear mul-
tiplications required to evaluate any polynomial over F2d . In particular, they
showed that, under certain representation over F26 , the DES S-box polynomials
need at least 3 non-linear multiplications to evaluate them, while the PRESENT
S-box polynomial over F24 needs at least 2 non-linear multiplications.

CRV Method. In [CRV14,CRV15], Coron, Roy and Vivek proposed an im-
proved method (henceforth referred to as the CRV method) to evaluate arbi-
trary polynomials over F2d . Their method has a heuristic worst-case complexity
of O(2d/2/

√
d) non-linear multiplications. They also show that the complexity

of O(2d/2/
√
d) is optimal for any method to evaluate arbitrary polynomials over

F2d . Currently, w.r.t. the non-linear multiplications cost model, the CRV method
is the most efficient way to implement the CGPQR countermeasure.

In the CRV method, a d-to-r-bit S-box S is represented by a polynomial
P (X) ∈ F2d [X] that is actually computed in the process. The d-bit and the r-bit
strings are identified with the elements of F2d . The polynomial P (X) satisfies
the property that its evaluation on the elements of F2d produces output elements
of F2d that agree in the lower-order r-bits with the corresponding S-box outputs.
Briefly the CRV method for a generic d-to-r-bit S-box is as follows:

Step 1: Pre-compute a collection of monomials L in F2d [X] (a) that is closed
w.r.t. squaring (because squarings are free) (b) has the property that L ·L gen-
erates all the monomials Xi (i = 0, 1, . . . , 2d − 1).

Step 2: Consider the following relation over F2d [X]:

P (X) =

t−1∑
i=1

pi(X) · qi(X) + pt(X) mod X2d +X (1)
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for some chosen parameter t, where the polynomials pi(X) and qi(X) have mono-
mials only from the set L, and the polynomials qi(X) are randomly chosen but
the values of P (X) and the coefficients of pi(X) are unknown. Next they write
down a set of r ·2d linear equations over F2 (in the unknown bits), corresponding
to each S-box output bit, by evaluating the above relation at the elements of
F2d . Finally, the unknown bits are obtained by solving the resulting linear sys-
tem over F2 whose matrix has dimension r ·2d×d · t · |L|, which is approximately
r · 2d × r · 2d. The total number of non-linear multiplications required is about
t− 1 + |L|/d.

It is shown in [CRV15] that any 4-bit S-box can be evaluated with 2 non-
linear multiplications in the worst case (which is optimal), any 6-bit S-box with
at most 5, any 6-to-4-bit S-box (in particular, DES S-boxes) with at most 4,
any 8-bit S-box with at most 10 non-linear multiplications (cf. Table 1). As, in
a block cipher, the time required for S-box table lookups grows quadratically
with the number of shares, seemingly marginal reductions in the count of non-
linear multiplications per S-box evaluation indeed lead to significant gains in the
overall execution time, as demonstrated in [Cor14,CRV15].

One obvious approach to improve the CRV method is to simultaneously solve
for the unknown coefficients of both the set of polynomials pi(X) and qi(X)
(including P (X)) in Step 2 of the CRV method described above, instead of
linearising (1) by choosing random polynomials qi(X). This results in r · 2d

multivariate homogeneous quadratic equations over F2 in approximately d · 2d
variables. To our knowledge, determining the roots of such a system of equations
seems infeasible with current techniques even for small values of d = 6 or d = 8.
Hence it is of interest to find alternative ways to reduce the parameters of the
CRV method (particularly, the parameters t and L) that affect the total number
of non-linear multiplications for the S-box polynomials. This is one of the main
themes of this paper.

1.1 Our Contribution

We give an improved generic method to reduce the number of non-linear mul-
tiplications required to evaluate various S-box polynomials. Our method may
be viewed as an extension of the CRV method (cf. page 3). While in the CRV
method and other previous works the inputs/outputs of a d-to-r-bit S-box are
naturally identified with the elements of F2d , we instead encode them in fields
F2n , where n ≥ d. Our heuristic analysis seems to suggest that the complexity
of the CRV method improves by a factor of two in the limiting case, though
both the methods have the same heuristic asymptotic (worst-case) complexity
of O(2d/2/

√
d) non-linear multiplications.

From a technical point of view, apart from the problem of encoding mentioned
above, the main and the only other difference between our method and the CRV
method is in the selection of the following two parameters: L (the pre-computed
monomial list) and t (the number of summands in the decomposition in (1)).
Once these parameters are carefully determined, then the remaining steps to
obtain a decomposition of the form (1) by setting up a linear system of equations
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is exactly the same. Since in the matrix step of the CRV method (cf. page 3)
we heuristically need n · t · |L| ≈ r · 2d, it is evident that we could end up
with smaller values of t, and hence a reduction in the total number of non-
linear multiplications required. Some technical hurdles arise due to the fact that
we would not gain anything if we insist, as in the CRV method, that the pre-
computed set of monomials L must span all monomials in F2n [X]. Our generic
method and its analysis is presented in Section 2.

