
FourQ on FPGA: New Hardware Speed Records
for Elliptic Curve Cryptography over Large

Prime Characteristic Fields

Kimmo Järvinen1, Andrea Miele2?, Reza Azarderakhsh3, and Patrick Longa4

1 Aalto University, Department of Computer Science
kimmo.jarvinen@aalto.fi

2 Intel Corporation
andrea.miele@intel.com

3 Rochester Institute of Technology, Department of Computer Engineering
rxaeec@rit.edu

4 Microsoft Research
plonga@microsoft.com

Abstract. We present fast and compact implementations of FourQ (ASI-
ACRYPT 2015) on field-programmable gate arrays (FPGAs), and demon-
strate, for the first time, the high efficiency of this new elliptic curve on
reconfigurable hardware. By adapting FourQ’s algorithms to hardware,
we design FPGA-tailored architectures that are significantly faster than
any other ECC alternative over large prime characteristic fields. For ex-
ample, we show that our single-core and multi-core implementations can
compute at a rate of 6389 and 64730 scalar multiplications per second, re-
spectively, on a Xilinx Zynq-7020 FPGA, which represent factor-2.5 and
2 speedups in comparison with the corresponding variants of the fastest
Curve25519 implementation on the same device. These results show the
potential of deploying FourQ on hardware for high-performance and em-
bedded security applications. All the presented implementations exhibit
regular, constant-time execution, protecting against timing and simple
side-channel attacks.

Keywords. Elliptic curves, FourQ, FPGA, efficient hardware imple-
mentation, constant-time, simple side-channel attacks.

1 Introduction

With the growing deployment of elliptic curve cryptography (ECC) [15, 24] in
place of traditional cryptosystems such as RSA, compact, high-performance

? This work was performed while the second author was a post-doctoral researcher at
EPFL, Lausanne, Switzerland.

c©IACR 2016. This article is the final version submitted by the author(s) to the IACR
and to Springer-Verlag on June 6, 2016. The version published by Springer-Verlag
is available at DOI:TBD.

ECC-based implementations have become crucial for embedded systems and
hardware applications. In this setting, field-programmable gate arrays (FPGAs)
offer an attractive option in comparison to classical application-specific inte-
grated circuits (ASICs), thanks to their great flexibility and faster prototyp-
ing at reduced development costs. Examples of efficient ECC implementations
on FPGAs are Güneysu and Paar’s implementations of the standardized NIST
curves over prime fields [11] and Sasdrich and Güneysu’s implementations of
Curve25519 [28, 29]. There is also a plethora of FPGA implementations based on
binary curves, which are particularly attractive for hardware platforms (see, e.g.,
[1, 2, 13, 14, 18, 26, 31]). Prime fields are by far the preferred option in software
implementations mainly because efficient integer arithmetic is readily supported
by instruction sets of processors. Therefore, efficient hardware implementations
of ECC over large prime characteristic fields are needed to provide compatibility
with software. In this work, we focus on elliptic curves defined over large prime
characteristic fields.

At ASIACRYPT 2015, Costello and Longa [6] proposed a new elliptic curve
called FourQ, which provides approximately 128 bits of security and supports
highly-efficient scalar multiplications by uniquely combining a four-dimensional
decomposition [8] with the fastest twisted Edwards explicit formulas [12] and the
efficient Mersenne prime p = 2127 − 1. In particular, by performing experiments
on a large variety of software platforms, they showed that, when computing a
standard variable-base scalar multiplication, FourQ is more than 5 times faster
than the standardized NIST P-256 curve and between 2 and 3 times faster than
the popular Curve25519 [5].

In this work, we propose an efficient architecture for computing scalar multi-
plications using FourQ on FPGAs. Our architecture, which leverages the power
of the embedded multipliers found in modern FPGA’s DSP blocks (similarly to
many prior works [11, 19–23, 27–29]), supports all the necessary operations to
perform FourQ’s 4-way multi-scalar multiplication, including point validation,
scalar decomposition and recoding, cofactor clearing (if required by a given pro-
tocol) and the final point conversion to affine coordinates. Based on this architec-
ture, we designed two high-speed variants: a single-core architecture intended for
constrained, low latency applications, and a multi-core architecture intended for
high-throughput applications. Moreover, we also explore the possibility of avoid-
ing the use of FourQ’s endormorphisms and present an implementation variant
based on the Montgomery ladder [25], which might be suitable for constrained
environments. All the proposed architectures exhibit a fully regular, constant-
time execution, which provides protection against timing and simple side-channel
attacks (SSCA) [16, 17]. To our knowledge, these are the first implementations
of FourQ on an FPGA in the open literature.

When compared to the most efficient FPGA implementations in the litera-
ture, our implementations show a significant increase in performance. For exam-
ple, in comparison to the state-of-the-art FPGA implementation of Curve25519
by Sasdrich and Güneysu [28, 29], our single-core architecture is approximately
2.5 times faster in terms of computing time (157µs versus 397µs), and our

multi-core architecture is capable of computing (at full capacity) 2 times as
many scalar multiplications per second as their multi-core variant (64730 scalar
multiplications per second versus 32304 scalar multiplications per second). Even
when comparing the case without endormorphisms, our FourQ-based FPGA
implementation is faster: the laddered variant is about 1.3 times faster than
Curve25519 in terms of computing time. All these results were obtained on the
same Xilinx Zynq-7020 FPGA model used by [29].

The paper is organized as follows. In Sect. 2, the relevant mathematical
background and general architectural details of the proposed design are provided.
In Sect. 3, the field arithmetic unit (called “the core”) is presented. In Sect. 4,
we describe the scalar unit consisting of the decomposition and recoding units.
In Sect. 5, three architecture variants are detailed: single-core, multi-core and
the Montgomery ladder implementation. We present the performance analysis
and carry out a detailed comparison with relevant work in Sect. 6. Finally, we
conclude the paper and give directions for future work in Sect. 7.

2 Preliminaries: FourQ

FourQ is a high-performance elliptic curve recently proposed by Costello and
Longa [6]. Given the quadratic extension field Fp2 = Fp(i) with p = 2127− 1 and
i2 = −1, FourQ is defined as the complete twisted Edwards [4] curve given by

E/Fp2 : − x2 + y2 = 1 + dx2y2, (1)

where d := 125317048443780598345676279555970305165·i+4205857648805777768770.
The set of Fp2-rational points lying on equation (1), which includes the neu-

tral point OE = (0, 1), forms an additive abelian group. The cardinality of this
group is given by #E(Fp2) = 392 · ξ, where ξ is a 246-bit prime, and thus, the
group E(Fp2)[ξ] can be used in cryptographic systems.

The fastest set of explicit formulas for the addition law on E are due to Hisil,
Wong, Carter and Dawson [12] using the so-called extended twisted Edwards
coordinates: any tuple (X : Y : Z : T) with Z 6= 0 and T = XY/Z represents a
projective point corresponding to an affine point (x, y) = (X/Z, Y/Z). Since d
is non-square over Fp2 , this set of formulas is also complete on E , i.e., they work
without exceptions for any point in E(Fp2).

