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Abstract. This work exploits internal differentials within a cipher in the
context of Differential Fault Analysis (DFA). This in turn overcomes the
nonce barrier which acts as a natural counter-measure against DFA. We
introduce the concept of internal differential fault analysis which requires
only one faulty ciphertext. In particular, the analysis is applicable to
parallelizable ciphers that use the counter-mode. As a proof of concept
we develop an internal differential fault attack called EnCounter on
PAEQ which is an AES based parallelizable authenticated cipher presently
in the second round of on-going CAESAR competition. The attack is
able to uniquely retrieve the key of three versions of full-round PAEQ of
key-sizes 64, 80 and 128 bits with complexities of about 216, 216 and
250 respectively. Finally, this work addresses in detail the instance of
fault analysis with varying amounts of partial state information and also
presents the first analysis of PAEQ.

Keywords: fault analysis, authenticated encryption, PAEQ, internal differential,
AESQ, nonce, AES

1 Introduction

The popularity of cryptanalyzing a cipher by observing its behavior under the
influence of faults is mainly attributed to the ease of such fault induction and
overhead in incorporating a counter-measure. Among different types of fault
based cryptanalysis, Differential Fault Analysis (DFA) [1,2,3,4,5,6,7] has gar-
nered particular attention of the side-channel research community since it has
been one of the most effective side-channel attacks on symmetric-key construc-
tions. DFA puts in the hand of an attacker an interesting ability: The possibility
of performing a differential analysis starting from an intermediate state of the
cipher. This ability could be fatal in case of iterated symmetric-key designs since
it is equivalent to cryptanalyzing a round-reduced version of the cipher. How-
ever, classical DFA has a specific requirement known as the replaying criterion
which states that the attacker must be able to induce faults while replaying a



previous fault-free run of the algorithm. In this scenario, the introduction of a
nonce constraint comes in as a direct contradiction to the ability to replay.

The notion of nonce-based encryption was formalized by Rogaway in [8] where
the security proofs relied on the pre-condition of the uniqueness of the nonce in
every instantiation of the cipher. Thus, it can be easily inferred why nonces
provide an in-built protection against DFA. Usage of nonces to counter fault at-
tacks are already available in Public-Key literature. The famous Bellcore attack
[9,10] on RSA-CRT signatures can be prevented if the message is padded with
a random nonce which is recoverable only when verifying a correct signature. It
was shown by Coron et al. [11] that in some limited setting these nonces can be
tackled. However, the techniques used rely on theoretical constructs which may
not be applicable to their private-key counterparts. Though there have also been
attempts to mount DFA attacks on symmetric-key designs in the presence of a
nonce, the solutions are very specific to the underlying cipher. Such an instance
can be found in [12], where the authors studied the impact of the nonce con-
straint on the fault-attack vulnerability of authenticated cipher APE [13] and
demonstrated the idea of faulty collisions to overcome it.

This work tries to address the nonce barrier in a more general setting by
totally bypassing the replaying criterion which amplifies the scope of the ideas
presented here. This is made possible by a DFA strategy that no longer requires
a fault-free run of the cipher. Instead the strategy needs only one multi-block
plaintext and faulty ciphertext pair to mount an attack. The nonce constraint is
no longer a threat to DFA if the analysis relies on a single faulty ciphertext. The
idea of using single faulty ciphertext stems from the prospect of using internal
differentials within the cipher. This type of analysis is well-studied and has been
successfully used in cryptanalysis of symmetric-key designs [14,15]. We explore
the possibility of deploying this in the context of DFA. In particular, we look at
parallelizable authenticated encryption (AE) schemes that use the counter mode
of operation to separate the branches. The parallel branches of these schemes
provide a good platform for injecting faults and studying the fault propagation
in the internal difference of the branches. The main idea is to nullify very low
hamming distance between the inputs of the parallel branches using a primary
fault and subsequently employ internal differential fault analysis using a sec-
ondary fault. To undertake a case-study we select PAEQ which is among the 30
Round-2 candidates in the on-going CAESAR [16] competition on authenticated
ciphers. PAEQ meets the basic criteria for analysis since it is parallelizable and
uses the counter mode. Moreover, the underlying permutation follows AES [17]
very closely which provides an edge in terms of fault analysis. In this work, we
present the first analysis of PAEQ in form of an internal difference based fault
attack called EnCounter on full-round paeq-64, paeq-80 and paeq-128 using
a 4-round distinguishing property. Two byte faults are required to be injected
in one of the parallel branches during the encryption phase of PAEQ. EnCounter
uses only one 255-block known plaintext and corresponding faulty ciphertext to
significantly reduce the average key-search space of the three versions of PAEQ.
Finally, one might be tempted to believe that classical differential fault analysis
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results on AES would suffice to analyze an AE scheme like PAEQ which is inher-
ently AES based. However, there is a fundamental difference given the fact that
the output here is truncated giving an attacker access to only partial information
of the state. Thus the current work provides an instance of a fault based analysis
of partially specified states.

Our Results

– Introduce the concept of internal differential fault analysis (IDFA) in the
context of parallelizable ciphers in the counter mode

– Showcase that IDFA requires only one run of the algorithm thereby over-
coming the nonce barrier of DFA.