Our method leads to improvements for most of the S-boxes found in practice.
Table 1 lists the (worst-case) cost of processing arbitrary d-to-r-bit S-boxes using
our method over F28 and F216 , and compares these with those of the previous
methods. In particular, any 6-to-4 bit S-box, including all the DES S-boxes,
now need at most 3 non-linear multiplications to evaluate them instead of the
previous best of 4 non-linear multiplications required by the CRV method that
works over F26 in this case (cf. Table 2). We discuss how to select suitable
parameters for various S-box dimensions in Section 2.2.

We have made a proof-of-concept implementation in software of our improved
method for DES. As Table 5 suggests, the CGPQR method combined with our
technique outperforms the CGPQR+CRV method by around 25% in the overall
processing time of the block cipher when there are 3 shares, and even better
when there are greater numbers of shares. Our implementation also needs less
(RAM) memory and fewer calls to a Pseudo Random Generator (PRG) (that
outputs bytes) than the CRV method. We believe that since it is convenient
to manipulate bytes in a software implementation, working over F28 instead
of F26 or F27 should not cause any noticeable overhead. This reasoning is also
confirmed by our above implementation, the details of which are presented in
Section 2.3. Our improvements obtained by working over F216 could possibly be
interesting for microprocessors such as ARM with Neon core [Lim13] that has
a SIMD instruction to perform several parallel multiplications of two degree-
7 polynomials over F2 represented as bytes. This instruction can be used to
perform parallel multiplications in F216 with considerably less overhead than on
a sequential processor thanks to Barrett reduction [Bar86,WVGX15]. But the
downside is that the number of calls to a PRG is still double compared to the
case of F28 . Besides, note that such processors can also be targets of side-channel
attacks [GMPT15].

Finally, in Section 3, we analyse the advantage and the limitations of using
larger fields F2n (n ≥ d) to encode the input/output bit-strings of d-to-r-bit
S-boxes as arbitrary subspaces in F2n . Note that since additive masking is F2-
linear, the set of encodings must be an (F2-linear) subspace of F2n (when viewed
as an F2-vector space). We prove a logarithmic upper bound of dlog2 de, which
is also optimal, on the complexity of evaluating d-to-r-bit S-boxes, when work-
ing over some huge field extension of F2d . We stress that this result does not
contradict the exponential lower bound results of [CRV15] as they hold over the
(smaller field) F2d . Using the techniques introduced to obtain the above results,
we achieve a way to evaluate the AES S-box using only 3 non-linear multi-
plications over F216 , instead of 4 non-linear multiplications over F28 . We then
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generalise the lower bound results of [CRV15] to determine a lower bound on the
exact complexity of generic d-to-r-bit S-boxes when working over any specified
field F2n (n ≥ d).

(d, r) (4, 4) (5, 5) (6, 4) (6, 6) (7, 7) (8, 8)

Cyclotomic Class method [CGP+12] 3 5 11 11 17 33

Parity-Split method [CGP+12] 4 6 10 10 14 22

CRV method [CRV15] 2 4 4 5 7 10

Our method (over F28) 2 3 3 4 6 10

Our method (over F216) 2 3 3 3 4 6

Table 1. Comparison of the worst-case complexity of generic methods for various
d-to-r-bit S-boxes.

1.2 Related Works

Another generic masking scheme based on the additive masking is by Coron
[Cor14]. This countermeasure is a generalisation of the table-recomputation tech-
nique [CJRR99,SP06] to the higher-order setting. As shown in [CRV15], the CG-
PQR method combined with the CRV method outperforms this countermeasure,
both asymptotically and in practice, w.r.t. time and memory complexity, and
also the randomness required.

As far as the CGPQR method is concerned, there are other interesting ap-
proaches to improving its efficiency than by minimising the number of non-linear
multiplications. One such way was introduced by Coron et al. [CPRR13] and
further considered by Grosso, Prouff and Standaert [GPS14]. This approach is
based on the observation that certain types of non-linear multiplications are
more than efficient than the rest. Hence the efficiency can be gained by trading
the costlier non-linear multiplications for more efficient ones. Recently, Carlet et
al. [CPRR15] introduced techniques based on the algebraic decomposition of a
non-linear function as a sequence of low algebraic-degree functions. The CGPQR
method combined with their technique outperforms the CGPQR+CRV method
in many realistic scenarios.

