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Abstract. Although numerous attacks revealed the vulnerability of dif-
ferent PUF families to non-invasive Machine Learning (ML) attacks, the
question is still open whether all PUFs might be learnable. Until now,
virtually all ML attacks rely on the assumption that a mathematical
model of the PUF functionality is known a priori. However, this is not
always the case, and attention should be paid to this important aspect
of ML attacks. This paper aims to address this issue by providing a
provable framework for ML attacks against a PUF family, whose under-
lying mathematical model is unknown. We prove that this PUF family is
inherently vulnerable to our novel PAC (Probably Approximately Cor-
rect) learning framework. We apply our ML algorithm on the Bistable
Ring PUF (BR-PUF) family, which is one of the most interesting and
prime examples of a PUF with an unknown mathematical model. We
practically evaluate our ML algorithm through extensive experiments on
BR-PUFs implemented on Field-Programmable Gate Arrays (FPGA).
In line with our theoretical findings, our experimental results strongly
confirm the effectiveness and applicability of our attack. This is also
interesting since our complex proof heavily relies on the spectral proper-
ties of Boolean functions, which are known to hold only asymptotically.
Along with this proof, we further provide the theorem that all PUFs
must have some challenge bit positions, which have larger influences on
the responses than other challenge bits.

Keywords: Machine Learning, PAC Learning, Boosting Technique, Fourier Analysis,

Physically Unclonable Functions (PUFs).

1 Introduction

Nowadays, it is broadly accepted that Integrated Circuits (ICs) are subject to
overbuilding and piracy due to the adaption of authentication methods relying on
insecure key storage techniques [24]. To overcome the problem of secure key stor-
age, Physically Unclonable Functions (PUFs) have been introduced as promising



solutions [15, 30]. For PUFs, the manufacturing process variations lead eventu-
ally to instance-specific, and inherent physical properties that can generate vir-
tually unique responses, when the instance is given some challenges. Therefore,
PUFs can be utilized as either device fingerprints for secure authentication or as
a source of entropy in secure key generation scenarios. In this case, there is no
need for permanent key storage, since the desired key is generated instantly upon
powering up the device. Regarding the instance-specific, and inherent physical
properties of the PUFs, they are assumed to be unclonable and unpredictable,
and therefore trustworthy and robust against attacks [26]. However, after more
than a decade of the invention of PUFs, the design of a really unclonable phys-
ical function is still a challenging task. Most of the security schemes relying on
the notion of PUFs are designed based on a “design-break-patch” rule, instead
of a thorough cryptographic approach.

Along with the construction of a wide variety of PUFs, several different types
of attacks, ranging from non-invasive to semi-invasive attacks [18,19,33,39], have
been launched on these primitives. Machine learning (ML) attacks are one of
the most common types of non-invasive attacks against PUFs, whose popularity
stems from their characteristics, namely being cost-effective and non-destructive.
Moreover, these attacks require the adversary to solely observe the input-output
(i.e., so called challenge-response) behavior of the targeted PUF. In this at-
tack scenario, a relatively small subset of challenges along with their respective
responses is collected by the adversary, attempting to come up with a model
describing the challenge-response behavior of the PUF. In addition to heuris-
tic learning techniques, e.g., what has been proposed in [33, 34], the authors
of [12–14] have proposed the probably approximately correct (PAC) learning
framework to ensure the delivery of a model for prespecified levels of accuracy
and confidence. One of the key results reported in [12–14] is that knowing about
the mathematical model of the PUF functionality enables the adversary to estab-
lish a proper hypothesis representation (i.e., mathematical model of the PUF),
and then try to PAC learn this representation. This gives rise to the question
of whether a PUF can be PAC learned without prior knowledge of a precise
mathematical model of the PUF.

Bistable Ring PUFs (BR-PUF) [7] and Twisted Bistable Ring PUFs (TBR-
PUF) [37] are examples of PUFs, whose functionality cannot be easily translated
to a precise mathematical model. In an attempt, the authors of [37,41] suggested
simplified mathematical models for BR-PUFs and TBR-PUFs. However, their
models do not precisely reflect the physical behavior of these architectures.

In this paper, we present a sound mathematical machine learning framework,
which enables us to PAC learn the BR-PUF family (i.e., including BR- and
TBR-PUFs) without knowing their precise mathematical model. Particularly,
our framework contributes to the following novel aspects related to the security
assessment of PUFs in general:

Exploring the inherent mathematical properties of PUFs. One of the
most natural and commonly accepted mathematical representation of a PUF is
a Boolean function. This representation enables us to investigate properties of
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PUFs, which are observed in practice, although they have not been precisely
and mathematically described. One of these properties exhaustively studied in
our paper is related to the “silent” assumption that each and every bit of a
challenge has equal influence on the respective response of a PUF. We prove that
this assumption is invalid for all PUFs. While this phenomenon has been already
occasionally observed in practice and is most often attributed to implementation
imperfections, we will give a rigorous mathematical proof on the existence of
influential bit positions, which holds for every PUF.

Strong ML attacks against PUFs without available mathematical
model. We prove that even in a worst case scenario, where the internal function-
ality of the BR-PUF family cannot be mathematically modeled, the challenge-
response behavior of these PUFs can be PAC learned for given levels of accuracy
and confidence.

Evaluation of the applicability of our framework in practice. In order
to evaluate the effectiveness of our theoretical framework, we conduct extensive
experiments on BR-PUFs and TBR-PUFs, implemented on a commonly used
Field Programmable Gate Array (FPGA).