Since FourQ is a degree-2 Q-curve with complex multiplication [30, 10], it
comes equipped with two efficiently computable endomorphisms, namely, ψ and
φ. In [6], it is shown that these two endomorphisms enable a four-dimensional
decomposition m 7→ (a1, a2, a3, a4) ∈ Z4 for any integer m ∈ [0, 2256 − 1] such
that 0 ≤ ai < 264 for i = 1, 2, 3, 4 (which is optimal in the context of multi-
scalar multiplication) and such that a1 is odd (which facilitates efficient, side-
channel protected scalar multiplications); see [6, Proposition 5] for details about
FourQ’s decomposition procedure. This in turn induces a four-dimensional scalar
multiplication with the form

[m]P = [a1]P + [a2]φ(P) + [a3]ψ(P) + [a4]φ(ψ(P)),

for any point P ∈ E(Fp2)[ξ].

2.1 Scalar Multiplication Execution

Assume that the decomposition procedure in [6, Proposition 5] is applied to
a given input scalar m. To execute the 4-way multi-scalar multiplication with
protection against timing and SSCA attacks, one can follow [6] and use the
method proposed by Faz, Longa and Sánchez [7]: the multi-scalars ai are recoded

to a representation bi =
∑64

i=0 bi[j] · 2j with bi[j] ∈ {−1, 0, 1} for i = 1, 2, 3, 4,
such that b1[j] ∈ {−1, 1} and b1[64] = 1, and such that the recoded digits
for a2, a3 and a4 are “sign-aligned” with the corresponding digit from a1, i.e.,
bi[j] ∈ {0, b1[j]} for i = 2, 3, 4. It follows that this recoding produces exactly
65 “signed digit-columns”, where a signed digit-column is defined as the value
dj = b1[j]+b2[j] ·2+b3[j] ·22 +b4[j] ·23 for j = 0, ..., 64. If one then precomputes
the eight points T [u] = P +u0φ(P) +u1ψ(P) +u2φ(ψ(P)) for 0 ≤ u < 8, where
u = (u2, u1, u0)2, scalar multiplication—scanning the digit-columns from left
to right—consists of an initial point loading and a single loop of 64 iterations,
where each iteration computes one doubling and one addition with the point
from T [] corresponding to the current digit-column. Given that digit-columns
are signed, one needs to negate the precomputed point before addition in the
case of a negative digit-column.

Next, we recap details about the coordinate system strategy used in [6].
Costello and Longa [6] utilize four different point representations for (X : Y : Z :
T): R1 : (X,Y, Z, Ta, Tb), such that T = Ta·Tb, R2 : (X+Y, Y−X, 2Z, 2dT), R3 :
(X+Y, Y −X,Z, T) and R4 : (X,Y, Z). In the main loop of scalar multiplication,
point doublings are computed as R1 ← R4 and point additions as R1 ← R1 ×
R2, where precomputed points are stored using R2. Note that converting point
addition results from R1 to R4 (as required by inputs to point doublings) is for
free: one simply ignores coordinates Ta, Tb.

2.2 High-Level Design of the Proposed Architecture

Our core design follows the same methodology described above and computes
FourQ’s scalar multiplication as in [6, Alg. 2]. However, there is a slight vari-
ation: since the negative of a precomputed point (X + Y, Y − X, 2Z, 2dT) is
given by (Y −X,X + Y, 2Z,−2dT), we precompute the values −2dT and store
each precomputed point using the tuple (X + Y, Y − X, 2Z, 2dT,−2dT). This
representation is referred to as R5. During scalar multiplication, we simply read
coordinates in the right order and assemble either (X + Y, Y −X, 2Z, 2dT) (for
positive digit-columns) or (Y −X,X+Y, 2Z,−2dT) (for negative digit-columns).
This approach completely eliminates the need for point negations during scalar
multiplication at the cost of storing only 8 extra elements in Fp2 . The slightly
modified scalar multiplication algorithm is presented in Alg. 1.

In Alg. 2, we detail the conversion of the multi-scalars to digit-columns di.
During a scalar multiplication, the 3-least significant bits of these digits (values
“vi”) are used to select one out of eight points from the precomputed table. The
top bit (values “si”) is then used to select between the coordinate value 2dT

Algorithm 1 FourQ’s scalar multiplication on E(Fp2)[ξ] (adapted from [6]).

Input: Point P ∈ E(Fp2)[ξ] and integer scalar m ∈ [0, 2256).
Output: [m]P .

Compute endomorphisms:
1: Compute φ(P), ψ(P) and ψ(φ(P)).
Precompute lookup table:
2: Compute T [u] = P + [u0]φ(P) + [u1]ψ(P) + [u2]ψ(φ(P)) for u = (u2, u1, u0)2 in

0 ≤ u ≤ 7. Write T [u] in coordinates (X + Y, Y −X, 2Z, 2dT,−2dT).
Scalar decomposition and recoding:
3: Decompose m into the multi-scalar (a1, a2, a3, a4) as in [6, Proposition 5].
4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) = (s64v64, . . . , s0v0) using Alg. 2. Write

mi = 1 if si = 1 and mi = −1 if si = 0 for i = 0, . . . , 63.
Main loop:
5: Q = T [v64]
6: for i = 63 to 0 do
7: Q = [2]Q
8: Q = Q+mi · T [vi]
9: return Q

(if the bit is 1) and −2dT (if the bit is 0), as described above for a point using
representation R5.

The structure of Alg. 1 leads to a natural division of operations in our ECC
processor. The processor consists of two main building blocks: (a) a scalar unit
and (b) a field arithmetic unit. The former carries out the scalar decomposition
and recoding (steps 3 and 4 in Alg. 1), and the latter—referred simply as “the
core”—is responsible for computing the endomorphisms, precomputation, and
the main loop through a fixed series of operations over Fp2 . We describe these
units in detail in Sect. 3 and Sect. 4.

3 Field Arithmetic Unit

The field arithmetic unit (“the core”) performs operations in Fp2 . The archi-
tecture of the core is depicted in Fig. 1. It consists of datapath (see Sect. 3.1),
control logic (see Sect. 3.2), and memory. The memory is a 256× 127-bit simple
dual-port RAM that is implemented using BlockRAM (36Kb) resources from
the FPGA device. We chose to have a 127-bit wide memory in order to min-
imize the overhead during memory reading and writing. This requires the use
of 4 BlockRAMs which provide storage space for up to 128 Fp2 elements. As a
result, storing the negative coordinate values −2dT of the precomputed points
as described in Sect. 2.2 comes essentially for free.

3.1 Datapath

The datapath computes operations in Fp and it thus operates on 127-bit operands.
The datapath supports basic operations that allow the implementation of field

Algorithm 2 FourQ’s multi-scalar recoding (adapted from [6]).

Input: Four positive integers ai = (0, ai[63], . . . , ai[0])2 ∈ {0, 1}65 less than 264 for
1 ≤ i ≤ 4 and with a1 odd.