It must be stressed that the above approaches to making the CGPQR method
more efficient are not mutually exclusive of one another but, indeed, complemen-
tary. In fact, the improvements w.r.t. the non-linear multiplications cost model
have motivated the approaches of [GPS14,CPRR15]. Finally, we would like to
note that the relative simplicity of the non-linear multiplications cost model has
made it amenable to a rigorous analysis, in particular, the lower bound results
in [RV13,CRV15], while relatively little is known about the other cost models.
Also, this cost model and its variant where the circuit depth w.r.t. non-linear
multiplications also matters have found applications in fully homomorphic en-
cryption and multi-party computation settings [GHS12a,GHS12b,ARS+15]. We
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do not consider such applications in this work, and hence, prefer to work in the
non-linear multiplications cost model.

2 Improved Generic Method for S-boxes

Consider a d-to-r-bit S-box, where d ≥ r. We identify the d-bit and the r-bit
strings with the elements of F2n (r, d ≤ n) in the “usual” way. That is, let
F2n = F2[Y ]/(g(Y )·F2[Y ]), where g(Y ) ∈ F2[Y ] is an irreducible polynomial over
F2 with deg(g) = n that is used to represent F2n . A d-bit string is encoded as
follows

Ed,n : {0, 1}d → F2n ,

〈bd−1, bd−2, . . . , b0〉 7→
d−1∑
i=0

bi Y
i.

An element of F2n is decoded to a d-bit string by dropping its corresponding
higher-degree coefficients

Dn,d : F2n → {0, 1}d,
n−1∑
i=0

bi Y
i 7→ 〈bd−1, bd−2, . . . , b0〉 .

The functions Er,n : {0, 1}r → F2n and Dn,r : F2n → {0, 1}r are similarly defined,
as are En,n : {0, 1}n → F2n and Dn,n : F2n → {0, 1}n.

Remark 1. The composition map Dd,d ◦ Ed,n : F2d → F2n is a group homo-
morphism w.r.t. addition. But, in general, this map is not homomorphic w.r.t.
multiplication.

We say that a polynomial P (X) ∈ F2n [X] evaluates a d-to-r bit S-box S if
the trailing r bits of its evaluation on the encodings of every d-bit string matches
with the output of S. Formally,

S(i) = Dn,r (P (Ed,n(i))) , ∀i ∈ {0, 1}d. (2)

Our goal is to find a polynomial representation for a given S-box whose evaluation
requires as small a number of non-linear multiplications as possible.

Let Cnα denote the cyclotomic class of α w.r.t n (n ≥ 1, 0 ≤ α < 2n)
[CGP+12,RV13], that is, Cn0 = {0}, Cn2n−1 = {2n − 1} and

Cnα :=
{
α · 2i (mod 2n − 1) : i = 0, 1, . . . , n− 1

}
for 0 < α < 2n − 1.

For any subset Λ ⊆ {0, 1, . . . , 2n − 1}, let XΛ denote the set XΛ :=
{
Xi : i ∈ Λ

}
⊆ F2n [X]. Define XΛ · XΛ :=

{
Xi ·Xj : i, j ∈ Λ

}
. Finally, P(XΛ) ⊆ F2n [X]

denotes the set of all polynomials (of degree at most 2n − 1) that have their
monomials only from XΛ.
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2.1 Our Method

Our method is a variant of the CRV method [CRV15]. The main difference is
that we allow n ≥ d, which requires a change in the way the pre-computed list
of monomials is chosen. Our method is summarised in Algorithm 1.

Step 1. Choose a collection T ′ of ` cyclotomic classes w.r.t. d:

T ′ =
{
Cdα1=0, C

d
α2=1, C

d
α3
, . . . , Cdα`

}
. (3)

Let

L′ = ∪
Cdαi
∈T ′

Cdαi . (4)

Now “lift” the above collection of cyclotomic classes w.r.t. d to a collection w.r.t.
n. That is, for every Cdαi , we choose Cnαi for some representative αi ∈ Cdαi . Define

T =
{
Cnα1=0, C

n
α2=1, C

n
α3
, . . . , Cnα`

}
. (5)

Let

L = ∪
Cnαi
∈T
Cnαi . (6)

Note that we will be using only the collection T and the set L in the decompo-
sition step of our method (cf. (8)).

Heuristic 1. We assume that it is possible to choose a T as specified above (for
any ` “sufficiently smaller” than 2d) in such a way that:

1. each cyclotomic class (except Cn0 ) in T has (maximal) length n,

2. XL can be computed using only `− 2 non-linear multiplications,

3. X{0,1,2,...,X
2d−1} ⊆ XL′ ·XL′ ⊆ F2d [X]. We refer to this property by saying

that XL′ spans the set {1, X,X2, . . . , X2d−1} in F2d [X].

The first two heuristics above are also used in the CRV method. The differ-
ence is in the third heuristic (Heuristic 1.3). Note that the condition is only on
the set L′, not L. Note that in the CRV method it is required that XL spans
{1, X,X2, . . . , X2n−1} in F2n [X] (in their case n = d). But as we prescribe only
the values on F2d , not on all of F2n we do not need such a strong condition. In-
deed if we use this (stronger) condition from the CRV method, then we cannot
expect any improvement over the CRV method (it will actually be worse since
we are working in a bigger field).