2 Notation and preliminaries

This section serves as brief introduction into the required background knowledge
and known results to understand the approaches taken in this paper. For some
more complex topics we will occasionally refer the reader to important references.

2.1 PUFs

Note that elaborate and formal definitions as well as formalizations of PUFs
are beyond the scope of this paper, and for more details on them we refer the
reader to [3, 4]. In general, PUFs are physical input to output mappings, which
map given challenges to responses. Intrinsic properties of the physical primitive
embodying the PUF determine the characteristics of this mapping. Two main
classes of PUFs, namely strong PUFs and weak PUFs have been discussed in the
literature [16]. In this paper we consider the strong PUFs, briefly called PUFs.
Here we focus only on two characteristics of PUFs, namely unclonablity and
unpredictability (i.e., so called unforgeability). Let a PUF be described by the
mapping fPUF : C → Y, where fPUF(c) = y. In this paper, we assume that the
issue with noisy responses (i.e., the output is not stable for a given input) must
have been resolved by the PUF manufacturer. For an ideal PUF, unclonablity
means that for a given PUF fPUF it is virtually impossible to create another
physical mapping gPUF 6= fPUF, whose challenge-response behavior is similar to
fPUF [3].

Moreover, an ideal PUF is unpredictable. This property of PUFs is closely
related to the notion of learnability. More precisely, given a single PUF fPUF and
a set of challenge response pairs (CRPs) U = {(c, y) | y = fPUF(c) and c ∈ C}, it
is (almost) impossible to predict y′ = fPUF(c′), where c′ is a random challenge
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so that (c′, ·) /∈ U . In this paper we stick to this (simple, but) classical definition
of unpredictability of a PUF, and refer the reader to [3, 4] for more refined
definitions.

2.2 Boolean Functions as representations of PUFs

Defining PUFs as mappings (see Section 2.1), the most natural mathemati-
cal model for them are Boolean functions over the finite field F2. Let Vn =
{c1, c2, . . . , cn} denote the set of Boolean attributes or variables, where each at-
tribute can be true or false, commonly denoted by “1” and “0”, respectively.
In addition, Cn = {0, 1}n contains all binary strings with n bits. We associate
each Boolean attribute ci with two literals, i.e., ci, and ci (complement of ci). An
assignment is a mapping from Vn to {0, 1}, i.e., the mapping from each Boolean
attribute to either “0” or “1”. In other words, an assignment is an n-bits string,
where the ith bit of this string indicates the value of ci (i.e., “0” or “1”).

An assignment is mapped by a Boolean formula into the set {0, 1}. Thus,
each Boolean attribute can also be thought of as a formula, i.e., ci and ci are
two possible formulas. If by evaluating a Boolean formula under an assignment
we obtain “1”, it is called a positive example of the “concept represented by
the formula” or otherwise a negative example. Each Boolean formula defines
a respective Boolean function f : Cn → {0, 1}. The conjunction of Boolean at-
tributes (i.e., a Boolean formula) is called a term, and it can be true or false (“1”
or “0”) depending on the value of its Boolean attributes. Similarly, a clause that
is the disjunction of Boolean attributes can be defined. The number of literals
forming a term or a clause is called its size. The size 0 is associated with only
the term true, and the clause false.

In the related literature several representations of Boolean functions have
been introduced, e.g., juntas, Monomials (Mn), Decision Trees (DTs), and De-
cision Lists (DLs), cf. [29, 31].

A Boolean function depending on solely an unknown set of k variables is
called a k-junta. A monomial Mn,k defined over Vn is the conjunction of at most
k clauses each having only one literal. A DT is a binary tree, whose internal
nodes are labeled with a Boolean variable, and each leaf with either “1” or “0”.
A DT can be built from a Boolean function in this way: for each assignment a
unique path form the root to a leaf should be defined. At each internal node, e.g,
at the ith level of the tree, depending on the value of the ith literal, the labeled
edge is chosen. The leaf is labeled with the value of the function, given the
respective assignment as the input. The depth of a DT is the maximum length
of the paths from the root to the leafs. The set of Boolean functions represented
by decision trees of depth at most k is denoted by k-DT. A DL is a list L that
contains r pairs (f1, v1), . . . , (fr, vr), where the Boolean formula fi is a term and
vi ∈ {0, 1} with 1 ≤ i ≤ r− 1. For i = r, the formula fr is the constant function
vr = 1. A Boolean function can be transformed into a decision list, where for
a string c ∈ Cn we have L(c) = vj , where j is the smallest index in L so that
fj(c) = 1. k-DL denotes the set of all DLs, where each fi is a term of maximum
size k.
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Linearity of Boolean Functions Here, our focus is on Boolean linearity, which
must not be confused with the linearity over other domains different from F2.
A linear Boolean function f : {0, 1}n → {0,1} features the following equivalent
properties, cf. [29]:

– ∀c, c′ ∈ {0, 1}n : f(c+ c′) = f(c) + f(c′)
– ∃a ∈ {0, 1}n : f(c) = a · c.

Equivalently, we can define a linear Boolean function f as follows. There is some
set S ⊆ {1, . . . , n} such that f(c) = f(c1, c2, . . . , cn) =

∑
i∈S ci.

Boolean linearity or linearity over F2 is closely related to the notion of cor-
relation immunity. A Boolean function f is called k-correlation immune, if
for any assignment c chosen randomly from {0, 1}n it holds that f(c) is inde-
pendent of any k-tuple (ci1 , ci1 , . . . , cik), where 1 ≤ i1 < i2 < · · · < ik ≤ n. Now
let deg(f) denote the degree of the F2-polynomial representation of the Boolean
function f . It is straightforward to show that such representation exists. Siegen-
thaler proved the following theorem, which states how correlation immunity can
be related to the degree of f .