– Present a 4-round internal differential distinguisher for PAEQ.

– Use the distinguisher to develop the EnCounter attack on full-round PAEQ

using only two faults in the same instance of PAEQ

– Reduces average key-space of primary PAEQ variants to practical limits viz.,
paeq-64: 264 to 216, paeq-80: 280 to 216, paeq-128: 2128 to 250.

– Present instances of fault analysis of an AES based design with various types
of partially specified internal states.

The rest of the paper is organized as follows. Section 2 provides a brief
description of PAEQ. The notations used is the work are given in Section 3. The
concept of internal differential fault analysis is introduced in Section 4. A 4-round
distinguisher of PAEQ is showcased in Section 5. Section 6 introduces the notion
of fault quartets. The EnCounter attack on PAEQ is devised in Section 7 and its
complexity analysis is furnished in Subsection 7.5. The experimental results are
presented in Section 8 while the concluding remarks are given in Section 9.

2 The Design of PAEQ

PAEQ which stands for Parallelizable Authenticated Encryption based on Quadru-
pled AES was introduced by Biryukov and Khovratovich in ISC 2014 [18] along
with a new generic mode of operation PPAE (Parallelizable Permutation-based
Authenticated Encryption). It was also submitted to the on-going CAESAR
competition for authenticated cipher and is presently one of the 30 round 2
candidates. The design of PAEQ was mainly driven by simplicity and to achieve
a security level equal to the key-length. Hence the authors argued in favor of
a permutation based design. It is fully parallelizable and on-line and offers a
security level up to 128 bits and higher (up to w/3, w ← width of internal per-
mutation) and equal to the key length. An interesting aspect of the PPAE mode
of operation (denoted PPAEf ) is that the inputs to the internal permutation f are
only linked by counters. This property makes PAEQ a prime candidate to apply
the concept of fault based internal differentials proposed in this work. Next we
touch upon PPAEf and the internal permutation of PAEQ called AESQ.
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2.1 PPAE Mode of Operation

PPAEf (illustrated in Algorithm 1) can be instantiated with an n-bit permutation

f . The inputs to the permutation are formatted as (Di||counter||N ||K) for each
plaintext block and (Di||counter||AD-block||K) for processing associated data
(AD) where Di ← domain separator, N ← nonce and K ← key. The plaintext
and AD are divided into blocks of size n− k − 16 and n− 2k − 16, respectively,
where k is the key-size. Incomplete last blocks are padded using the byte-length
of the block and domain separators are changed accordingly. Plaintext processing
and authentication calls f twice while AD data is authenticated using a single
call. Partial authentication data from all branches are passed to a final call to f ,
the output of which is optionally truncated to get the tag. The entire operation
is depicted in Figure 1. An interested reader can refer to [18,19] for details.

Fig. 1: Encryption and Authentication with PAEQ

2.2 The Internal Permutation: AESQ

AESQ operates on a 512-bit internal state which can be subdivided into 128-bit
substates. Before going into details we introduce some definitions.

Definition 1 (Word) Let T = F[x]/(x8 +x4 +x3 +x+ 1) be the field F28 used
in the AES MixColumns operation. Then a word is defined as an element of T.

A word is just a byte redefined to account for the field arithmetic. In this work,
we will come across partially specified states/substates where certain words might
have unknown values. To capture this scenario, we use the symbol ‘X’ to represent
unknown words. Thus, to be precise a word is an element of T ∪ {‘X’}.

Definition 2 (Substate, State) The internal state of the AESQ permutation
is defined as a 4-tuple of substates where each substate is a (4× 4)-word matrix.
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Algorithm 1 PPAEf (P,N,K,A, n)

Input:

{
P ← Plaintext, N ← Nonce, |N | = r, K ← Key, |K| = k

A← Associated Data, f ← Internal permutation, n← Internal state size

Output: C, T → Ciphertext and Tag

1: Di = (k, (r + i) mod 256), i = 1, 2, · · · , 6 . Generating 2-byte domain separators
2: {P1, P2, · · · , Pt} ← P |Pi| = (n− k − 16) bits
3: {A1, A2, · · · , Ap} ← A |Ai| = (n− 2k − 16) bits
4: if (|Pt| < n− k − 16) then Pt ← Pt||a||a · · · ||a . a = |Pt|/8 and |a| = 1 byte

5: if (|Ap| < n− 2k − 16) then Ap ← Ap||b||b · · · ||b . b = |Ap|/8 and |b| = 1 byte

6: Y = 0 . |Y | = n− k − 16
7: for i = 1 to t do

8: Vi ← D0||Ri||N ||K .

{
Ri ← Branch Index, Ri = i, |Ri| = n− k − r − 16

D0 ← D1 for incomplete last block

9: Wi ← f (Vi); Ci ←Wi[17 · · · (n− k)]⊕ Pi

10: Xi ← D2||Ci||Wi[(n− k + 1) · · ·n] . D2 ← D3 for incomplete last block
11: Yi ← (f (Xi))[17 · · · (n− k)]; Y ← Y

⊕
Yi

12: for i = 1 to p do . Binding Associated Data

13: X ′i ← D4||Ri||Ai||K .