Remark 2. In general, XL does not span {1, X,X2, . . . , X2n−1} nor {1, X,X2,

. . . , X2d−1} in F2n [X].
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So we will make another assumption that turns out to be true experimentally
for instances of practical relevance.

Heuristic 2. Corresponding to any d-to-r-bit S-box S, there exists a polyno-
mial in P(XL ·XL) ⊆ F2n [X] that evaluates S.

The CRV method does not need to make the above assumption as the condition
is implied by Heuristic 1.3 when n = d.

Remark 3. As noted in [RV13, Proof of Theorem 1], if d|n, then the cyclotomic
classes Cnu “lie above” Cdz for every u ∈ Cdz . That is,

(
δ mod 2d − 1

)
∈ Cdz for

every δ ∈ Cnv and every v ∈ Cdz .

Note that

|L| = 1 + n · (`− 1) . (7)

We would like to choose as small a value for ` as possible but still satisfying
Heuristic 1.3 (as we shall soon see, that ` must satisfy another (relatively milder)
condition in Heuristic 4). We use the following heuristic from the CRV method
for choosing a value of `.

Heuristic 3. There exists a collection of cyclotomic classes T ′ (w.r.t. d) satis-

fying Heuristic 1.3 such that ` ≈
√

2d

d .

Step 2. Then, as in the CRV method [CRV15, Section 4.3], we choose t − 1

random polynomials qi(X)
$← P(XL) ⊆ F2n [X], for some parameter t to be

determined later, that have their monomials only from XL. Then we try to find
t polynomials pi(X) ∈ P(XL) such that

P (X) =

t−1∑
i=1

pi(X) · qi(X) + pt(X) mod X2n +X (8)

evaluates S.

Note that Heuristic 3 guarantees that the decomposition of (8) exists for
every d-to-r-bit S-box S for some t ≤ |L| · (|L|− 1). But we need to find as small
a value of t as possible for a chosen L.

The unknown coefficients of the polynomials pi(X) are obtained by evalu-
ating P (X) at Ed,n(j) ∀j ∈ {0, 1}d and then writing the resulting set of linear
equations over F2 instead of F2n . That is, we obtain a system of linear equations
over F2 with each equation corresponding to an output bit of S(j). Note that
the unknowns in these equations correspond to the (unknown) n “bits” of the
unknown coefficients (from F2n) of pi(X). Denote the resulting system of linear
equations as

A · c = b, (9)
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where the matrix A over F2 will have r · 2d rows and t · |L| · n columns, the F2-
vector c corresponds to the unknown bits of the (to-be-determined) coefficients
of pi(X), and the F2-vector b corresponds to the bits of the outputs of the S-box
S. We can solve the above linear equation for any b if A has rank r · 2d. We
make the following assumption, similar to the CRV method, that says that if
the number of columns exceed the number of rows, then the matrix A has full
rank r · 2d.

Heuristic 4. The condition t · |L| · n ≥ r · 2d suffices for A to have (full) rank
r · 2d.

Once the solution vector c is computed, then the unknown coefficients (from
F2n) of the polynomials pi(X), and hence the polynomial P (X), are readily
obtained. This completes the description of our method.

Remark 4. If the matrix A has full rank (r · 2d) for a randomly chosen set of
polynomials qi(X) ∈ P(XL), then this same set of polynomials will yield the
decomposition of (8) for any d-to-r-bit S-box.

Algorithm 1 Our method to evaluate generic S-boxes

Input: A d-to-r-bit S-box table S.

Output: Polynomials pi(X), qi(X) ∈ F2n [X] such that P (X) =
t−1∑
i=1

pi(X) · qi(X) +

pt(X) satisfies (2).
1: Choose a collection T of ` cyclotomic classes w.r.t. some n ≥ d that satisfies

Heuristics 1 and 3.
2: Compute XL, where L← ∪

C∈T
C.

3: Choose t such that t · |L| · n ≥ r · 2d.

4: For 1 ≤ i ≤ t, choose qi(X)
$← P

(
XL
)
.

5: Set up a linear system of equations over F2, A · c = b, to solve for the F2-vector c
that corresponds to the unknown coefficients of the polynomials pi(X) (cf. (9)).

6: Construct the polynomials pi(X) from the solution vector c.

Complexity Analysis. The number of non-linear multiplications required to
pre-compute the set XL is `− 2, and the number required in (8) is t− 1. Hence
in total the number of non-linear multiplications required is

Md,r,n = `− 2 + t− 1 = `+ t− 3. (10)

From Heuristic 4, we get the condition

t ≥ r · 2d

|L| · n
.
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By substituting from (10) and (7) in the above inequality, we get

Md,r,n ≥ `− 3 +
r · 2d

(1 + n · (`− 1)) · n
.