Theorem 1. (Siegenthaler Theorem [29, 38]) Let f : {0, 1}n → {0,1} be a
Boolean function, which is k-correlation immune, then deg(f) ≤ n− k.

Average Sensitivity of Boolean Functions The Fourier expansion of Boolean
functions serves as an excellent tool for analyzing them, cf. [29]. In order to de-
fine the Fourier expansion of a Boolean function f : Fn2 → F2 we should first
define an encoding scheme as follows. χ(0F2) := +1, and χ(1F2) := −1. Now the
Fourier expansion of a Boolean function can be written as

f(c) =
∑
S⊆[n]

f̂(S)χS(c),

where [n] := {1, . . . , n}, χS(c) :=
∏
i∈S ci, and f̂(S) := Ec∈U [f(c)χS(c)]. Here,

Ec∈U [·] denotes the expectation over uniformly chosen random examples. The
influence of variable i on f : Fn2 → F2 is defined as

Infi(f) := Prc∈U [f(c) 6= f(c⊕i)],

where c⊕i is obtained by flipping the i-th bit of c. Note that Infi(f) =
∑
S3i(f̂(S))2,

cf. [29]. Next we define the average sensitivity of a Boolean function f as

I(f) :=

n∑
i=1

Infi(f).

2.3 Our Learning Model

The Probably Approximately Correct (PAC) model provides a firm basis for
analyzing the efficiency and effectiveness of machine learning algorithms. We
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briefly introduce the model and refer the reader to [23] for more details. In the
PAC model the learner, i.e., the learning algorithm, is given a set of examples to
generate with high probability an approximately correct hypothesis. This can be
formally defined as follows. Let F = ∪n≥1Fn denote a target concept class that
is a collection of Boolean functions defined over the instance space Cn = {0, 1}n.
Moreover, according to an arbitrary probability distribution D on the instance
space Cn each example is drawn. Assume that hypothesis h ∈ Fn is a Boolean
function over Cn, it is called an ε-approximator for f ∈ Fn, if

Pr
c∈DCn

[f(c) = h(c)] ≥ 1− ε.

Let the mapping size : {0,1}n → N associate a natural number size(f) with
a target concept f ∈ F that is a measure of complexity of f under a target
representation, e.g., k-DT. The learner is a polynomial-time algorithm denoted
by A, which is given labeled examples (c, f(c)), where c ∈ Cn and f ∈ Fn. The
examples are drawn independently according to distribution D. Now we can
define strong and weak PAC learning algorithms.

Definition 1 An algorithm A is called a strong PAC learning algorithm for the
target concept class F , if for any n ≥ 1, any distribution D, any 0 < ε, δ < 1,
and any f ∈ Fn the follwing holds. When A is given a polynomial number of
labeled examples, it runs in time polynomial in n, 1/ε, size(f), 1/δ, and returns
an ε-approximator for f under D, with probability at least 1− δ.

The weak learning framework was developed to answer the question whether
a PAC learning algorithm with constant but insufficiently low levels of ε and δ
can be useful at all. This notion is defined as follows.

Definition 2 For some constant δ > 0 let algorithm A return with probability
at least 1− δ an (1/2− γ)-approximator for f , where γ > 0. A is called a weak
PAC learning algorithm, if γ = Ω (1/p(n,size(f)) for some polynomial p(·).

The equivalence of weak PAC learning and strong PAC learning has been
proved by Freund and Schapire in the early nineties in their seminal papers [9,35].
For that purpose boosting algorithms have been introduced.

Definition 3 An algorithm B is called a boosting algorithm if the following
holds. Given any f ∈ Fn, any distribution D, 0 < ε, δ < 1, 0 < γ ≤ 1/2, a
polynomial number of labeled examples, and a weak learning algorithm WL re-
turning an (1/2− γ)-approximator for f , then B runs in time, which is polyno-
mial in n, size(f), 1/γ, 1/ε, 1/δ and generates with probability at least 1− δ an
ε-approximator for f under D.

The construction of virtually all existing boosting algorithms is based pri-
marily on the fact that if WL is given examples drawn from any distribution D′,
WL returns a (1/2−γ)-approximator for f under D′. At a high-level, the skeleton
of all such boosting algorithms is shown in Algorithm 1.
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Algorithm 1 Canonical Booster

Require: Weak PAC learner WL, 0 < ε, δ < 1, 0 < γ ≤ 1/2, polynomial number of examples, i that
is the number of iterations

Ensure: Hypothesis h that is an ε-approximator for f

1: D0 = D, use WL to generate an approximator h0 for f under D0

2: k = 1
3: while k ≤ i− 1 do
4: Build a distribution Dk consisting of examples, where the previous approximators

h0, · · · , hk−1 can predict the value of f poorly
5: use WL to generate an approximator hk for f under Dk

6: k = k + 1
7: od
8: Combine the hypotheses h0, · · · , hi−1 to obtain h, where each hi is an (1/2− γ)-approximator

for f under Di, and finally h is an ε-approximator for f under D
9: return h

2.4 Non-linearity of PUFs over F2 and the Existence of Influential
Bits

Section 2.2 introduced the notion of Boolean linearity. Focusing on this notion
and taking into account the definition of PUFs mentioned in Section 2.1, now we
prove the following theorem that is our first important result. For all PUFs, when
represented as a Boolean function, it holds that their degree as F2-polynomial
is strictly greater than one. This will then lead us to the following dramatic
consequence. There exists no PUF, in which all of its challenge bits have an
equal influence.