Output: (d64, . . . , d0) with 0 ≤ di < 16.
1: s64 = 1
2: for j = 0 to 63 do
3: vj = 0
4: sj = a1[j + 1]
5: for i = 2 to 4 do
6: vj = vj + (ai[0]� (i− 2))
7: c = (a1[j + 1] | ai[0]) ∧ a1[j + 1]
8: ai = (ai � 1) + c
9: v64 = a2 + 2a3 + 4a4

10: return (d64, . . . , d0) = (s64v64, . . . , s0v0).

Datapath

Dual-port

RAM

127

18

16

127 127

127

6464

Control

162

didoresponses

Interface logic

commands,

2

Fig. 1. Architectural diagram of the core.

multiplication, addition and subtraction. A field multiplication is performed (a)
by computing a 127 × 127-bit integer multiplication, (b) by adding the lower
and higher halves of the multiplication result to perform the first part of the
reduction modulo p = 2127 − 1 and (c) by finalizing the reduction by adding
the carry from the first addition. Addition and subtraction in Fp are com-
puted (a) by adding/subtracting the operands and (b) by adding/subtracting
the carry/borrow-bit in order to perform the modular reduction. The operations
in Fp2 are implemented as a series of operations in Fp managed by the control
logic; see Sect. 3.2. The datapath consists of two separate paths: (a) multiplier
path and (b) adder/subtractor path. The datapath is shown in Fig. 2.

multiplier
64 × 64-bit

(pipelined)

127

127

63

64

63

64

64

64

128

128

129

127

127

127

127

1

1

c0

c

127

127 127

127b
a

r

+

+/−

0

Fig. 2. The datapath for operations in Fp.

The multiplier path is built around a pipelined 64 × 64-bit multiplier that is
implemented using 16 hardwired multipliers (DSP blocks). The integer mul-
tiplications a × b are computed via the schoolbook algorithm. It requires four
64×64-bit partial multiplications ai×bj with i, j ∈ {0, 1} such that a = a1264+a0

and b = b1264 + b0. The partial multiplications are computed directly with the
pipelined multiplier by selecting the operands from the input registers with two
multiplexers. Results of the partial multiplications are accumulated into the
upper half of a 256-bit register by using a 128-bit adder in the order (i, j) =
(0, 0), (0, 1), (1, 0), (1, 1). The register is shifted down by 64 bits after (0, 0) and
(1, 0). The pipelined multiplier has seven pipeline stages (designed such that it
matches the 128-bit adder’s critical path delay).

The adder/subtractor path computes additions and subtractions as well as modu-
lar reductions over the integer multiplication results. It is built around a 127-bit
adder/subtractor and multiplexers for selecting the inputs, i.e., operands and
carry/borrow-bit. The value stored in the output register is the only output of
the entire datapath.

The adder/subtractor path can be used for other operations while the mul-
tiplier path is performing a multiplication whenever reduction and read/write
patterns of the multiplication permits it. This was achieved by including a sep-
arate set of input registers into the adder/subtractor path. In addition, the
adder/subtractor path also allows accumulating the resulting value in its out-
put register. All this allows computing most additions and subtractions required
during scalar multiplication essentially for free.

3.2 Control Logic

The control logic controls the datapath and memory and, as consequence, imple-
ments all the hierarchical levels required by scalar multiplications on FourQ. The
control logic consists of a program ROM that includes instructions for the datap-
ath and memory addresses, a small finite state machine (FSM) that controls the
read addresses of the program ROM, and a recoder for recoding the instructions
in the program ROM to control signals for the datapath and memory.

Field operations consist of multiple instructions that are issued by the control
logic, as discussed in Sect. 3.1. Because of the pipelined multiplier, multiplica-
tions in Fp take several clock cycles (20 clock cycles including memory reads and
writes). Fortunately, pipelining allows computing independent multiplications
simultaneously and thus enables efficient operations over Fp2 .

Let a = (a0, a1), b = (b0, b1) ∈ Fp2 . Then, results (c0, c1) of operations in Fp2

are given by

a+ b = (a0 + b0, a1 + b1)

a− b = (a0 − b0, a1 − b1)

a× b = (a0 · b0 − a1 · b1, (a0 + a1) · (b0 + b1)− a0 · b0 − a1 · b1)

a2 = ((a0 + a1) · (a0 − a1), 2a0 · a1)

a−1 = (a0 · (a2
0 + a2

1)−1,−a1 · (a2
0 + a2

1)−1)

where operations on the right are in Fp. Operations in Fp2 are directly computed
using the equations above: multiplication requires three field multiplications,
two field additions and three field subtractions, whereas squaring requires only
two field multiplications, two field additions and one field subtraction. Field
inversions are computed via Fermat’s Little Theorem (a−1 = ap−2 = a2127−3)
using 138 multiplications in Fp.

An example of how the control logic implements c = a× b with a = (a0, a1)
and b = (b0, b1) ∈ Fp2 using the datapath is shown in Fig. 3. The multiplication
begins by computing t1 = a0 ·b0 in Fp followed by t2 = a1 ·b1. The additions t3 =
a0+a1 and t4 = b0+b1 are interleaved with these multiplications. As soon as they
are ready and the multiplier path becomes idle, the last multiplication t3 ← t3 ·t4
is computed. The multiplication a × b ends with three successive subtractions
c0 = t1− t2 and c1 = t3− t1− t2. The operation sequence was designed to allow
the interleaving of successive multiplications over Fp2 . A preceding multiplication
f = d × e and subsequent multiplications g × h and i × j are depicted in gray
color in Fig. 3. A multiplication finishes in 45 clock cycles but allows the next
multiplication to start after only 21 clock cycles. For every other multiplication
one must use t5 in place of t3 in order to avoid writing to t3 before it is read.
This operation sequence also allows interleaving further additions/subtractions
in Fp with the interleaved multiplications. E.g., if we read operands from the
memory in line 14, then we can compute an addition followed by a reduction
in lines 16 and 17 and write the result back in line 18. There is also a variant

Memory Multiplier Add/sub
RA RB W Regs. m.in m.1 m.2· · ·m.5 m.6 m.7 Acc. Regs. Res.

1 a0 b0 t15 · t
0
4 · · · d1

1 · e
1
1 +

2 t15, t
1
4 · · · d1

1 · e
1
1 sft.