Since, from Heuristic 3, we can set ` ≈
√

2d

d , we obtain from the above inequality

Md,r,n ≈
√

2d

d
− 3 +

r · 2d

n ·
(

1 + n ·
(√

2d

d − 1

)) (11)

Note that if d = r = n, then we recover an estimate close to that found in
[CRV15, Section 2.2]. If n� 4

√
2d · d · r2, then

Md,r,∞ ≈
√

2d

d
.

Hence in the limiting case the complexity of our method is half that of the CRV
method.

Numerical Experiments. In Table 2, we compare the estimate of (11) (on
rounding up to the successive integer) with the observed complexity for various
cases of practical interest. It turns out that the observed values are close to the
estimated values.

Remark 5. Experiments tend to indicate that the value of t cannot be made
arbitrarily small with increasing values of n. The resulting ranks of the matrices
seem to saturate after a certain value of n. This, of course, has to do with the
structure of the pre-computed set XL. But the dependency is currently unclear,
and hence we are unable to give a lower bound on the value of t, unlike the case
of `.

d 4 5 6 7 8

r 4 5 4 6 7 8

n 4 8 16 5 8 16 4 8 16 6 8 16 7 8 16 8 16

Estimated Md,r,n 3 0 0 4 2 0 4 2 1 5 3 1 7 6 3 10 5

Observed Md,r,n 2 2 2 4 3 3 4 3 3 5 4 3 7 6 4 10 6

Table 2. Expected and observed (worst-case) complexity Md,r,n of evaluating d-to-r-
bit S-boxes over F2n (cf. (11)).

Linear Operations. An upper bound on the number of additions (over F2n)
required by our method to evaluate the polynomial P (X) in (8) is (2t − 1) ·

11



(|L| − 1) + (t− 1) since each of the polynomials pi(X) and qi(X) have at most

|L| non-zero coefficients. Since, from Heuristic 4, we have t · |L| ≈ r·2d
n , an upper

bound on the number of additions is about r·2d+1

n . Note that working in bigger
fields can lead to smaller numbers of additions, though each such field addition
operation now takes a greater number of bit operations.

The number of scalar multiplications (over F2n) that is required is at most

(2t−1) ·(|L|) ≈ r·2d+1

n , while the number of squarings (over F2n) that is required

is n · (`− 1) ≈ n ·
√

2d

d .

2.2 Concrete Parameters for Various S-boxes

Table 3 suggests how to choose the parameters t and L in Algorithm 1 for various
d-to-r-bit S-box dimensions depending on the choice of n. If these parameters
of Algorithm 1 are chosen as indicated, then the number of non-linear multipli-
cations required to evaluate any S-box of given dimension is upper bounded as
specified by Table 2. For the special case of d = r = n the parameters are as
suggested in [CRV15, Appendix B] except for the case d = r = n = 8.

As Remark 4 suggests, once a chosen set of random polynomials qi(X) in
Algorithm 1 yields the decomposition of (8) for a given d-to-r-bit S-box, then
the same set of qi(X) will yield a decomposition for any other S-box of the
same dimension. In practice, we have observed that a randomly chosen set of
polynomials qi(X) almost always yield the decomposition of (8).

d 4 5 6 7 8

r 4 5 4 6 7 8

n 4 8 5 8 4 8 6 8 16 7 8 16 8 16

l 3 3 4 4 4 4 4 4 4 5 5 5 6 6

t 2 2 3 2 3 2 4 3 2 5 4 2 7 3

|L| 9 17 16 25 19 25 19 25 49 29 33 65 41 81

Table 3. Choosing parameters l, t and L for evaluating d-to-r-bit S-boxes over F2n ,
where L is always the union of the first l elements of {Cn

0 , C
n
1 , C

n
3 , C

n
7 , C

n
29, C

n
87}

2.3 Software Implementation of DES

We have performed a software implementation of the CGPQR method [CGP+12]
combined with our technique for the DES block cipher [oST93] that needs only
3 non-linear multiplications over F28 . Note that DES uses eight 6-to-4-bit S-
boxes. We used the C implementation of the CGPQR method combined with the
improvements of [RV13] and [CRV15] that is publicly available from [Cor13]. For

12



a fair comparison, we have compared our improvement only with the CGPQR
method combined with the improvements of [RV13] (that needs 7 non-linear
multiplications) and the CRV method (that needs 4 non-linear multiplications)
[CRV15], both of which are analysed in the non-linear multiplication cost model.
The results are presented in Table 5.

We decomposed the DES S-boxes as

PDES(X) = p1(X) · q1(X) + p2(X),

where p1, q1, p2 ∈ P(XL) ⊆ F28 [X], L = C8
0∪C8

1∪C8
3∪C8

7 , and the coefficients of
q1 are randomly chosen from F28 (cf. Table 3 and Algorithm 1). Table 4 describes
a polynomial q1 that will yield the above decomposition for each of the 8 S-boxes
of DES.