Theorem 2. For every PUF fPUF : {0, 1}n → {0,1}, we have deg(fPUF) ≥ 2.
Consequently, for every PUF it holds that not all bit positions within respective
challenges are equally influential in generating the corresponding response.

Proof: Towards contradiction assume that fPUF is Boolean linear over F2 and
unpredictable. From the unpredictability of fPUF it follows that the adversary
has access to a set of CRPs U = {(c, y) | y = fPUF(c) and c ∈ C}, which are
chosen uniformly at random, however, the adversary has only a negligible prob-
ability of success to predict a new random challenge (c′, ·) /∈ U (as he cannot
apply fPUF to this unseen challenge). Note that the size of U is actually polyno-
mial in n. Now, by the definition of linearity over F2, cf. Section 2.2, we deduce
that the only linear functions over F2 are the Parity functions, see also [29, 38].
However, there are well-known algorithms to PAC learn Parity functions in gen-
eral [8, 20]. Thus, now we simply feed the right number of samples from our
CRP set U into such a PAC learner. For the right parameter setting, the re-
spective PAC algorithm delivers then with high probability an ε-approximator
h for our PUF fPUF such that Pr[f(c′) = h(c′)] ≥ 1 − ε. This means that with
high probability, the response to every randomly chosen challenge can be cal-
culated in polynomial time. This is of course a contradiction to the definition
of fPUF, being a PUF. Hence, fPUF cannot be linear over F2. In other words,
for every PUF fPUF we have deg(fPUF) ≥ 2. Moreover, in conjunction with the
above mentioned Siegenthaler Theorem, we deduce that every PUF is at most
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Fig. 1: (a) The logical circuit of an SRAM cell. (b) The small signal model of
bistable element in metastability

an n − 2-correlation immune function, which indeed means that not all of its
challenge bits have an equal influence on the respective PUF response. �

Theorem 2 states that every PUF has some challenge bits, which have some
larger influence on the responses than other challenge bits. We call these bits
“loosely” as influential bits1.

3 PUF Architectures

In this section, we explain the architectures of two intrinsic silicon PUFs, namely
the BR- and TBR-PUFs, whose internal mathematical models are more compli-
cated than other intrinsic PUF constructions. In an attempt, we apply simple
models to describe the functionality of these PUFs. However, we believe that
these models cannot completely reflect the real characteristics of the BR-PUF
family, and their concrete, yet unknown model should be much more complex.

3.1 Memory-Based PUFs

BR-PUFs can be thought of as a combination of memory-based and delay-based
PUFs. Memory-based PUFs exploit the settling state of digital memory circuits,
e.g., SRAM cells [16, 21] consisting of two inverters in a loop (see Figure 1a)
and two transistors for read and write operation. Due to manufacturing pro-
cess variations the inverters have different electrical gains, when the cell is in
the metastable condition. In the metastable condition the voltage of one of the
inverters is equal to Vm, where Vm is an invalid logic level. Moreover, the in-
vertes have different propagation delays due to the differences in their output
resistance and load capacitance. One can model the SRAM cell architecture as
a linear amplifier with gain G, when Vinitial is close to the metastable voltage
Vm [40], see Figure 1b. In order to predict the metastable behavior, we have [40]

Vinitial(0) = Vm + V (0),

where V (0) is a small signal offset from the metastable point. To derive V (t) we
can write the equation of the circuit as follows.

G · V (t)− V (t)

R
= C · dV (t)

dt
.

1 Note that the existence of such influential bits has been also noticed by several other
experimental research papers. However, none of them has been able to correctly and
precisely pinpoint the mathematical origin of this phenomenon.
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c[1] c[2] c[i] c[i+1]
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c[i+2]c[i+3]c[n-1]c[n]

Fig. 2: The schematic of a BR-PUF with n stages. The response of the PUF can
be read between two arbitrary stages. For a given challenge, the reset signal can
be set low to activate the PUF. After a transient period , the BR-PUF might be
settled to an allowed logical state.

By solving this equation, we obtain V (t) = V (0) · et/τs , where τs = RC/G −
1, c.f. [40]. The time required to reach a stable condition increases as Vinitial
approaches the metastable point and V (0) approaches 0. On the other hand, it
can approach infinity, if V (0) = 0, however, in practice this is not the case due
to the presence of noise. Nevertheless, there is no upper bound on the settling
time of the SRAM cell to one of the stable states. Therefore, the settling state of
the SRAM cells cannot be predicted after power-on. One can thus use the logical
addresses of SRAM cells as different challenges and the state of the SRAM cells
after power-on as PUF responses.

3.2 Bistable Ring PUF

SRAM PUFs are believed to be secure against modeling attacks. This can be
explained by the fact that knowing the state of one SRAM PUF after power-on
does not help the attacker to predict the response of other SRAM cells. However,
in contrast to delay-based PUFs, e.g., arbiter PUFs [25], the challenge space of
an SRAM PUF is not exponential. Therefore, if an adversary gets access to
the initial values stored in the SRAM cells, the challenge-response behavior of
the SRAM PUF can be emulated. In order to combine the advantages offered by
delay-based PUFs and memory-based PUFs, namely, exponential challenge space
and the unpredictability, a new architecture called BR-PUF was introduced by
[7]. A BR-PUF consists of n stages (n is an even number), where each stage
consists of two NOR gates, one demultiplexer and one multiplexer, see Figure 2.
Based on the value of the ith bit of a challenge applied to the ith stage, one of
the NOR gates is selected. Setting the reset signal to low, the signal propagates
in the ring, which behaves like an SRAM cell with a larger number inverters.
The response of the PUF is a binary value, which can be read from a predefined
location on the ring between two stages, see Figure 2.
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Fig. 3: The schematic of a TBR-PUF with n stages. The response of the PUF is
read after the last stage. For a given challenge, the reset signal can be set low
to activate the PUF. After a transient period, the BR-PUF might be settled to
an allowed logical state.