{
Ri = i, |Ri| = k

D4 ← D5 for incomplete last block

14: Y ′i ← (f (X ′i))[17 · · · (n− k)]
15: Y ← Y

⊕
Y ′i

16: T ← f (D6||Y ||K)⊕ (0n−k||K)
17: C = {C1, C2, · · · , Ct} . Truncate Ct for incomplete last plaintext block

A state is denoted by s, while each substate is represented by sm = [smi,j ] where
smi,j are the elements of sm and m denotes the substate index. We denote a
column of [smi,j ] as sm∗,j while a row is referred to as smi,∗.

sm = [smi,j ], where

{
si,j ∈ T ∪ {‘X’}
0 ≤ i, j < 4; m ∈ {1, 2, 3, 4}

s = (s1, s2, s3, s4)

AESQ is a composition of 20 round functions with a Shuffle operation (de-
noted by S , Refer Table 1) after every 2 rounds. Each round-function is denoted
by Rr where the index r denotes the rth round of AESQ. Every round applies
on the internal state a composition of four bijective functions which are ba-
sically the standard AES round operations SubBytes, ShiftRows, MixColumns,
AddRoundConstants applied individually on each substate. In the context, of a
state we denote these functions as βr, ρr, µr and αr respectively. The reference to
a substate is addressed by including the substate index in notation. For example,
to refer to the MixColumns on the second substate in R17 we use µ2

17. Similarly,
when considering a substate in Rr we refer to the round function applied indi-
vidually to the substate as Rmr by including the substate index in the notation.
This implies that for an internal state s the output of the rth round of AESQ is
Rr(s) = R1

r(s
1)||R2

r(s
2)||R3

r(s
3)||R4

r(s
4).
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AESQ = S ◦ R20 ◦ R19 ◦ · · · ◦S ◦ R2 ◦ R1

Rr = αr ◦ µr ◦ ρr ◦ βr; Rmr = αmr ◦ µmr ◦ ρmr ◦ βmr

Round-reduced AESQ permutation is denoted by AESQn where n = 2k, 1 ≤
k ≤ 9. Thus AESQn = S ◦Rn ◦Rn−1 ◦· · ·◦S ◦R2 ◦R1. Since n is even, it implies
that we consider reductions in steps of two-rounds and AESQn always ends in the
S operation. Finally, the round constant for substate m in round r of AESQ is
given by: rcmr = ((r− 1) ∗ 4 +m). In αmr , rcmr is added to all words of row sm1,∗.

Table 1: Column mapping under Shuffle (S )

s1 s2 s3 s4

From s1∗,0 s1∗,1 s1∗,2 s1∗,3 s2∗,0 s2∗,1 s2∗,2 s2∗,3 s3∗,0 s3∗,1 s3∗,2 s3∗,3 s4∗,0 s4∗,1 s4∗,2 s4∗,3

To s1∗,3 s4∗,3 s3∗,2 s2∗,2 s1∗,1 s4∗,1 s3∗,0 s2∗,0 s1∗,2 s4∗,2 s3∗,3 s2∗,3 s1∗,0 s4∗,0 s3∗,1 s2∗,1

2.3 Handling Partially Specified States/Substates

As mentioned earlier in this work we have to handle states or substates that may
have multiple unknown values. We now define how the operations βmr , ρ

m
r , µ

m
r

and αmr behave in case of a partially specified substate sm = [smi,j ]. Here SBOX

denotes the AES Substitution box and Mµ denotes the MixColumns matrix. ρmr
does not rely on values of sm and just shifts the positions of unknown values.

smi,j
βm
r−−→

{
X if smi,j = X

SBOX(smi,j) Otherwise

∣∣∣∣∣ sm∗,j µm
r−−→

{
Mµ × sm∗,j if ∀i, smi,j 6= X

{X, X, X, X}T Otherwise

∣∣∣∣∣ smi,j αm
r−−→


smi,j if i 6= 1

smi,j ⊕ rcmr if smi,j 6= X

X Otherwise

3 Notations

Definition 3 (Diagonal) A diagonal of a substate (sm = [smi,j ]) is the set of
words which map to the same column under the Shift-Row operation.

dmk = {smi,j : ρm(smi,j) ∈ sm∗,k}, where k = (j − σ(i)) mod 4;σ = {0, 1, 2, 3} (1)

Definition 4 (Differential State) A differential state is defined as the element-
wise XOR between an internal state s = (s1, s2, s3, s4) and the corresponding state
s′ = (s′1, s′2, s′3, s′4) belonging to a different branch of PAEQ.

δ = (δ1, δ2, δ3, δ4) = ((s1 ⊕ s′1), (s2 ⊕ s′2), (s3 ⊕ s′3), (s4 ⊕ s′4))

Definition 5 (Column Vector) A Column Vector, is a set of columns where
each element is a candidate for one particular column of a substate.