(a2)·x224+(a7+a6+a5+a4+a2+1)·x193+(a7+a4+a+1)·x192+(a7+
a5 +a3 +a2 +a+1) ·x131 +(a6 +a3 +1) ·x129 +(a7 +a5 +a) ·x128 +(a6 +
a5+a4+a)·x112+(a7+a5+a4+a2+a)·x96+(a7+a5+a4+a3+a2+1)·
x64+(a5+a4) ·x56+(a7+a6+a3+a2+a) ·x48+(a6+a3+a2+a) ·x32+
(a6+a3+1)·x28+(a5+a)·x24+(a7+a5+a4+a3+a+1)·x16+(a7+a6+
a5 +a4 +a+1) ·x14 +(a5 +a4 +a3) ·x12 +(a7 +a4 +a+1) ·x8 +(a3 +1) ·
x7+(a7+a4+a+1) ·x6+(a6+a4+a3) ·x4+(a6+a5+a4+a3+a2+a+
1) ·x3+(a7+a3+a) ·x2+(a6+a4+a3+a2+a) ·x+(a7+a3+a2+a+1)

Table 4. A polynomial q1 that could be used in common for all the DES S-boxes. The
irreducible polynomial used to represent F28 is a8 + a4 + a3 + a + 1.

The experiments were performed on a DELL LATITUDE E55450 laptop
(with CORE i3 processor and 64-bit architecture) running CentOS 7 in a vir-
tual machine with 4 GB allotted memory. For efficiency, we have tabulated the
computation of all the linear polynomials that appear in the evaluation of DES
S-boxes (cf. [CRV15, Remark 3]). Note that these polynomials need to be stored
only in the ROM. In Table 5, the parameter t′ refers to the order of security in
the full security model of [ISW03], and n′ = 2t′+ 1 is the number of shares. The
RAM memory usage (in bytes) that is reported is only for the S-box computa-
tions and the total CPU time for a DES encryption is measured in milliseconds.
The penalty factor (PF) is the ratio of the total execution time for a given method
to that of an unprotected implementation. The total number of calls made to
the PRG that outputs random bytes is 1000 times the reported quantity.

3 The Power of Using Bigger Fields and its Limitations

In this section we ignore the higher cost of field operations when using a bigger
field, so that we can gain some understanding of what can and what cannot be
achieved by working with bigger fields.
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Method t′ n′ Rand ×103 RAM Mem (bytes) Time (ms) PF

Unprotected 0.005 1

CGPQR+RV 1 3 2752 72 0.290 58

CGPQR+CRV 1 3 1600 40 0.093 18

CGPQR+this work 1 3 1216 34 0.068 13

CGPQR+RV 2 5 9152 118 0.538 107

CGPQR+CRV 2 5 5312 64 0.175 35

CGPQR+this work 2 5 4032 54 0.133 26

CGPQR+RV 3 7 19200 164 0.824 164

CGPQR+CRV 3 7 11136 88 0.293 58

CGPQR+this work 3 7 8448 74 0.214 42

CGPQR+RV 4 9 32896 210 1.188 237

CGPQR+CRV 4 9 19072 112 0.455 91

CGPQR+this work 4 9 14464 94 0.323 64

Table 5. Comparison of secure masked implementations of DES.

As in our general cost model linear maps are for free, the domain Fd2 of our d-
to-r-bit S-box table can be chosen to be any fixed d-dimensional subspace of the
field F2n seen as a vector space over F2. When passing from using the field F2n

for the non-linear multiplications to some extension field F2n′ containing F2n ,
one can therefore assume that the table is defined on a subspace Fd2 of F2n , and
use the same sequence of non-linear multiplications as for F2n , but now viewed
as products of polynomials over F2n′ instead. So switching to an extension field
never increases the number of non-linear multiplications.

Any two finite fields F2n and F2d of characteristic 2 are contained in some
bigger field with F2lcm(n,d) being the minimal one. Hence we can assume in this
section that d divides n and that the table is defined on the subfield F2d of F2n .

Since, for a polynomial f(X) =
∑

0≤i≤deg f fiX
i ∈ F2n [X], we are only

interested in the values on a subspace Fd2 ≤ F2n , we can reduce it modulo
p(X) :=

∏
z∈Fd2

(X−z) without changing these. So we can work with polynomials

of degree < 2d instead of 2n as is the case when the table is defined on all of
F2n . However, in general, the polynomial p does not have a nice structure. But

if Fd2 = F2d is the unique subfield of order 2d of F2n , then p(X) = X2d +X and

the equation x2
d

= x for all elements x ∈ F2d(≤ F2n) implies

f(x) =
∑

0≤i≤deg f

fix
i = f0 +

∑
0<j<2d

 ∑
i=j mod 2d−1

fi

xj .