3 a0, b0 t15 · t
1
4 · · · t05 · t

0
4 +

4 a0 a1 a0
0, b

0
0 · · · t05 · t

0
4 clr. R-1(d1 · e1)

5 b0 b1 a0
0 · b

0
0 · · · t05 · t

1
4 + R-2(d1 · e1)

6 t2 a0
0, b

1
0 · · · t15 · t

0
4 t05 · t

1
4 sft. a0, a1

7 a1
0, b

0
0 a0

0 · b
1
0 · · · t15 · t

0
4 + b0, b1 a0 + a1

8 a1 b1 a1
0 · b

0
0 · · · t15 · t

1
4 + R(a0 + a1)

9 t3 a1
0, b

1
0 · · · t15 · t

1
4 sft. b0 + b1

10 t1 t2 a1, b1 a1
0 · b

1
0 · · · a0

0 · b
0
0 + R(b0 + b1)

11 t4 a0
1, b

0
1 · · · a0

0 · b
0
0 clr. R-1(t5 · t4)

12 a0
1 · b

0
1 · · · a0

0 · b
1
0 + t1, t2 R-2(t5 · t4)

13 t5 a0
1, b

1
1 · · · a1

0 · b
0
0 a0

0 · b
1
0 sft.

14 a1
1, b

0
1 a0

1 · b
1
1 · · · a1

0 · b
0
0 + t1 − t2

15 t3 t4 a1
1 · b

0
1 · · · a1

0 · b
1
0 + R(t1 − t2)

16 f0 a1
1, b

1
1 · · · a1

0 · b
1
0 sft.

17 t5 t1 t3, t4 a1
1 · b

1
1 · · · a0

1 · b
0
1 +

18 t03, t
0
4 · · · a0

1 · b
0
1 clr. R-1(a0 · b0)

19 t2 t03 · t
0
4 · · · a0

1 · b
1
1 + t5, t1 R-2(a0 · b0)

20 t1 t03, t
1
4 · · · a1

1 · b
0
1 a0

1 · b
1
1 sft. t5 − t1

21 t13, t
0
4 t03 · t

1
4 · · · a1

1 · b
0
1 + t2 R(t5 − t1)

22 g0 h0 t13 · t
0
4 · · · a1

1 · b
1
1 + R− t2

23 t13, t
1
4 · · · a1

1 · b
1
1 sft. R(R− t2)

24 f1 g0, h0 t13 · t
1
4 · · · t03 · t

0
4 +

25 g0 g1 g0
0 , h

0
0 · · · t03 · t

0
4 clr. R-1(a1 · b1)

26 h0 h1 g0
0 · h

0
0 · · · t03 · t

1
4 + R-2(a1 · b1)

27 t2 g0
0 , h

1
0 · · · t13 · t

0
4 t03 · t

1
4 sft. g0, g1

28 g1
0 , h

0
0 g0

0 · h
1
0 · · · t13 · t

0
4 + h0, h1 g0 + g1

29 g1 h1 g1
0 · h

0
0 · · · t13 · t

1
4 + R(g0 + g1)

30 t5 g1
0 , h

1
0 · · · t13 · t

1
4 sft. h0 + h1

31 t1 t2 g1, h1 g1
0 · h

1
0 · · · g0

0 · h
0
0 + R(h0 + h1)

32 t4 g0
1 , h

0
1 · · · g0

0 · h
0
0 clr. R-1(t3 · t4)

33 g0
1 · h

0
1 · · · g0

0 · h
1
0 + t1, t2 R-2(t3 · t4)

34 t3 g0
1 , h

1
1 · · · g1

0 · h
0
0 g0

0 · h
1
0 sft.

35 g1
1 , h

0
1 g0

1 · h
1
1 · · · g1

0 · h
0
0 + t1 − t2

36 t5 t4 g1
1 · h

0
1 · · · g1

0 · h
1
0 + R(t1 − t2)

37 c0 g1
1 , h

1
1 · · · g1

0 · h
1
0 sft.

38 t3 t1 t5, t4 g1
1 · h

1
1 · · · g0

1 · h
0
1 +

39 t05, t
0
4 · · · g0

1 · h
0
1 clr. R-1(g0 · h0)

40 t2 t05 · t
0
4 · · · g0

1 · h
1
1 + t3, t1 R-2(g0 · h0)

41 t1 t05, t
1
4 · · · g1

1 · h
0
1 g0

1 · h
1
1 sft. t3 − t1

42 t15, t
0
4 t05 · t

1
4 · · · g1

1 · h
0
1 + t2 R(t3 − t1)

43 i0 j0 t15 · t
0
4 · · · g1

1 · h
1
1 + r − t2

44 t15, t
1
4 · · · g1

1 · h
1
1 sft. R(r − t2)

45 c1 i0, j0 t15 · t
1
4 · · · t05 · t

0
4 +

Fig. 3. Use of the datapath for (successive) multiplications in Fp2 .

of the multiplication sequence which completes the multiplication after 38 clock
cycles by computing the final subtractions faster, but it does not allow efficient
interleaving.

Latencies and throughputs of field operations are collected in Table 1.

The program ROM includes hand-optimized routines (fixed sequences of in-
structions) for all the operations required for computing scalar multiplications
on FourQ. The program ROM consists of 8015 lines of instructions (13-bit ad-

Table 1. Latencies and throughputs of operations in Fp and Fp2 .

Operation Latency Throughput

Addition/subtraction in Fp 6 1/2
Multiplication/squaring in Fp 20 1/7

Inversion in Fp
† 2760 —

Addition/subtraction in Fp2 8 1/4
Multiplication in Fp2 (max. throughput) 45 1/21
Multiplication in Fp2 (min. latency) 38 1/31
Squaring in Fp2 28 1/16
Inversion in Fp2 2817 —
† 126 squarings and 12 multiplications in Fp.

dresses). Each line is 25 bits wide: 3 bits for the multiplier path, 5 bits for the
adder/subtractor path, one bit for write enable and two 8-bit memory addresses
for the RAM. Execution of each instruction line takes one clock cycle. We tested
implementing the program ROM both using distributed memory and BlockRAM
blocks. The latter resulted in slightly better timing results arguably because of an
easier place-and-route process. Accordingly, we chose to implement the program
ROM using 6 BlockRAM blocks.

There are in total seven separate routines in the program ROM. Given a
basepoint P = (x, y) and following Alg. 1, initialization (lines 1–14) assigns
X ← x, Y ← y, Z ← 1, Ta ← x and Tb ← y (i.e., it maps the affine point P to
representation R1; see Sect. 2.1). Precomputation (lines 15–4199) produces the
table T containing 8 points using the endormorphisms and point additions. Pre-
computed points are stored using representation R5. Initialization of the main
loop (lines 4200–4214) initializes the point accumulator by loading a point from
the table T using the first digit of the recoded multi-scalar and by mapping it to
representation R4. In the main loop (lines 4215–4568), point doublings Q← [2]Q
and additions Q← Q+ T [di] are computed using the representations R1 ← R4

and R1 ← R1 ×R2, respectively. As explained in Sect. 2.1, converting precom-
puted points from representation R5 to R2 is simply done by reading values
from memory in the right order. The main loop consists of 64 iterations and
significant effort was devoted to optimizing its latency. Affine conversion (lines
4569–7437) maps the resulting point in representation R1 to affine coordinates
by computing x = X/Z and y = Y/Z. The bulk of this computation consists
of an inversion in Fp. Point validation (lines 7438–7561) checks if the basepoint
P = (x, y) is in E(Fp2), i.e., it verifies that −x2 + y2 − 1− dx2y2 = 0. Cofactor
clearing (lines 7562–8014) kills the cofactor by computing 392P . This is done
with an R2 ← R1 map (lines 7562–7643) followed by eight point doublings (lines
7644–7799) and two point additions (lines 7800–8014).