The final state of the inverter ring is a function of the gains and the propa-
gation delays of the gates. According to the model of the SRAM circuit in the
metastable state provided in Section 3.1, one might be able to extend the elec-
trical model and analyze the behavior of the inverter ring. Applying a challenge,
the ring may settle at a stable state after a oscillation time period. However,
for a specific set of challenges the ring might stay in the metastable state for an
infinite time, and the oscillation can be observed in the output of the PUF.

The analytical models of the metastable circuits introduced in Section 3.1
are valid for an ASIC implementation and respective simulations. Although few
simulation results of BR-PUF are available in the literature, to the best of our
knowledge there are no results for a BR-PUF implemented on an ASIC, and ex-
perimental results have been limited to FPGA implementations. In this case, the
BR-PUF model can be further simplified by considering the internal architecture
of the FPGAs. The NOR gates of the BR-PUF are realized by dedicated Lookup
Tables (LUTs) inside an FPGA. The output of the LUTs are read from one of
the memory cells of the LUT, which have always stable conditions. Hence, it
can be assumed that there is almost no difference in the gains of different LUTs.
As a result, the random behavior of the BR-PUF could be defined by the delay
differences between the LUTs.

3.3 Twisted Bistable Ring PUF

Although the mathematical model of the functionality of a BR-PUF is unknown,
it has been observed that this construction is vulnerable to bias and simple linear
approximations [37]. Hence, the TBR-PUF, as an enhancement to BR-PUFs, has
been introduced [37]. Similar to BR-PUFs, a TBR-PUF consists of n stages (n
is an even number), where each stage consists of two NOR gates. In contrast
to BR-PUF, where for a given challenge only one of the NOR gates in each
stage is selected, all 2n gates are selected in a TBR-PUF. This can be achieved
by placing two multiplexers before and two multiplexers after each stage and
having feedback lines between different stages, see Figure. 3. As all NOR gates
are always in the circuit, the challenge specific bias can be reduced.
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Fig. 4: Our roadmap for proving the PAC learnability of BR-PUF family, whose
mathematical model is unknown

4 PAC Learning of PUFs without Prior Knowledge of
Their Mathematical Model

When discussing the PAC learnability of PUFs as a target concept, two scenar-
ios should be distinguished. First, the precise mathematical model of the PUF
functionality is known, and hence, a hypothesis representation is known to learn
the PUF. This scenario has been considered in several studies, e.g., [12–14],
where different hypothesis representations have been presented for each individ-
ual PUF family. Second, due to the lack of a precise mathematical model of the
respective PUF functionality, to learn the PUF a more sophisticated approach
is required. Therefore, the following question arises: is it possible to PAC learn a
PUF family, even if we have no mathematical model of the physical functionality
of the respective PUF family? We answer this question at least for the BR-PUF
family. Our roadmap for answering this question, more specifically, the steps
taken to prove the PAC learnability of BR-PUF family in the second scenario,
is illustrated in Figure 4. While theoretical insights into the notions related to
the first two blocks have been presented in Section 2.4, which are valid for all
PUF families, Section 4.1 provides more specific results for the BR-PUF family
(i.e., . According to these new insights, in Section 4.2 we eventually prove that
BR-PUF family (which lack a precise mathematical model) can nevertheless be
PAC learned (see last two blocks in Figure 4).

4.1 A Constant Upper Bound on the Number of Influential Bits

First, we reflect the fact that our Theorem 2 is in line with the empirical results
obtained by applying heuristic approaches, which are reported in [37, 42]. Al-
though here we compare their results for BR- and TBR-PUFs with our results,
our proof of having influential bits in PUF families in general, speaks for itself,
and is one of the novel aspects of this paper.

In an attempt to assess the security of BR-PUFs, Yamamoto et al. have im-
plemented BR-PUFs on several FPGAs to analyze the influence of challenge bits
on the respective responses [42]. They have explicitly underlined the existence
of influential bits, and found so called prediction rules. Table 1 summarizes their
results, where for each type of the rules (monomials of different sizes) we report
only the one with the highest estimated response prediction probability. In ad-
dition to providing evidence for the existence of influential bits, the size of the
respective monomials is of particular importance for us. As shown in Table 1,
their size is surprisingly small, i.e., only five.

11



Table 1: Statistical analysis of the 2048 CRPs, given to a 64-bit BR-PUF [42].
The first column shows the rule found in the samples, whereas the second column
indicates the estimated probability of predicting the response.

Rule Est. Pr.
(c1 = 0)→ y = 1 0.684

(c9 = 0) ∧ (c6 = 1)→ y = 1 0.762
(c25 = 0) ∧ (c18 = 1) ∧ (c1 = 0)→ y = 1 0.852

(c27 = 0) ∧ (c25 = 0) ∧ (c18 = 1) ∧ (c6 = 1)→ y = 1 0.932
(c53 = 0) ∧ (c51 = 0) ∧ (c45 = 0) ∧ (c18 = 1) ∧ (c7 = 0)→ y = 1 1

Table 2: Our statistical analysis of the 30000 CRPs, given to a 64-bit BR-PUF.
The first column shows the rule found in the sample, whereas the second column
indicates the estimated probability of predicting the response.