Definition 6 (State/Substate Vector) A Substate Vector, identified by [sm]v,
is a set of substates where each element is a prospective candidate for substate
sm. A State Vector of state s is the cross-product of its substate vectors.
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4 Internal Differential Fault Analysis

In this work, for the first time, we explore the idea of using internal differentials
to mount fault based attacks. Though the concept of internal differentials is well-
known in cryptanalysis [14,15], the idea has never been applied in fault based
Side Channel Analysis. Our research reveals that the best crypto-primitives to
mount such a type of attack are the ones that employ a parallel mode of opera-
tion. In principle, internal differentials exploit self-symmetric structures present
within a construction. In the parallel mode of operation all parallel branches
are structurally similar exhibiting nice instances of such self-symmetry. We look
at inputs of such branches. Parallelizable ciphers using the counter mode are
generally characterized by the common property that the inputs to the parallel
branches only differ in the counter value. Thus, the hamming distance of the
inputs are quite low. More interestingly, we can find branches in which the bit
positions where the inputs differ are very localized.1 This localization can be fa-
tal from the perspective of fault analysis since a fault injection in the counter
could possibly lead to a collision in the counter values. So the faulty counter
could become equal to a fault-free counter and since the inputs differ only in the
counter value this would give us two branches with the same input. This forms
a pre-condition for deploying internal differentials analysis since under this sce-
nario, we could inject a second fault in the internal state of any of these two
identical branches and study how the fault diffuses in internal difference of the
corresponding states. The problem now reduces to classical DFA and hence we
may apply standard techniques pertaining to differential fault analysis. Figure 2
depicts the concept visually in a very generic sense.

Fig. 2: Generic model for using internal differentials in fault analysis of paral-
lelizable ciphers in the counter mode.

An interesting aspect of this strategy is that it requires only one multi-block
ciphertext with a single faulty block thereby making the analysis independent of
the effect of a nonce which prohibits usage of standard DFA. One could argue
regarding the viability of the first fault in terms of achieving the counter collision.

1 For instance, the differing bits could be localized within a byte.
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However, in this work we introduce the concept of Fault Quartets (Refer Section
6) which can use a round-reduced distinguisher of the underlying cipher to locate
the fault-free branch corresponding to a faulty branch due to the first fault under
reasonable assumptions. Building upon these ideas a practical IDFA attack is
mounted on PAEQ. Though the specifics rely on the underlying construction, the
overall notion of IDFA can be adapted to other ciphers which meet the properties
discussed earlier. In the next section we develop a four-round distinguisher of
PAEQ based on internal differentials arising from counter values.

5 An Internal Differential Distinguisher for 4-Round PAEQ

In this section we showcase a 4-round internal differential distinguisher which
surfaces due to low Hamming-distance between inputs to various parallel branches
of the first call to the AESQ permutation during the encryption phase. Here we
deal with AESQ reduced to 4-rounds. We start devising the distinguisher by mak-
ing the following observation which is due to the PPAE mode of operation.

Observation 1 Two parallel branches of PAEQ with the same domain separator
differ only in the counter value.

Based on Observation 1, we first choose any branch of PAEQ in the encryp-
tion phase with counter value i. We next find a branch with counter value j such
that their corresponding c-bit2 binary representations differ in exactly one3 byte.
The main idea is to restrict the internal-difference to a byte and later study its
diffusion from R1 to R4. The differential propagation in an AES round is quite
well-known. However, the presence of quadruple AES instantiations in AESQ and
the inclusion of S operation that mixes the substates make the analysis inter-
esting. Here, we are particularly interested in studying how the bytes belonging
to the same column become interrelated as the difference diffuses.

Four Round Differential Propagation in AESQ:
– R1: Difference spreads to entire column, and the bytes are related by factors

governed by the MixColumns matrix.
– R2: Entire substate affected; columns of the substate are related by factors.
– S : One column of each substate affected; factor relations unaffected.
– R3: All substates affected. All columns exhibit byte inter-relations due µ3.
– R4: All substates still affected with all relations destroyed due to β4
– S : Columns permute.

This process is illustrated in Figure 3a. After every round the corresponding
byte inter-relations are given. Recall that here we are dealing with a differential
state (Definition 4). Here, the numbers in a particular column indicate the factor
by which the byte-wise differences in that column are related. In the first substate
{2, 1, 1, 3} imply that differences are of the form {2×f, 1×f, 1×f, 3×f} where
f ∈ T \ {0}. The byte inter-relations after R3 translates into the following
observation:
2 Recall, the counter is of size c = n− k − 16 bits.
3 For instance, i = 5 and j = 8 differ only in the least significant byte.
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(a) Diffusion of a internal-difference in
the first substate in 4 rounds of AESQ.
SB↔ βm

r , SR↔ ρmr , MC↔ µm
r

(b) Distinguisher exploiting the byte
inter-relations after R3.

Fig. 3: A demonstration of the 4-round distinguishing strategy using paeq-128.
A Xdenotes a known value while a X denotes an unknown value.

Observation 2 The byte inter-relations after Rr due to a difference in Rr−2
input is invariant based on which substate the initial difference was located.4

The implication of Observation 2 is that there is a bijective relation between
byte inter-relations after R3 and substate where we had the initial internal dif-
ference in R1 input. As there are four substates so we have four unique byte
inter-relations (Figure 6) after R3. We can now present the proposed distin-
guisher in Algorithm 2 which passes with probability 1 for PAEQ if n = 4.