The control FSM sets the address for the program ROM depending on the phase
of the scalar multiplication. The FSM includes a counter and hardcoded pointers
to the routines in the program ROM. The value of the counter is used as the

Algorithm 3 Truncated multiplication algorithm.

Input: integers X = X10, X9, . . . , X0 in radix 224, Y = Y11, X10, . . . , Y0 in radix 217.
Output: ZH = bX · Y/2256c mod 264 or ZL = X · Y mod 264.
1: ZH ← 0, ZL ← 0
2: for i = 0 to 11 (or 3) do
3: T ← 0
4: for j = 0 to 10 (or 2) do
5: T ← T + ((Yi ·Xj)� 24j)
6: ZH ← (ZH � 17) + T
7: if i < 4 then
8: ZL ← (ZL � 17) + ((ZH mod 216)� 51)
9: ZH ← (ZH � 68) mod 264

10: ZL ← ZL mod 264

11: return ZH , ZL

address to the program ROM. Depending on the operation, the FSM sets the
counter to the address of the first line of the appropriate routine and, then, lets
the counter count up by one every clock cycle until it reaches the end pointer of
that routine. After that, the FSM jumps to the next routine or to the wait state
(line 0 is no-operation).

The instruction recoder recodes instructions from the program ROM to control
signals for the datapath. The memory addresses from the program ROM are fed
into an address recoding circuit, which recodes the address if it is needed to access
a precomputed point (otherwise, it passes the address unchanged). The address
from the program ROM simply specifies the coordinate of the precomputed point
and the recoding unit replaces this placeholder address with a real RAM memory
address by recoding it using the value and sign of the current digit-column di of
the scalar.

4 Scalar unit

This unit is in charge of decomposing the input scalar m into four 64-bit multi-
scalars a1, a2, a3, a4, which are then recoded to a sequence of digit-columns
(d64, . . . , d0) with 0 ≤ di < 16. These digits are used during scalar multipli-
cation to extract the precomputed points that are to be added. In our design,
this unit is naturally split into the decompose and recode units, which are de-
scribed below.

4.1 Decompose unit

The decompose unit computes the multi-scalar values a1, a2, a3 and a4 as
per [6, Prop. 5]. The inputs to the decompose unit are the four curve constants
`1, `2, `3 and `4 and the four basis values b1, b2, b3 and b4, which are stored in
a ROM, and the 256-bit input scalar m, which is stored in a register. The core

FSM

24 2441

2417

24

17
24

17 17

17

17

17 41

commands responses Yi X0

X1

X10

10: 17 × 24 + 17 DSP

1: 17 × 24 + 17 DSP

0: 17 × 24 + 17 DSP

281

T

0

Fig. 4. Architecture of the 17x264-bit row multiplier using DSPs.

of the decompose unit is a truncated multiplier : on input integers 0 ≤ X < 2256

and 0 ≤ Y < 2195, it calculates the integer ZH = bX · Y/(2256)c mod 264. This
operation is needed to compute each of the four values α̃1, α̃2, α̃3 and α̃4 from
[6, Prop. 5] modulo 264. The truncated multiplier computes ZH as described in
Alg. 3. In addition, this multiplier can be adapted to computations with the form
ZL = XY mod 264 by simply reducing the two for-loop counters in Alg. 3 from
11 to 3 and from 10 to 2, respectively. Thus, we reuse the truncated multiplier
for the 14 multiplications modulo 264 that are needed to produce the final values
a1, a2, a3 and a4 as per [6, Prop. 5].

The main building block of the truncated multiplier is a 17x264-bit row
multiplier that is used to compute the product of Yj · X for some j ∈ [0, 11]
(lines 4–5 of Alg. 3). The row multiplier is implemented using a chain of 11
DSPs as shown in Fig. 4. Note that the DSP blocks available on the Xilinx Zynq
FPGA family allow 17x24 unsigned integer multiplication plus addition of the
result with an additional 47-bit unsigned integer. In order to comply with the
operand size imposed by the DSP blocks, we split the input integer X into 24-
bit words and the input Y into into 17-bit words (the most significant words
are zero-padded). Both X and Y are then represented as X10, X9, . . . , X0 in
radix 224 and Y11, X10, . . . , Y0 in radix 217, respectively.

The row multiplier computes the full 17x264-bit product after 11 clock cycles.
Its 281-bit result is then added to the 281-bit partial result right-shifted by 17 bits
(line 6 of Alg. 3). This operation is performed by an adder-shifter component. In
our current design, the addition has been split into 3 steps to reduce the critical
path. Finally, a shift register outputs the result (line 9 of Alg. 3).

The high level architecture of the truncated multiplier unit is depicted in
Fig. 5. An FSM drives the various components to execute the control statements
of Alg. 3.

FSM17 × 264-bit multiplier

XY

ZH ZL

6464

264

17

281

17

264195

264

281

+

Fig. 5. Architecture of the truncated multiplier.

The remaining part of the decompose unit is an FSM that first drives the
truncated multiplier to compute the four values α̃1, α̃2, α̃3 and α̃4 in four sep-
arate runnings, using as inputs the constants stored in ROM and the scalar m.
For these computations, the multiplier produces outputs ZH running for the
maximum number of loop iterations according to Alg. 3. Subsequently, the FSM
drives the truncated multiplier to compute products modulo 264 (by running it
for a reduced number of loop iterations, as explained above) and to accumulate
the results ZL to produce the output values a1, a2, a3 and a4 in 24 steps.

4.2 Recode unit

The recode unit is very simple, as the operations it performs are just bit ma-
nipulations and 64-bit additions. The unit is designed as an FSM performing 64
iterations according to Alg. 2, where each iteration is split into 6 steps (corre-
sponding to 6 states of the FSM). The first 4 states implement lines 3 to 8 of
Alg. 2, whereas the last 2 states implement line 9.

5 Architectures

We designed three variants of our architecture in order to provide a full picture
of its capabilities compared to other designs presented in the literature.

5.1 Single-Core Architecture

Our single-core architecture is the simplest possible architecture for Alg. 1. It
combines one instance of the scalar unit with one instance of the core. Most
ECC hardware architectures in the literature are single-core architectures.

Read/write control Scalar unit

LIFO 1

Core 1

LIFO 2 LIFO 3 LIFO 4 LIFO N

Core 2 Core 3 Core 4 Core N

di, do commands responses

Fig. 6. The multi-core architecture with one scalar unit and N cores.