Working over a bigger field than in the original CRV method has two benefits.
The cyclotomic classes over F2n have sizes up to n, and hence more elements
than the possible d over Fd2, so that one gathers more degrees of freedom per
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non-linear multiplication in Step 1.1 Additionally some extra power is given by
being able to choose the coefficients of the polynomials in Step 2 from a bigger
field:

Lemma 1. Given 2k polynomials fi, gi ∈ F2n [X] (0 ≤ i < k) there exists an
extension field F2n′ of F2n and elements ai, bi ∈ F2n′ such that for every i the
function x 7→ fi(x) · gi(x) defined on F2n is an F2-linear image of the single
non-linear product h := (

∑
i ai · fi(X)) · (

∑
i bi · gi(X)) ∈ F2n′ [X], i.e. there are

F2-linear functions λi : F2n′ → F2n with λi ◦ h(x) = fi(x) · gi(x) for all x ∈ F2n .

In particular, any finite number of independent non-linear multiplications
over any finite field can be replaced by a single non-linear multiplication over a
bigger field when restricting the maps to the smaller field.

Proof. Take a prime q > k2 not dividing n, and set n′ = q · n. For any ele-
ment z ∈ F2n′ \F2n the set {1, z, z2, . . . , zk2−1} is linearly independent over F2n

(otherwise it would span a proper intermediate field between F2n and F2n′ , but
this extension has prime degree). Hence there exist F2n-linear and therefore F2-
linear maps λi : F2n′ → F2n with λi(

∑
0≤j<k2 cjz

j) = ci+ki when all cj ∈ F2n .

For ai := zi and bi := zki we get ∑
0≤i<k

ai · fi(X)

 ·
 ∑

0≤j<k

bj · gj(X)

 =
∑

0≤i,j<k

zi+kj(fi(X) · gj(X)).

Since, for x ∈ F2n , we have also fi(x)gj(x) ∈ F2n , the claim is proved.

Remark 6. The technique in the proof of Lemma 1 can be used to evaluate the
non-linear part of the S-box of AES given by the monomial X254 (over F28)
with 3 non-linear multiplications over F216 . The first non-linear multiplication is
spent to get X3, the second to multiply X2 + z ·X3 by (X3)4, where z is any
element of F216 \ F28 . From the result X14 + z ·X15, one can F2-linearly extract
the functions x 7→ x14 and x 7→ x15 defined over the subfield F28 , which enables
one to finally obtain X254 = X14 · (X15)16.

Corollary 1. With l non-linear multiplications, all monomial functions x 7→ xk

defined on F2d with Hamming weight k ≤ 2l can be obtained in parallel. In
particular, for some huge extension field F2n of F2d all functions F2d → F2n ,
including d-to-r-bit S-boxes, require just dlog2 de non-linear multiplications.

The bound given in Corollary 1 is sharp: as the linear functions have algebraic
degree2 1 and the algebraic degree of a product is at most the sum of the algebraic

degrees of its factors, the function f : F2d → F2n given by monomial X2d−1 that
maps 0 to 0 and the rest of F2d to 1 has algebraic degree d.

1 Lemma 2 generalizes this statement about monomials to polynomials.
2 For a polynomial f =

∑
l fl ·X

l this is max {Hamming weight(l) | fl 6= 0}.
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For judging the usefulness of the result of a specific non-linear multiplication
we have (denoting the space of functions from Z to Y as Y Z for sets Y and Z):3

Lemma 2. For f : Z → F2n the set F := {g ◦ f | g : F2n → F2n is F2-linear}
is an F2n-subspace of FZ2n whose dimension over F2n equals the dimension over
F2 of the F2-subspace of F2n generated by the image of f .

Proof. F is the image of the F2n–linear map ϕ : g 7→ g◦f from the set EndF2(F2n)
of F2-linear maps F2n → F2n to the set FZ2n of functions Z → F2n . EndF2(F2n) =
F∗2n⊗F2

F2n has dimension n over F2n (with ∗ denoting the dual F2-vector space).
The kernel of ϕ is the F2n -subspace of F2-linear maps whose restriction to the
image of f in F2n is 0. This is the tensor product with F2n (over F2) of the
annihilator (≤ F∗2n) of the image {f(x) | x ∈ Z} of f in F2n , proving the claim.

Example 1. For monomials Xα the dimension of the set F from Lemma 2 is the
cardinality of the cyclotomic class containing α. For example, in the field F64

the cyclotomic classes of 9 = 10012 and 21 = 101012 have order 3 resp. 2, so the
dimension of the corresponding F over F64 is 3 resp. 2. On the other hand, the
images under f(x) = x9 resp. g(x) = x21 of the multiplicative group F×64 ∼= Z63

have order 7 resp. 3, and are therefore the multiplicative groups of the subfields
F8 resp. F4. Their dimensions over F2 are 3 resp. 2 as claimed by the lemma.