Remark 1. Distinguisher(P,C, i, j, n) will fail for any n > 4 because Obser-
vation 2 only holds for three rounds while the last round is handled by inversion
to get a meet-in-the-middle scenario to verify the byte inter-relations (Figure 3).
Moreover, it might also fail if i and j differ in more than one byte since in that
case the internal difference in R1 input might span multiple substates. Finally,
Distinguisher constitutes a general 3-round differential characteristic which
will hold for any 3 consecutive rounds of AESQ as long as the starting states have
an internal difference of one byte. This is what is exploited to develop an internal
differential fault attack on PAEQ.

4 It is understood that r > 2 and 2|(r − 1).
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Algorithm 2 Distinguisher (P,C, i, j, n)

Input:


P,C → 1 known plaintext-ciphertext (P = P1|| · · · ||Pt, C = C1|| · · · ||Ct)

(i 6= j) < t→ Branch indexes which differ in one bytea

n→ Total number of AESQ rounds considered

Output: 0/1

1: s← S−1(Pi ⊕ Ci) s′ ← S−1(Pj ⊕ Cj)
2: s← R−1

n (s) s′ ← R−1
n (s′)

3: δ = s⊕ s′ . The internal difference

4: Result
Verify Byte Inter-relations (Figure 6)←−−−−−−−−−−−−−−−−−−−−−−− δ

5: if Result == TRUE then return 1
6: else return 0

a
i, j 6= t since the last block might have a different domain separator in which case Observation 1 will not hold.

From the above remark we get the impression that if somehow we could get
a one-byte internal difference in R17 then the 4-round distinguishing property
could be verified from R20 i.e. the full AESQ permutation. In order to achieve
this scenario we introduce the concept of Fault Quartets in the next section.

6 The Fault Quartet

Definition 7 A fault quartet (Qi,j) is a configuration of four internal states of
the AESQ belonging to two different branches i and j of an instance of PAEQ in
the encryption phase. It is uniquely identified by the ordered pair of the branch
indexes (i,j). Qi,j is of the following form and has the following constraints:

Qi,j = {s, s#, t, t#} (2)

where


s, t→ branch input states, s# = AESQ16(s), t# = AESQ16(t)

Constraint 1 : s⊕ t = 0

Constraint 2 : s# and t# have an internal difference of one byte.

To generate a fault quartet, we take a plaintext of 255 blocks5 and induce
two random byte faults during the encryption phase of PAEQ. The first fault,
called the equalizer is injected in the last byte of the counter of any branch i.
The second fault called the differentiator is injected anywhere in the input of
R17 of AESQ in the same branch. The equalizer achieves the first constraint of
Qi,j which states that the input states must have no internal difference while the
differentiator induces a one-byte internal difference between the outputs of
R16 which constitutes the second constraint. Figure 4 demonstrates the fault in-
jection. The following observation accounts for the choice of a 255-block message
above.

5 Last block is a complete block (i.e., block-size = n− k − 16) due to Observation 1.
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Fig. 4: Fault Injection in PAEQ

Observation 3 The number of the plaintext blocks required to guarantee6 the
existence of a fault quartet with the equalizer fault injected in the last byte of
the counter of any branch is 255 with a complete last block.

The complete block at the end ensures that all inputs to AESQ have the same
domain separator. The choice of 255 implies that all of these differ only in the
last byte of the counter. Due to equalizer fault the counter value of branch
i changes to j which is equal to the counter value of any7 one of the remaining
254 fault-free branches. Thus, this outlines the condition to guarantee that a
fault quartet is generated. But how would one find such a quartet since neither
the input states nor the output of of AESQ16 is visible to an adversary. This is
addressed next where we give an algorithm to find such a quartet.

Finding Qi,j : Finding a fault-quartet translates into finding the branch-index
ordered pair (i, j) where i corresponds to the branch of PAEQ where the faults
have been introduced and the j corresponds to the fault-free branch. This is
done by Algorithm 3 using the distinguisher developed earlier as a sub-routine.
One can recall that due to the differentiator there will be a one-byte inter-
nal difference between branch i and j in the input of R17. Thus distinguishing
property can be verified from R20 i.e., the full AESQ permutation.

Algorithm 3 FindQ (P,C, i)

Input: P,C → One 255-block plaintext-ciphertext; i→ Index of faulty-branch
Output: (i, j)→ Branch-index ordered pair identifying the fault quartet Qi,j

1: for all j ∈ {1, 2, · · · , 255} \ {i} do
2: if (Distinguisher(P,C, i, j, 20) == 1) then
3: return (i, j) . This line is reached exactly once

Qi,j gives us the opportunity to exploit the distinguishing property of PAEQ
in the last four rounds of AESQ. With these concepts we are in a position to

6 With a probability of 255
256

.
7 Except for the case when j = 0 when it matches none of the remaining branches.
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finally introduce the EnCounter attack which exploits the property further to
recover the entire internal state of AESQ thereby revealing the key.