Rule Est. Pr.
(c61 = 1)→ y = 1 0.71
(c11 = 1)→ y = 1 0.72
(c29 = 1)→ y = 1 0.725
(c39 = 1)→ y = 1 0.736
(c23 = 1)→ y = 1 0.74
(c46 = 1)→ y = 1 0.745
(c50 = 1)→ y = 1 0.75

(c61 = 1) ∧ (c23 = 1)→ y = 1 0.82
(c61 = 1) ∧ (c11 = 0)→ y = 1 0.80
(c23 = 1) ∧ (c46 = 1)→ y = 1 0.86
(c39 = 1) ∧ (c50 = 1)→ y = 1 0.85

(c61 = 1) ∧ (c11 = 1) ∧ (c29 = 1)→ y = 1 0.88
(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1)→ y = 1 0.93

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0)→ y = 1 0.97
(c50 = 1) ∧ (c23 = 1) ∧ (c11 = 0) ∧ (c39 = 0) ∧ (c29 = 1)→ y = 1 0.98
(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1)→ y = 1 0.99

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1) ∧ (c11 = 0)→ y = 1 0.994
(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1) ∧ (c61 = 0)→ y = 1 0.995

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1) ∧ (c61 = 1) ∧ (c11 = 0)→ y = 1 1

Similarly, the authors of [37] translate the influence of the challenge bits to
the weights needed in artificial neural networks that represent the challenge-
response behavior of BR-PUFs and the TBR-PUFs. They observed that there
is a pattern in these weights, which models the influence of the challenge bits. It
clearly reflects the fact that there are influential bits determining the response of
the respective PUF to a given challenge. From the results presented in [37], we
conclude that there is at least one influential bit, however, the precise number
of influential bits has not been further investigated by the authors.

Inspired by the above results from [37, 42], we conduct further experiments.
We collect 30000 CRPs from BR-PUFs and TBR-PUFs implemented on Altera
Cyclone IV FPGAs. In all of our PUF instances at least one influential bit is
found, and the maximum number of influential bits (corresponding to the size of
the monomials) is just a constant value in all cases . For the sake of readability,
we present here only the results obtained for one arbitrary PUF instance.

Our results shown in Table 2 are not only aligned with the results reported
in [37, 42], but also reflect our previous theoretical findings. We could conclude
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Table 3: The average sensitivity of n-bit BR-PUFs.
n The average sensitivity
4 1.25
8 1.86
16 2.64
32 3.6
64 5.17

this section as follows. There is at least one influential bit determining the re-
sponse of a BR-PUF (respectively, TBR-PUF) to a given challenge. However,
for the purpose of our framework their existence is not enough, and we need an
upper bound on the number of influential bits.

Looking more carefully into the three different datasets, namely our own and
the data reported in [37, 42], we observe that the total number of influential
bits is always only a very small value. Motivated by this commonly observed
phenomenon, we compute for our PUFs (implemented on FPGAs) the average
sensitivity of their respective Boolean functions2. Averaging over many instances
of our BR-PUFs, we obtain the results shown in Table 3 (TBR-PUFs scored
similarly). This striking result3 lead us to the following plausible heuristic.

“Constant Average Sensitivity of BR-PUF family”: for all practical val-
ues of n it holds that the average sensitivity of a Boolean function associated
with a physical n-bit PUF from the BR-PUF family is only a constant value.

Finally, some relation between the average sensitivity and the strict avalanche
criterion (SAC) can be recognized, although we believe that the average sensi-
tivity is a more direct metric to evaluate the security of PUFs under ML attacks.

4.2 Weak Learning and Boosting of BR-PUFs

The key idea behind our learning framework is the provable existence of influ-
ential bits for any PUF and the constant average sensitivity of BR-PUFs in our
scenario. These facts are taken into account to prove the existence of weak learn-

2 As explained in Section 2.2, for a Boolean function f , the influence of a variable
and the total average sensitivity can be calculated by employing Fourier analysis.
However, in practice this analysis is computationally expensive. Instead, it suffices
to simply approximate the respective average sensitivity. This idea has been exten-
sively studied in the learning theory-related and property testing-related literature
(see [22], for a survey). Here we describe how the average sensitivity of a Boolean
function, representing a PUF, can be approximated. We follow the simple and ef-
fective algorithm as explained in [32]. The central idea behind their algorithm is to
collect enough random pairs of labeled examples from the Boolean function, which
have the following property: (c, f(c)) and (c⊕i, f(c⊕i)), i.e., the inputs differ on a
single Boolean variable.

3 Note that it is a known result and being folklore, cf. [29], that randomly chosen n-bit
Boolean functions have an expected average sensitivity of exactly n/2.
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ers for the BR-PUF family. We start with the following theorem (Theorem 3)
proved by Friedgut [11].

Theorem 3. Every Boolean function f : {0, 1}n → {0,1} with I(f) = k can
be ε-approximated by another Boolean function h depending on only a constant
number of Boolean variables K, where K = exp

(
(2 +

√
2ε log2(4k/ε)/k)kε

)
, and

ε > 0 is an arbitrary constant.

We explain now how Theorem 3 in conjunction with the results presented in
Section 4.1 help us to prove the existence of a weak learner (Definition 2) for
the BR-PUF family.

Theorem 4. Every PUF from the BR-PUF family is weakly learnable.