The interface of the single-core architecture is such that the host connects
to the architecture through a 64-bit interface (this can be easily modified) by
writing and reading values to and from the RAM. The host can issue three
instructions: point validation, cofactor clearing, and scalar multiplication. Point
validation computes the field operations required for computing −x2 + y2 − 1−
dx2y2 and the host reads the result and checks if it is zero. The need for cofactor
clearing depends on the protocol and, hence, it is not included in the main scalar
multiplication instruction. The scalar multiplication instruction initiates (a) the
scalar unit to decompose and recode the scalar and (b) the core to begin the
precomputation and all the other subsequent routines. The scalar unit computes
its operations at the same time that the core computes the precomputation.
Hence, scalar decomposition and recoding do not incur in any latency overhead.
Once an instruction is issued, the architecture raises a busy signal which remains
high as long as the operation is in process.

5.2 Multi-Core Architecture

Our multi-core architecture aims at improving throughput (operations per sec-
ond). It includes one scalar unit and N instances of the core. The multi-core
architecture is shown in Fig. 6. It is conceptually similar to the multi-core archi-
tecture presented by Sasdrich and Güneysu for Curve25519 in [29]. In their case,
multiple cores share a common inverter unit (inversions modulo 2255 − 19 are
more expensive than inversions in Fp2), which is used after scalar multiplication.
In our case the common resource is the scalar unit, which is used at the beginning
of scalar multiplication and is computed simultaneously with it.

The multi-core architecture is designed so that it acts as a FIFO (first-in-
first-out), which is straightforward to implement because all the operations have
constant latencies. The architecture has a busy signal which is high when the
scalar unit is computing or when all the cores are busy (or have results that
have not been read by the host). The host can issue new instructions only when

the busy signal is low. The cores are used cyclically so that whenever a scalar
multiplication instruction is issued, the turn is given to the next core. There is
also a done signal which is high when there are results which have not been read
by the host. Reading is also performed cyclically so that the turn is handed to
the next core only when the host acknowledges that it has read the previous
results. This cyclic writing and reading operate independently of each other,
and the interface allows reading and writing different cores. Thanks to the cyclic
utilization of the cores, the interface is transparent to the host who does not
need to take care of which core is actually performing the computations; in fact,
that is not even visible to the host.

The scalar unit writes digits to a LIFO (last-in-first-out) buffer attached to
each core. This way a core can proceed with a scalar multiplication indepen-
dently of the scalar unit as soon as the scalar unit has finished decomposing and
recoding a scalar. The scalar unit can then process other scalars while the pre-
vious cores are computing scalar multiplications. In this paper, we only consider
situations in which a single scalar unit serves N cores. If N > 14, then the scalar
unit becomes the bottleneck for throughput and, therefore, multiple scalar units
could be required.

5.3 Architecture Using the Montgomery Ladder

The architectures above can be easily modified to compute scalar multiplications
on FourQ without utilizing the endomorphisms. This option might be beneficial
in some resource-constrained applications. To demonstrate this, we designed
a modification of the single-core architecture. The main difference is that the
scalar unit is no longer needed, which results in a significant reduction in the
size of the architecture. Changes in the core are small and are strictly limited to
the control logic. In particular, the program ROM reduces in size because of a
shorter program and smaller address space (fewer temporary variables in use).
The architecture accepts both 256-bit and 246-bit (reduced modulo ξ) scalars,
and also supports cofactor clearing.

The size of the memory remains the same even though the memory require-
ments of the Montgomery ladder are relatively smaller than the single-core archi-
tecture using endormorphisms (which requires a precomputed point table). The
reason for this is that the number of BlockRAMs is dictated by the width (in
our case, 127 bits). Using smaller width would lead to a decrease in BlockRAM
requirements but also to a lower performance. Because BlockRAMs are not the
critical resource, we opted for keeping the current memory structure.

We derived hand-optimized routines for the scalar multiplication initializa-
tion and the double-and-add step using the formulas from [25]. The accumulator
is initialized with Q = (X : Z) = (1 : 0). One double-and-add step of the
Montgomery ladder takes 228 clock cycles. Because we have an either 256-bit or
246-bit scalar, a scalar multiplication involves 256 or 246 double-and-add steps,

The scalar unit outputs digits in the order d0, d1, . . . , d64 and the core uses them in
a reversed order (see Alg. 1).

Table 2. Summary of resource requirements in Xilinx Zynq-7020 XC7Z020CLG484-3.

Component LUTs Regs. Slices BRAMs DSPs

Single-core design

Core 869 (1.6%) 1637 (1.5%) 490 (3.7%) 10 (7.1%) 16 (7.3%)
Scalar unit 3348 (6.3%) 2771 (2.6%) 1226 (9.2%) 0 (0.0%) 11 (5.0%)

Total 4217 (7.9%) 4413 (4.1%) 1691 (12.7%) 10 (7.1%) 27 (12.3%)

Multi-core design (N = 11)

Core (min.) 902 (1.7%) 1616 (1.5%) 417 (3.1%) 10 (7.1%) 16 (7.3%)
...

...
...

...
...

...
...

...
...

...
...

Core (max.) 1001 (1.9%) 1630 (1.5%) 511 (3.8%) 10 (7.1%) 16 (7.3%)
Scalar unit 3422 (6.4%) 3029 (2.8%) 1201 (9.0%) 0 (0.0%) 11 (5.0%)

Total 13595 (25.6%) 20924 (19.7%) 5697 (42.8%) 110 (78.6%) 187 (85.0%)

Single-core design, Montgomery ladder

Core 1068 (2.0%) 1638 (1.5%) 522 (3.9%) 7 (5.0%) 16 (7.3%)

Total 1069 (2.0%) 1894 (1.8%) 565 (4.2%) 7 (5.0%) 16 (7.3%)

which take exactly 58368 or 56088 clock cycles, respectively. A final conversion to
extract x from (X : Z) takes 2855 clock cycles. The total cost of scalar multiplica-
tion (without cofactor clearing) is 61235 or 58967 cycles for 256-bit and 246-bit
scalars, respectively. Cofactor clearing is computed with nine double-and-add
steps followed by an extraction of x from (X : Z) and takes 4932 cycles.

6 Results and Analysis

The three architectures from Sect. 5 were compiled with Xilinx Vivado 2015.4
to a Xilinx Zynq-7020 XC7Z020CLG484-3 FPGA, which is an all programmable
system-on-chip for embedded systems. All the given results were obtained after
place-and-route. Table 2 presents the area requirements of the designs. Table 3
collects latencies, timings and throughputs of the different operations supported
by the designs.

The single-core design requires less than 13% of all the resources available
in the targeted Zynq-7020 FPGA. Timing closure was successful with a clock
constraint of 190 MHz (clock period of 5.25 ns). Hence, one scalar multiplication
(without cofactor clearing) takes 156.52µs, which means 6389 operations per
second. Using Vivado tools, we analyzed the power consumption of the single-
core with signal activity from post-synthesis functional simulations of ten scalar
multiplications. The power estimate was 0.359 W (with high confidence level),
and the energy required by one scalar multiplication was about 56.2µJ.

The multi-core design was implemented by selecting the largest N that fitted
in the Zynq-7020 FPGA. Since the DSP blocks are the critical resource and

Table 3. Performance characteristics of the designs in a Xilinx Zynq-7020
XC7Z020CLG484-3 FPGA, excluding interfacing with the host.