7 EnCounter: Fault Analysis of PAEQ using Internal
Differentials

The EnCounter attack proceeds in two phases: InBound and OutBound. The
InBound phase is common to all PAEQ variants while the OutBound phase varies.
In this work we focus on paeq-64, paeq-80 and paeq-128 which constitute the
primary set of PAEQ family as specified by the designers. We first provide a
high-level description of the attack and then delve into the details.

High-level Description of EnCounter

→ Fault-Injection: Run PAEQ on a plaintext with 255 complete blocks. Inject
the equalizer and differentiator faults in any branch i.

→ Find Fault-Quartet: Use FindQ to get index of the fault-free branch.
→ InBound Phase: Invert states from output of AESQ for both branches and re-

construct internal differential state afterR19. Guess diagonal of differentiator
fault to get a set of four column vectors for the state after β19.

→ OutBound Phase: Recovers candidates for all substates at the end ofR20 for
the fault-free branch using the column vectors from InBound phase. Return
them is the form of substate vectors.

→ Complete Attack: Repeat InBound phase for every guess of the diagonal
and consequently OutBound too. Accumulate substate vectors from every
guess. Their cross-product gives the reduced state-space for the state after
R20. Inverting every candidate state and verifying the known part of the
input reveals the correct key.

7.1 The Fault Model

Firstly, as EnCounter is an IDFA attack it needs only a single run of PAEQ. Sec-
ondly, it is based on a random byte fault model requiring 2 faults: equalizer
and differentiator, induced in any branch of AESQ while encrypting the plain-
text. equalizer targets the last byte of the counter while differentiator tar-
gets any byte at the input of R17 (Figure 4). While classical DFA generally deals
with single block messages, IDFA uses a single multi-block message as it targets
parallelizable ciphers. In the context of EnCounter the plaintext itself is a 255-
block message. After fault injection the attacker uses faulty and fault-free blocks
of the same ciphertext and corresponding plaintext blocks to mount the attack.
Assuming the faulty branch to be i, faulty ciphertext block C?i is identified below.

EnCounter Input

{
P = P1||P2|| · · · ||Pi|| · · · ||Pj || · · · ||P255
C = C1||C2|| · · · ||C?i || · · · ||Cj || · · · ||C255||Tag?
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7.2 The InBound Phase

As the name suggests the InBound phase tries to invert the the faulty and
fault-free branches using the observable part of the output. A pictorial abstrac-
tion of the process is provided in Figure 5 for early reference. After identifying
the fault-free branch using FindQ, the attacker separately inverts the partially
known output8 of AESQ for both branches up to the input of R20. He then com-
putes the internal difference of the states which gives him a partially specified
differential state. This state, by virtue of fault diffusion, has a special property
that the differences in individual columns are related. These relations are given
in Figure 6 and help to recover the complete differential state. Further, by Ober-
vation 2 the verified byte inter-relations will also reveal the substate where the
differentiator fault got injected.

Fig. 5: The InBound phase. Returns candidates for columns after β19.

The attacker inverts the reconstructed state up to input of ρ19. Again, due to
fault diffusion every substate of this state has exactly one column with non-zero
related differences (Refer Figure 3a). However, the relations differ based on the
location of differentiator fault. By virtue of the Diagonal Principle9 [7] which
is a well-known result of DFA on AES, we know that for a particular substate there
can be four kinds of relations based on the diagonal where the differentiator

was injected. Figure 7 shows all these possible byte inter-relations based on the
source of the byte-fault at the input of R17.

The attacker already knows which quadrant to look at in Figure 7 since he
knows the substate location of differentiator. However, he has no idea about
the source diagonal and has to resort to guessing. So like classical DFA using

8 Computed using the XOR of plaintext and ciphertext blocks.
9 Faults injected in the same diagonal of an AES state in round r input lead to the

same byte interrelations at the end of round (r + 1).
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Fig. 6: Byte Inter-relations after R19 ↔ Location of differentiator fault.

the input and output difference of β19, the attacker solves differential equations
to generate candidates for the four columns which are stored in column vectors.
At the end of InBound phase the attacker has a set of four column vectors for
the particular guess of the fault diagonal.

Fig. 7: Byte Inter-relations at R19 input Vs Location of differentiator fault.
Each quadrant corresponds to a source substate. For each substate, the relations
correspond to a source diagonal.

7.3 The OutBound Phase

Unlike the InBound phase, the OutBound phase works only on the fault-free
branch of AESQ specifically on the partial state at the end of R20. Additionally,
the column vectors generated above are also used. Let us look at the nature
of the substate in the state determined by S −1(Pj ⊕ Cj). This is captured by
Figure 8 for PAEQ variants analyzed in this work.

There are four types of substates with varying number of unknown bytes.
The primary aim of this phase is to reduce the search space for these sub-
states. A Type-1 substate is left unaltered since it has no unknown byte. Type-2

14



Fig. 8: The classification of substates observed in the internal state after
S −1(Pj ⊕ Cj) based on number of unknown bytes.

and Type-3 are equivalent in the sense that both have three completely known
columns while Type-4 can be converted to the same form by guessing 2 bytes
of the first column. Thus for the rest of the analysis we assume that we are
dealing with a substate with only one unknown column. We now describe how
the attacker produces candidates for such a substate. Again Figure 9 visually
illustrates this process for easy reference. Let us consider the mth substate.