Proof: For an arbitrary PUF from the BR-PUF family, consider its associated
but unknown Boolean function that is denoted by fPUF (i.e., our target concept).
Our weak learning framework has two main steps. In the first step, we identify
a (weak) approximator for fPUF, and in the second step this approximator is
PAC learned (in a strong sense). Still, we can guarantee only that the total
error of the learner does not exceed 1/2− γ, where γ > 0, as we start with a
weak approximator of fPUF. The first step relies on the fact that Theorem 2
ensures the existence of influential bits for fPUF, while we can also upper bound
I(fPUF) by some small constant value k due to the Constant Average Sensitivity
heuristic. According to the Theorem 3 there is a Boolean function h that is an
ε-approximator of fPUF, which depends only on a constant number of Boolean
variables K since k and ε are constant values, independent of n. However, note
that h depends on an unknown set of K variables. Thus, our Boolean function
h is a so called K-junta function, cf. [29]. More importantly, for constant K it
is known that the K-junta function can be PAC learned by a trivial algorithm
within O

(
nK
)

steps, cf. [2, 5, 6]. This PAC algorithm is indeed our algorithm
WL that weakly learns fPUF. Carefully choosing the parameters related to our
approximators as well as the PAC learning algorithm, we ensure that WL returns
a 1/2− γ-approximator for fPUF and some γ > 0. �

Applying now the canonical booster introduced in Section 2.3 to our WL

proposed in the proof of Theorem 4 and according to Definition 3, our weak
learning algorithm can be transformed into an efficient and strong PAC learning
algorithm.

Corollary 1 BR-PUFs are strong PAC learnable, regardless of any mathemat-
ical model representing their challenge-response behavior.

5 Results

5.1 PUF implementation

We implement BR and TBR-PUFs with 64 stages on an Altera Cyclone IV
FPGA, manufactured on a 60nm technology [1]. It turns out that most PUF
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(a) (b) (c)

Fig. 5: The settling time of the BR-PUF response: (a) the PUF response after a
transient time reaches a stable logical state “1”. (b) after a transient time the
PUF response is “0”. (c) the PUF response does not settle and oscillates for an
undefined time period.

implementations are highly biased towards one of the responses. Therefore, we
apply different manual routing and placement configurations to identify PUFs
with a minimum bias in their responses. However, it is known that by reducing
the bias in PUF responses, the number of noisy responses increases [27].

Finding and resolving the noisy responses are two of the main challenges in
the CRP measurement process. In almost all PUF constructions it can be pre-
dicted, at which point in time a generated response is valid and can be measured.
For instance, for an arbiter PUF one can estimate the maximum propagation
delay (evaluation period) between the enable point and the arbiter. After this
time period the response is in a valid logical level (either “0” or “1”) and does
not change, and afterwards by doing majority voting on the responses generated
for a given challenge the stable CRPs can be collected. However, in the case of
BR-PUF family, for a given challenge the settling time of the response to a valid
logical level is not known a priori, see Figure 5. Furthermore, it is not known
whether the response to a given challenge would not be unstable after observing
the stable response during some time period (see Section 3.1). Therefore, the
majority voting technique cannot be employed for BR-PUFs and TBR-PUFs.
To deal with this problem, for a given challenge we read the response of the PUF
at different points in time, where at each point in time 11 measurements are con-
ducted additionally. We consider a response being stable, if it is the same at all
these different measurement time points. Otherwise, the response is considered
being unstable, and the respective CRP is excluded from our dataset.

In order to observe the impact of the existing influential bits on our PUF re-
sponses, first we apply a large set of challenges chosen uniformly at random, and
then measure their respective responses. Afterwards, for both possible responses
of the PUF (i.e., “0” and “1”) we count the number of challenge bits, which are
set to either “0” or “1”, see Figure 6. It can be seen that some challenge bits
are more influential towards a certain response. These results are the basis for
our statistical analysis presented in Section 4.1. We also repeat this experiment
in the scenario, where the response of the PUF is unstable — in this case we
observe almost no influential challenge bits. The most important conclusion that
we can draw from these experiments is that a PUF with stable responses has
at least one influential bit, which can already predict with low probability the
response of the PUF to a respective challenge.
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(a) (b)

Fig. 6: The impact of the influential bits on the responses of the PUF: (a) the
response of the PUF is “0”. (b) unstable responses. Here the y-axis shows the
percentage of the challenges, whose bits are set to either “0” or “1”, whereas the
x-axis shows the bit position.

5.2 ML results

To evaluate the effectiveness of our learning framework, we conduct experiments
on CRPs collected from our PUF, whose implementation is described in Sec-
tion 5.1. As discussed and proved in Section 4, having influential bits enables us
to define a prediction rule, where this rule can serve as a hypothesis representa-
tion, which fulfills the requirements of a weak learner. The algorithm WL proposed
in the proof of the Theorem 4 relies on the PAC learnability of K-juntas, where
K is a small constant. However, it is known that every efficient algorithm for
learning K-DTs (i.e., the number of leaves is 2K) is an efficient algorithm for
learning K-juntas, see, e.g., [28]. Furthermore, it is known that DLs generalize
K-DTs [31]. Moreover, a monomial Mn,K is a very simple type of a K-junta,
where only the conjunction of the relevant variables is taken into account. There-
fore, for our experiments we decide to let our weak learning algorithms deliver
DLs, Monomials, and DTs.