Operation
Latency Time (µs) Throughput (ops)
(clocks) @190MHz @175MHz 1×190MHz 11×175MHz

Initialization 14 0.07 0.08 — —
Point validation 124 0.65 0.71 — —
Cofactor clearing 1760 9.26 10.06 — —
Precomputation 4185 22.03 23.91 — —
Scalar multiplication, init. 15 0.08 0.09 — —
Double-and-add 354 1.86 2.02 — —
Affine conversion 2869 15.10 16.39 — —

Mont. ladder, init. (256-bit) 12 0.06 — — —
Mont. ladder, init. (246-bit) 24 0.13 — — —
Mont. ladder, cofact. clr. 4932 25.96 — — —
Mont. ladder, double-and-add 228 1.20 — — —
Mont. ladder, x-coord. 2855 15.03 — — —

Scalar decomp. and recoding 1984 10.44 11.33 95766 88206

Scalar mult. (w/o cofact. clr.)† 29739 156.52 169.94 6389 64730

Scalar mult. (w/ cofact. clr.)‡ 31499 165.78 179.99 6032 61113
Scalar mult. (Mont. ladder)∗ 58967 310.35 — 3222 —
† Init.+Prec.+Scalar mult. init.+ 64 × double-and-add + affine conv.
‡ Init.+Cofactor clr.+Prec.+Scalar mult. init.+ 64 × double-and-add + affine conv.
∗ Mont. ladder, init. (246-bit) + 246 × Mont. ladder, double-and-add + Mont. ladder, x-coord.

there are 220 of them in the targeted FPGA, one can estimate room for up to 13
cores. However, Vivado was unable to place-and-route a multi-core design with
N = 13. In practice, the largest number of admissible cores was N = 11 (85 %
DSP utilization). Even in that case timing closure was successful only with a
clock constraint of 175 MHz (clock period of 5.714 ns). This results in a small
increase in the computing time for one scalar multiplication, which then takes
169.94µs (without cofactor clearing). Throughput of the multi-core design is
64730 operations per second, which is more than ten times larger than the single-
core’s throughput. Hence, the multi-core design offers a significant improvement
for high-demand applications in which throughput is critical.

The single-core design based on the Montgomery ladder is significantly smaller
than the basic single-core design mainly because there is no scalar unit. The area
requirements reduce to only 7.3 % of resources (DSP blocks) at the expense of
an increase in the computing time of scalar multiplication, which in this case
takes 310.35µs (with a 246-bit scalar). Throughput becomes 3222 operations per
second, which is about half of the single-core design with fast endomorphisms.

Table 4 compares our implementations with different FPGA-based designs
for prime field ECC with approximately 128 bits of security. The large variety
of implementation platforms (also from different vendors), elliptic curves and
design features (e.g., inclusion of side-channel countermeasures or support for

Table 4. Comparison of FPGA-based designs of about 256-bit prime field ECC.

Ref. Device Curve N Resources
Time T-put
(µs) (ops)

[9] Stratix-2 any 256-bit 1 9177 ALM, 96 DSP 680 1471
[11] Virtex-4 NIST P-256 1 1715 LS, 32 DSP, 11 BRAM 495 2020
[11] Virtex-4 NIST P-256 16 24574 LS, 512 DSP, 176 BRAM n/a 24700
[19] Virtex-5 NIST P-256 1 1980 LS, 7 DSP, 2 BRAM 3951 253
[20] Virtex-5 any 256-bit 1 1725 LS, 37 DSP, 10 BRAM 376 2662
[22] Virtex-2 any 256-bit 1 15755 LS, 256 MUL 3836 261
[23] Virtex-2 any 256-bit 1 3529 LS, 36 MUL 2270 441
[27] Virtex-5 NIST P-256 1 4505 LS, 16 DSP 570 1754
[29] Zynq-7020 Curve25519 1 1029 LS, 20 DSP, 2 BRAM 397 2519
[29] Zynq-7020 Curve25519 11 11277 LS, 220 DSP, 22 BRAM 397 32304

This work Zynq-7020 FourQ, Mont. 1 565 LS, 16 DSP, 7 BRAM 310 3222
This work Zynq-7020 FourQ, End. 1 1691 LS, 27 DSP, 10 BRAM 157 6389
This work Zynq-7020 FourQ, End. 11 5697 LS, 187 DSP, 110 BRAM 170 64730

multiple primes) make a fair comparison extremely difficult. Nevertheless, the
table reveals that all of our designs compute scalar multiplications faster (in
terms of computation time) than any other published FPGA-based designs.

The most straightforward comparison can be done against Sasdrich and
Güneysu’s implementations using Curve25519 [29] (cases without DPA counter-
measures) because the designs use the same FPGA and share several similarities
in terms of optimization goals and approach. Our single-core architecture is 2.67
times faster in latency and 2.54 times faster in computation time and through-
put. In terms of DSP blocks (the critical resource), our architecture requires 27
and [29] requires 20. Therefore, our implementation has about 1.88 times better
speed-area ratio than [29]. In the case of the multi-core architecture, we obtain a
throughput that is 2 times larger than that from [29]. This speedup is achieved
despite the fact that the maximum clock frequency dropped to 175 MHz in our
case and we were unable to utilize all of the DSP blocks because the place-and-
route failed; Sasdrich and Güneysu [29] reported results with 100 % utilization
with no reduction in clock frequency, without providing a technical justification.

Even the variant without endomorphisms is faster than the design from [29].
In this case, the speedup comes from the use of a different architecture and a
simpler arithmetic in Fp2 over a Mersenne prime; the simpler inversion alone
saves more than 10000 clock cycles. Our architecture computes scalar multipli-
cations on FourQ with 1.35 times faster latency compared to [29], but because
of the lower clock frequency, throughput and computation time are only 1.28
times faster. These results showcase FourQ’s great performance even when en-
domorphisms are not used (e.g., in some applications with very strict memory
constraints).

7 Conclusions

We presented three FPGA designs for the recently proposed elliptic curve FourQ.
These architectures are able to compute one scalar multiplication in only 157µs
or, alternatively, with a maximum throughput of up to 64730 operations per
second by applying parallel processing in a single Zynq-7020 FPGA. The de-
signs are the fastest FPGA implementations of elliptic curve cryptography over
large prime characteristic fields at the 128-bit security level. This extends the
software results from [6] by showing that FourQ also offers significant speedups
in hardware when compared to other elliptic curves with similar strength such
as Curve25519 or NIST P-256.

Our designs are inherently protected against SSCA and timing attacks. Re-
cent horizontal attacks (such as horizontal collision correlations [3]) can break
SSCA-protected implementations by exploiting leakage from partial multiplica-
tions. Our designs compute these operations with a large 64-bit word size in a
highly pipelined and parallel fashion. Nevertheless, resistance against these at-
tacks, and other attacks that apply to scenarios in which an attacker can exploit
traces from multiple scalar multiplications (e.g., differential power analysis), re-
quire further analysis. Future work involves the inclusion of strong countermea-
sures against such attacks.