Fig. 9: The OutBound phase. Returns candidates for substates after R20.

1. The substate is inverted up to output of µm19. At this point the substate
bears a property that every column has exactly one unknown byte.

2. Any column from the corresponding column vector10 is used to form a partial
substate which is propagated forward up to the input of µm19. At this point
the substate has exactly one known byte in every column.

3. The attacker exploits linear relations between the partial input and partial
output of µm19 to uniquely retrieve the substate. The recovered substate is
propagated forward up to the end of R20.

4. The process repeated for all columns in the column vector and all computed
substates are stored in the corresponding substate vectors.

At the end of the OutBound phase we have a set of substate vectors for all
substates of the state after R20.

10 Recall that the column vector corresponds to the state after β19.
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Remark 2. Unlike a Type-3 substate, a Type-2 substate has two extra known
bytes in the fourth column which can be exploited. Thus, substate vector is
reduced by comparing candidates with respect to these two bytes and eliminated
if unmatched. This should lead to large scale reduction of candidates. As regards
a Type-4 substate 2 bytes need to be guessed to make it like a Type-3. Thus we
have to repeat the process of candidate generation 216 times.

7.4 The Complete Attack

At the outset EnCounter repeats the InBound phase four times for different
diagonals positions of differentiator. Every iteration returns four column
vectors one for each substate of the state after β19. The OutBound phase then
follows, iterating over different types of substates ∈ S −1(Pj⊕Cj) from the fault-
free branch j returning corresponding substate candidates in substate vectors.
The cross-product of the substate vectors forms the state vector which consti-
tutes the reduced state-space for S −1(Pj ⊕Cj). The last step is to invert every
candidate state to get the input of branch j. Here, we can exploit the knowledge
of the domain separator D0, the counter value j and the nonce N . This helps to
eliminate all wrong candidates and reveals the master key K. It must be noted
that for a particular diagonal guess in InBound phase if the size of any substate
vector returned by OutBound is empty, all substate vectors generated for that
guess are discarded. Algorithm 4 presents EnCounter at an abstract level. In
the next subsection, we perform a complexity analysis.

Remark 3. Retrieving diagonal for paeq-64: In case of paeq-64 since second
substate after R20 (Refer Figure 8) is completely known (Type-1), it can be
inverted two rounds to reach input of R2

19 for both branches i, j. The byte inter-
relations in the internal-difference of these inputs is verified against the ones
given in Figure 7. This reveals the fault diagonal of differentiator. Thus as
a special case, for paeq-64 the diagonal guess can be avoided.

7.5 Complexity Analysis

Here we are mainly interested in getting the size of set S since from Algorithm 4
it is evident that AESQ−1 constitutes the most expensive operation of EnCounter
and the number of calls is bounded by |S|. Equation 3 gives the upper bound
on the size of S assuming that s← S −1(Pj ⊕ Cj).

|S| ≤
∑
d

|([s]v)d| =
∑
d

(
4∏

x=1

| [sx]
v |
)
d

(3)

It implies that it suffices to study the sizes of substate vectors. It was seen
in OutBound phase that Type-2 and Type-4 substates are related to Type-3.
Accordingly, the sizes of the corresponding substate vectors can be expressed in
terms of a Type-3 substate vector. This is furnished in Table 2 where q denotes
the size of a Type-3 substate vector while p and r denote sizes of Type-2 and
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Algorithm 4 EnCounter(P,C, i)

Input:

{
P,C ← One known plaintext-ciphertext with 255 complete blocks

i← Index of faulty-branch

Output: K ← The Master Key

1: (i, j)← FindQ (P,C, i) . Locate Fault-quartet Qi,j

2: S ← ∅
3: for d

Guess←−−− Fault diagonal do . Location of differentiator

4: Four Column Vectors
InBound←−−−−−−−−

(
Pi ⊕ Ci, Pj ⊕ Cj , d

)
5: Four Substate Vectors

OutBound←−−−−−−−−−
(
Pj ⊕ Cj , Column Vectors

)
6: if

(
Any Substate Vector = ∅

)
then Go to 3

7: State Vector
Cross-Product←−−−−−−−− Four Substate Vectors

8: S ←
(
S
⋃
State Vector

)
. Reduced state-space

9: for all e ∈ S do (Dx||jx||Nx||K)← AESQ−1(S (e))
10: if (Dx||jx||Nx) == (D0||j||N) then return K

Type-4 substate vectors respectively. Table 3 enumerates the theoretical upper
bounds of the complexities individually identifying sizes of the substate vectors.