To learn the challenge-response behavior of BR- and TBR-PUFs using these
representations, we use the open source machine learning software Weka [17]. One
may argue that more advanced tools might be available, but here we only aim to
demonstrate that publicly accessible, and off-the-shelf software can be used to
launch our proposed attacks. All experiments are conducted on a MacBook Pro
with 2.6 GHz Intel Core i5 processor and 10GB of RAM. To boost the prediction
accuracy of the model established by our weak learners, we apply the Adaptive
Boosting (AdaBoost) algorithm [10]; nevertheless, any other boosting framework
can be employed as well. For Adaboost, it is known that the error of the final
model delivered by the boosted algorithm after T iteration is theoretically upper
bounded by

∏T
t=1

√
1− 4γ2, c.f. [36]. To provide a better understanding of the

relation between K, the number of iterations, and the theoretical bound on the
error of the final model, a corresponding graph4 is shown in Figure 7.

4 Note that at first glance the graph may seem odd as after a few iterations the error
is close to 1, although we start from a weak learner, whose error rate is strictly
below 0.5. As explained in [36, pp. 57-60], and shown in their Figure 3.1, this is due
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Fig. 7: The relation between the theoretical upper bound on the error of the
final model returned by Adaboost, the number of iterations, and K. The graph
is plotted for k = 2, ε′ = 0.01, and n = 64. Here, ε′ = 0.01 denotes the error of
the K-junta learner.

Our experiments in Weka consist of a training phase and a testing phase. In
the training phase a model is established from the training data based on the
chosen representation. Afterwards, the established model is evaluated on the test
set, which contains an unseen subset of CRPs. The size of the training sets in our
experiments are 100 and 1000, whereas the test set contains 30000 CRPs. Our
experiments demonstrate that the weak learning of our test set always results in
the delivery of a model with more than 50% accuracy as shown in the first rows
of Table 4 and Table 5.

By boosting the respective models with AdaBoost, the accuracy is dramati-
cally increased, see Table 4 and Table 5. It can be observed that after 50 iterations
of Adaboost applied to the weak model generated from 100 CRPs, the predic-
tion accuracy of the boosted model is increased to more than 80% for all three
representations. By increasing the number of samples to 1000 CRPs, the predic-
tion accuracy is further increased up to 98.32 % for learning the BR-PUFs, and
99.37 % for learning the TBR-PUFs under DL representations. It is interesting
to observe that the simplest representation class, i.e., Monomials clearly present
the greatest advantage given by the boosting technique. As explained in [36] this
is due to avoiding any overfitting tendency.

6 Conclusion

As a central result, which speaks for itself, we have proved that in general the
responses of all PUF families are not equally determined by each and every bit
of their respective challenges. Moreover, the present paper has further addressed
the issue of strong PAC learning of the challenge-response behavior of PUFs,
whose functionality lacks a precise mathematical model. We have demonstrated
that representing BR- and TBR-PUFs by Boolean functions, we are able to

to Adaboosts’s theoretical worst-case analysis, which is only asymptotically (in T )
meaningful.
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Table 4: Experimental results for learning 64-bit BR-PUF and TBR-PUF, when
m = 100. The accuracy (1 − ε) is reported for three weak learners. The first
row shows the accuracy of the weak learner, whereas the other rows show the
accuracy of the boosted learner.

# boosting iterations
BR-PUF TBR-PUF

Mn DT DL Mn DT DL
0 (No Boosting) 54.48 % 66.79 % 67.24 % 65.18 % 72.29 % 74.84 %

10 67.12 % 74.25 % 76.99 % 76.96 % 79.22 % 81.36 %
20 77.53 % 80.53 % 80.89 % 82.05 % 85.73 % 86.71 %
30 81.32 % 83.13 % 83.14 % 84.93 % 88.34 % 89.4 %
40 82.65 % 83.91 % 84.6 % 88.11 % 89.67 % 90.22 %
50 82.65 % 85.62 % 85.5 % 90.05 % 89.69 % 91.58 %

Table 5: Experimental results for m = 1000 (the same setting as for the Table 4).

# boosting iterations
BR-PUF TBR-PUF

Mn DT DL Mn DT DL
0 (No Boosting) 63.73 % 75.69 % 84.59 % 64.9 % 75.6 % 84.34 %

10 81.09 % 85.49 % 94.2 % 79.9 % 87.12 % 95.05 %
20 89.12 % 91.08 % 96.64 % 88.28 % 91.57 % 97.89 %
30 93.24 % 93.24 % 97.50 % 93.15 % 93.9 % 98.75 %
40 95.69 % 94.28 % 97.99 % 96.73 % 95.05 % 99.13 %
50 96.80 % 95.04 % 98.32 % 98.4 % 95.96 % 99.37 %

precisely describe the characteristics of these PUFs as observed in practice. This
fact results in developing a new and generic machine learning framework that
strongly PAC learns the challenge-response behavior of the BR-PUF family.
The effectiveness and applicability of our framework have also been evaluated by
conducting extensive experiments on BR-PUFs and TBR-PUFs implemented on
FPGAs, similar to experimental platforms used in the most relevant literature.

Last but not least, although our strong PAC learning framework has its own
novelty value, we feel that our Theorem 3 and the precise mathematical descrip-
tion of the characteristics of BR-PUFs and TBR-PUFs are the most important
aspects of our paper. We strongly believe that this description can help to fill
the gap between the mathematical design of cryptographic primitives and the
design of PUFs in real world. As an evidence thereof, we feel that the Siegen-
thaler Theorem and the Fourier analysis that are well-known and widely used
in modern cryptography may provide special insights into the physical design of
secure PUFs in the future.
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