Acknowledgments

Kimmo Järvinen’s work was supported in part by the Intel Institute for Collab-
orative Research in Secure Computing.

Reza Azarderakhsh’s work was supported by the National Science Founda-
tion under award No. CNS-1464118 and and by the US Army Research Labo-
ratory under award No. W911NF-16-1-0204-(68023-CS). The views and conclu-
sions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of
the U.S. Army Research Laboratory, or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

References

1. Azarderakhsh, R., Reyhani-Masoleh, A.: Efficient FPGA implementations of point
multiplication on binary Edwards and generalized Hessian curves using Gaussian
normal basis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
20(8), 1453–1466 (2012)

2. Azarderakhsh, R., Reyhani-Masoleh, A.: Parallel and high-speed computations of
elliptic curve cryptography using hybrid-double multipliers. IEEE Transactions on
Parallel and Distributed Systems 26(6), 1668–1677 (2015)

3. Bauer, A., Jaulmes, E., Prouff, E., Reinhard, J.R., Wild, J.: Horizontal collision
correlation attack on elliptic curves. Cryptography and Communications 7(1), 91–
119 (2015)

4. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Progress in Cryptology — AFRICACRYPT 2008. Lecture Notes in
Computer Science, vol. 5023, pp. 389–405. Springer (2008)

5. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Public-Key
Cryptography (PKC 2006). Lecture Notes in Computer Science, vol. 3958, pp.
207–228 (2006)

6. Costello, C., Longa, P.: FourQ: Four-dimensional decompositions on a Q-curve over
the Mersenne prime. In: Advances in Cryptology — ASIACRYPT 2015. Lecture
Notes in Computer Science, vol. 9452, pp. 214–235. Springer (2015), full version:
https://eprint.iacr.org/2015/565

7. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves
(extended version). J. Cryptographic Engineering 5(1), 31–52 (2015)

8. Gallant, R., Lambert, J., Vanstone, S.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In: Advances in Cryptology —
CRYPTO’01. Lecture Notes in Computer Science, vol. 2139, pp. 190–200. Springer
(2001)

9. Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications
over Fp. In: Cryptographic Hardware and Embedded Systems — CHES 2010. Lec-
ture Notes in Computer Science, vol. 6225, pp. 48–64. Springer (2010)

10. Guillevic, A., Ionica, S.: Four-dimensional GLV via the Weil restriction. In: Ad-
vances in Cryptology — ASIACRYPT 2013. Lecture Notes in Computer Science,
vol. 8269, pp. 79–96. Springer (2013)

11. Güneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Cryptographic Hardware and Embedded Systems — CHES
2008. Lecture Notes in Computer Science, vol. 5154, pp. 62–78 (2008)

12. Hisil, H., Wong, K.K., Carter, G., Dawson, E.: Twisted Edwards curves revisited.
In: Advances in Cryptology — ASIACRYPT 2008. Lecture Notes in Computer
Science, vol. 5350, pp. 326–343. Springer (2008)

13. Järvinen, K., Skyttä, J.: On Parallelization of High-Speed Processors for Elliptic
Curve Cryptography. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 16(9), 1162–1175 (Sep 2008)

14. Järvinen, K., Skyttä, J.: Optimized FPGA-based elliptic curve cryptography pro-
cessor for high-speed applications. Integration, the VLSI Journal 44(4), 270–279
(2011)

15. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48, 203–
209 (1987)

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Advances in Cryptology — CRYPTO’96. Lecture Notes in
Computer Science, vol. 1109, pp. 104–113. Springer (1996)

17. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptol-
ogy — CRYPTO’99. Lecture Notes in Computer Science, vol. 1666, pp. 388–397.
Springer (1999)

18. Loi, K.C.C., Ko, S.B.: High performance scalable elliptic curve cryptosystem pro-
cessor for Koblitz curves. Microprocessors and Microsystems 37(4–5), 394–406
(2013)

19. Loi, K.C.C., Ko, S.B.: Scalable elliptic curve cryptosystem FPGA processor for
NIST prime curves. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 23(11), 2753–2756 (Nov 2015)

20. Ma, Y., Liu, Z., Pan, W., Jing, J.: A high-speed elliptic curve cryptographic pro-
cessor for generic curves over GF (p). In: Selected Areas in Cryptography — SAC
2013. Lecture Notes in Computer Science, vol. 8282, pp. 421–437. Springer (2014)

21. McIvor, C.J., McLoone, M., McCanny, J.V.: An FPGA elliptic curve cryptographic
accelerator overGF (p). In: Proceedings of the Irish Signals and Systems Conference
2004. pp. 589–594 (2004)

22. McIvor, C.J., McLoone, M., McCanny, J.V.: Hardware elliptic curve cryptographic
processor over GF (p). IEEE Transactions on Circuits and Systems I: Regular Pa-
pers 55(9), 1946–1957 (Sep 2006)

23. Mentens, N.: Secure and Efficient Coprocessor Design for Cryptographic Applica-
tions on FPGAs. Ph.D. thesis, Katholieke Universiteit Leuven (Jul 2007)

24. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Advances in Cryptology
— CRYPTO’85. Lecture Notes in Computer Science, vol. 218, pp. 417–426 (1986)

25. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

26. Rebeiro, C., Sinha Roy, S., Mukhopadhyay, D.: Pushing the limits of high-speed
GF (2m) elliptic curve scalar multiplication on FPGAs. In: Cryptographic Hard-
ware and Embedded Systems — CHES 2012. pp. 494–511. Springer (2012)

27. Roy, D.B., Mukhopadhyay, D., Izumi, M., Takahashi, J.: Tile before multiplica-
tion: An efficient strategy to optimize DSP multiplier for accelerating prime field
ECC for NIST curves. In: Proceedings of the 51st Annual Design Automation
Conference—DAC’14. pp. 177:1–177:6. ACM (2014)

28. Sasdrich, P., Güneysu, T.: Efficient elliptic-curve cryptography using Curve25519
on reconfigurable devices. In: Reconfigurable Computing Architectures, Tools, and
Applications — ARC 2014. Lecture Notes in Computer Science, vol. 8405, pp.
25–36. Springer (2014)

29. Sasdrich, P., Güneysu, T.: Implementing Curve25519 for side-channel-protected
elliptic curve cryptography. ACM Transactions on Reconfigurable Technology and
Systems 9(1), Art. 3 (2015)

30. Smith, B.: Families of fast elliptic curves from Q-curves. In: Advances in Cryptology
— ASIACRYPT 2013. Lecture Notes in Computer Science, vol. 8269, pp. 61–78.
Springer (2013)

31. Sutter, G.D., Deschamps, J.P., Imaña, J.L.: Efficient elliptic curve point multipli-
cation using digit-serial binary field operations. IEEE Transactions on Industrial
Electronics 60(1), 217–225 (Jan 2013)