Table 2: substate vector sizes in terms of Type-3 substate vector size

GetType(sx) Type-1 Type-2 Type-3 Type-4

|[sx]v| (Refer Remark 2) 1 p� q q r ≤ 216 × q

8 Experimental Results

Computer simulations of EnCounter were performed over 1000 randomly chosen
nonces, keys. The results for paeq-64/80 are shown in the form of bar diagrams
in Figure 10 and Figure 11 respectively. The bars segregate the substate vectors
in terms of their sizes (the value at the base) with the frequency of occurrence
given at the top. The figures mainly show that in the average case q is concen-
trated around 28. It was mentioned in Remark 2 that in the presence of additional
information p could be further reduced such that p � q. This is confirmed by
the results which show that p = 1 with a few exceptions when p = 2. Table 3
summaries the results while the details are given below:

– paeq-64: By Remark 3 we know that the diagonal for differentiator can
be recovered thereby avoiding the guessing step in Algorithm 4 and reducing
the complexity by a factor of four. So the final experimentally verified size
of S for paeq-64 stands at 72292 ≈ 216.14.
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Table 3: EnCounter Complexities

PAEQ

Substate Vector Size

s = S−1(Pj ⊕ Cj)
Theoretical

Complexity(|S|)
Experimental

Result(≈ |S|)
|[s1]v| |[s2]v| |[s3]v| |[s4]v|

paeq-64
q 1 q p

q2p(� q3) 216.14

(Type-3) (Type-1) (Type-3) (Type-2)

paeq-80
q p q p

4p2q2(� 4q4) 216.14

(Type-3) (Type-2) (Type-3) (Type-2)

paeq-128
q q q r

4q3r(≤ 218q4) 250(estd.)
(Type-3) (Type-3) (Type-3) (Type-4)
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Fig. 10: Bar diagram for sizes of substate vectors and reduced state-space for 1000
experiments on paeq-64 with mean (µ) and standard-deviation (σ) indicated.

– paeq-80: During simulation it was found that for Type-2 substates OutBound
phase returned empty substate vectors for a wrong guess of faulty diagonal.
This made Step 6 of Algorithm 4 to be TRUE reducing |S| by four times. So
the final verified size 72578 ≈ 216.14 is very close to paeq-64.

– paeq-128: It has three Type-3 substates contributing around 224 while a
Type-4 substate is supposed to contribute over 216 × 28. Finally, the com-
plexity is increased four times due to diagonal guess. Thus the estimated
value of |S| is around 250.
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Fig. 11: Bar diagram for sizes of substate vectors and reduced state-space for 1000
experiments on paeq-80 with mean (µ) and standard-deviation (σ) indicated.

9 Conclusion

This work introduces the notion of fault analysis using internal differentials. Par-
allelizable ciphers using the counter mode are found to be good targets for such
kind of analysis though the real attack relies on the underlying construction.
A 4-round distinguisher for authenticated cipher PAEQ is demonstrated. Using
this the idea of fault quartets is proposed which can locate the fault-free branch
corresponding to a faulty branch. Finally, an internal differential fault attack
EnCounter is devised against PAEQ using just two random byte faults with only
a single faulty ciphertext and the corresponding plaintext. The attack reduces
the key-space of paeq-64, paeq-80 and paeq-128 to around 216, 216 and 250 re-
spectively. The ability to mount an attack using a single faulty run of the cipher
makes IDFA independent of the effect of nonce thereby breaking the nonce bar-
rier of DFA. Moreover, the fault analysis presented here is of particular interest
since it deals with internal states that are partially specified which deviates it
from classical DFA. Finally, this work constitutes the first analysis of CAESAR
candidate PAEQ.
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11. Jean-Sébastien Coron, Antoine Joux, Ilya Kizhvatov, David Naccache, and Pascal
Paillier. Fault Attacks on RSA Signatures with Partially Unknown Messages. In
Cryptographic Hardware and Embedded Systems - CHES 2009, 11th International
Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, pages 444–
456, 2009.

12. Dhiman Saha, Sukhendu Kuila, and Dipanwita Roy Chowdhury. EscApe: Diagonal
Fault Analysis of APE. In Progress in Cryptology - INDOCRYPT 2014 - 15th
International Conference on Cryptology in India, New Delhi, India, December 14-
17, 2014, Proceedings, pages 197–216, 2014.

13. Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink,
Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs v1.02. Submission
to the CAESAR Competition, 2014. http://competitions.cr.yp.to/round2/

primatesv102.pdf.

20

http://eprint.iacr.org/2003/010
http://eprint.iacr.org/2003/010
http://eprint.iacr.org/2009/581
http://competitions.cr.yp.to/round2/primatesv102.pdf
http://competitions.cr.yp.to/round2/primatesv102.pdf


14. Thomas Peyrin. Improved Differential Attacks for ECHO and Grøstl. In Ad-
vances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 370–392, 2010.

15. Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision Attacks on Up to 5 Rounds
of SHA-3 Using Generalized Internal Differentials. In Fast Software Encryption -
20th International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised
Selected Papers, pages 219–240, 2013.

16. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html.

17. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

18. Alex Biryukov and Dmitry Khovratovich. PAEQ: Parallelizable Permutation-
Based Authenticated Encryption. In Information Security - 17th International
Conference, ISC 2014, Hong Kong, China, October 12-14, 2014. Proceedings, pages
72–89, 2014.

19. Dmitry Khovratovich Alex Biryukov. PAEQ v1. Submission to the CAESAR
Competition, 2014. http://competitions.cr.yp.to/round1/paeqv1.pdf.

21

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round1/paeqv1.pdf

	EnCounter: On Breaking the Nonce Barrier in Differential Fault Analysis with a Case-Study on PAEQ