A criterion for having enough degrees of freedom in Step 2 is given by:

Lemma 3. Let F be F2n-subspace of F2n [X]/(X2n + X) that is closed under
taking squares. Then the F2n-subspace 〈F · F 〉F2n

generated by the products of
pairs of elements of F contains F , is also closed under taking squares and has
dimension at most dimF +

(
dimF

2

)
.

Proof. As squaring is a field automorphism, only the statement about the di-
mensions needs to be proved. But this follows from the commutativity of multi-
plication as for any base (fi) of F the set (fi · fj)i≤j generates 〈F · F 〉F2n

.

The remainder of this section is devoted to proving a lower worst-case bound
for the number of non-linear multiplications over F2n needed for functions from
Fd2 to Fr2 with d, r ≤ n but not necessarily d|n. The proof is an adaption of
[CRV14, Proposition 3] to our situation with minor improvements.

Proposition 1. For d, r ≤ n and fixed subspaces Fd2,Fr2 ≤ F2n there is a func-
tion f : Fd2 → Fr2 that cannot be represented by any polynomial in F2n [X] that

requires less than

√
r(2d−1−d)+(d+ r−n

2 )2−(d+ r−n
2 )

n non-linear multiplications for
evaluation.

In case of n = r = d this term simplifies to
√

2n−1
n − 1.

3 Corresponding to choosing L in Algorithm 1 as the union of cyclotomic classes that
have as many elements as possible to get as many degrees of freedom as possible for
the linear equation system being constructed.
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Proof. Without loss of generality, we may look only at functions that map 0 to
0: the only monomial not fixing zero is 1, and on F2n \ {0} the monomial X2n−1

is constant 1. This allows us to work with linear functions where the authors
of [CRV14] used affine functions instead. Starting with z0 = id |Fd2 one can get

all F2-linear functions Fd2 → F2n without using any non-linear multiplication.
Having obtained z0, . . . , zj using exactly j non-linear multiplications, one can
choose F2-linear maps λ0,j , λ

′
0,j : Fd2 → F2n and λ1,j , λ

′
1,j , . . . , λj,j , λ

′
j,j : F2n →

F2n to get

zj+1 =

(
j∑
i=0

λi,j ◦ zi

)
·

(
j∑
i=0

λ′i,j ◦ zi

)
.4

With the help of z0, . . . , zk we then can evaluate

f =
∑

0≤i≤k

λi ◦ zi

for F2-linear maps λ0 : Fd2 → Fr2 and λ1, . . . , λk : F2n → Fr2 without further non-
linear multiplication. Conversely, any f : Fd2 → Fr2 fixing 0 that can be evaluated
using at most k non-linear multiplications is of this form.

In total we have to choose 2k F2-linear maps from Fd2 to F2n , 2
∑k−1
i=0 i =

k(k − 1) from F2n to F2n , one from Fd2 to Fr2 and k from F2n to Fr2 giving us

((2n)d)2k · ((2n)n)k(k−1) · (2r)d · ((2r)n)k = 22ndk+n
2k(k−1)+rd+rnk choices. As

there are (2r)2
d−1 = 2r(2

d−1) functions from Fd2 to Fr2 mapping 0 to 0, to get
enough functions we need

2ndk + n2k(k − 1) + rd+ rnk ≥ r(2d − 1).

This is via (nk)2 + (2d + r − n)nk ≥ r(2d − 1) − rd and (nk + (d + r−n
2 ))2 =

(nk)2 + (2d+ r − n)nk + (d+ r−n
2 )2 ≥ r(2d − 1− d) + (d+ r−n

2 )2 equivalent to

k ≥

√
r(2d − 1− d) + (d+ r−n

2 )2 − (d+ r−n
2 )

n
.

Remark 7. As the images of the zjs in the proof of Proposition 1 can span
at most a (2d − 1)-dimensional F2-subspace of F2n , Lemma 2 shows that for
n ≥ 2d − 1 the λi,j , λ

′
i,j and λi with i > 0 have to be defined only on these

(2d − 1)-dimensional subspaces reducing the degrees of freedom for obtaining
the next zj resp. f . With n′ := max{n, 2d − 1} the number of choices reduces

to 22ndk+nn
′k(k−1)+rd+rn′k, but as one gets better lower bounds by using the

algebraic degree, we do not expand upon this.
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CPRR13. Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In Shiho
Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 410–424. Springer,
2013.

CPRR15. Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Algebraic decomposition for probing security. In Rosario Gennaro and
Matthew Robshaw, editors, CRYPTO 2015, Proc., Part I, volume 9215 of
LNCS, pages 742–763. Springer, 2015.
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Xu. Higher-order masking in practice: A vector implementation of masked
AES for ARM NEON. In Kaisa Nyberg, editor, CT-RSA 2015. Proc.,
volume 9048 of LNCS, pages 181–198. Springer, 2015.

20


	Reducing the Number of Non-linear Multiplications in Masking Schemes

