
Faster Evaluation of SBoxes via Common Shares

Jean-Sébastien Coron1, Aurélien Greuet2, Emmanuel Prouff3?, and Rina
Zeitoun2

1 University of Luxembourg
jean-sebastien.coron@uni.lu
2 Oberthur Technologies, France

{r.zeitoun,a.greuet}@oberthur.com
3 Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA,

Laboratoire d’Informatique de Paris 6 (LIP6), Équipe PolSys, 4 place Jussieu, 75252
Paris Cedex 05, France

Abstract. We describe a new technique for improving the efficiency of
the masking countermeasure against side-channel attacks. Our technique
is based on using common shares between secret variables, in order to re-
duce the number of finite field multiplications. Our algorithms are proven
secure in the ISW probing model with n > t+ 1 shares against t probes.
For AES, we get an equivalent of 2.8 non-linear multiplications for every
SBox evaluation, instead of 4 in the Rivain-Prouff countermeasure. We
obtain similar improvements for other block-ciphers. Our technique is
easy to implement and performs relatively well in practice, with roughly
a 20% speed-up compared to existing algorithms.

1 Introduction

Side-Channel Attacks. Side-channel analysis is a class of cryptanalytic at-
tacks that exploit the physical environment of a cryptosystem to recover some
leakage about its secrets. It is often more efficient than a cryptanalysis mounted
in the so-called black-box model where no leakage occurs. In particular, continu-
ous side-channel attacks in which the adversary gets information at each invo-
cation of the cryptosystem are especially threatening. Common attacks as those
exploiting the running-time, the power consumption or the electromagnetic radi-
ations of a cryptographic computation fall into this class. Many implementations
of block ciphers have been practically broken by continuous side-channel analy-
sis and securing them has been a longstanding issue for the embedded systems
industry.

The Masking Countermeasure. A sound approach to counteract side-chan-
nel attacks is to use secret sharing [Bla79, Sha79], often called masking in the
context of side-channel attacks. This approach consists in splitting each sensitive

? Part of this work has been done at Safran Identity and Security, and while the author
was at ANSSI, France.

variable x of the implementation into n shares such that x = x1⊕· · ·⊕xn, where
n is called the sharing order, such that x can be recovered from these shares but
no information can be recovered from fewer than n shares. It has been shown that
the complexity of mounting a successful side-channel attack against a masked
implementation increases exponentially with the order [CJRR99,PR13,DDF14].
Starting from this observation, the design of efficient secure schemes for different
ciphers has become a foreground issue. When specified at order n, such a scheme
aims at specifying how to update the sharing of the internal state throughout the
processing while ensuring that (1) the final sharing corresponds to the expected
ciphertext, and (2) the n-th order security property is satisfied.

The ISW Probing Model. Ishai, Sahai and Wagner [ISW03] initiated the
theoretical study of securing circuits against an adversary who can probe a
fraction of its wires. They showed how to transform any circuit of size |C| into a
circuit of size O(|C| · t2) secure against any adversary who can probe at most t
wires. The ISW constructions consists in secret-sharing every variable x into x =
x1⊕x2⊕· · ·⊕xn where x2, . . . , xn are uniformly and independently distributed
bits, with n > 2t + 1 to get security against t probes. Processing a XOR gate
is straightforward as the shares can be xored separately. The processing of an
AND gate z = xy is based on writing:

z = xy =

(
n

⊕
i=1

xi

)
·
(

n

⊕
i=1

yi

)
= ⊕

16i,j6n
xiyj (1)

where the cross-products xiyj are first computed and then randomly recombined
to get an n-sharing of the output z. This construction, called ISW gadget in the
rest of this paper, enables, in its general form, to securely evaluate a multiplica-
tion at the cost of n2 multiplications, 2n(n−1) additions and n(n−1)/2 random
values. Its complexity is therefore O(n2), which implies that the new circuit with
security against t probes has O(|C| · t2) gates.

A proof of security in the ISW framework is usually simulation based: one
must show that any set of t probes can be perfectly simulated without the knowl-
edge of the original variables of the circuit. In [ISW03] and subsequent work this
is done by progressively generating a subset I of input shares such that the
knowledge of those input shares is sufficient to simulate all the t probes. For
example, in the above AND gate, if the adversary would probe xi ·yj , one would
put both indices i and j in I, so that the simulator would get the input shares
xi and yj , and therefore could simulate the product xi · yj . More generally in
the ISW construction every probe adds at most two indices in I, which implies
|I| 6 2t. Therefore if the number of shares n is such that n > 2t + 1, then
|I| < n, which implies that only a proper subset of the input shares is required
for the simulation; those input shares can in turn be generated as independently
uniformly distributed bits. Therefore, the knowledge of the original circuit vari-
ables is not required to generate a perfect simulation of the t probes, hence these
probes do not bring any additional information to the attacker (since he could
perform that simulation by himself).

2

Existing work. In the last decade, several masking countermeasures have been
proposed for block-ciphers together with security proofs in the ISW probing
model, based on the original notion of private circuits introduced in [ISW03].
Except [Cor14] which extends the original idea of [KJJ99] to any order, the other
proposals are based on the ISW gadget recalled above. The core idea of the latter
works is to split the processing into a short sequence of field multiplications and
F2-linear operations, and then to secure these operations independently, while
ensuring that the local security proofs can be combined to prove the security
of the entire processing. When parametrized at order n, as recalled above the
complexity of the ISW gadget for the field multiplication is O(n2), but only
O(n) for F2-linear operations.1 Therefore, an interesting problem is to minimize
the number of field multiplications required to evaluate an SBox.

In the Rivain-Prouff countermeasure [RP10], the authors showed how to
adapt the ISW circuit construction to a software implementation of AES, by
working in F28 instead of F2. Namely as illustrated in Fig. 1, the non-linear part
S(x) = x254 of the AES SBox can be evaluated with only 4 non-linear multipli-
cations over F28 , and a few linear squarings. Each of those 4 multiplications can
in turn be evaluated with the previous ISW gadget based on Equation (1), by
working over F28 instead of F2.

x x3 x12

x2 x15 x240 x252 x254

x15 x240 x254

x x3 x12

x2 x14

Fig. 1. a) Sequential computation of x254 as used in [RP10,BBD+15a]. b) Alternative
computation of x254; the multiplications x14 = x12 · x2 and x15 = x12 · x3 can be
computed in parallel [GHS12].

The Rivain-Prouff countermeasure was later extended by Carlet et al. to
any look-up table [CGP+12]. Namely any given k-bit SBox can be represented

by a polynomial
∑2k−1

i=0 ai x
i over F2k using Lagrange’s interpolation theorem.

1 A function f is F2-linear if it satisfies f(x ⊕ y) = f(x) ⊕ f(y) for any pair (x, y)
of elements in its domain. This property must not be confused with F2m -linearity
of a function, where m divides n and is larger than 1, which is defined such that
f(ax⊕ by) = af(x)⊕ bf(y), for every a, b ∈ F2m . An F2m -linear function is F2-linear
but the converse is false in general.

3

Therefore one can mask any SBox by securely evaluating this polynomial using
n-shared multiplications as in the Rivain-Prouff countermeasure. To improve ef-
ficiency, one must look for operations sequences (e.g. SBox representations) that
minimize the number of field multiplications which are not F2-linear 2 (this kind
of multiplication shall be called non-linear in this paper). This problematic has
been tackled out in [CGP+12], [RV13] and [CRV14] and led to significantly re-
duce the number of multiplications needed to evaluate any function defined over
F2k for k 6 10 (e.g. the AES SBox can be evaluated with only 4 multiplications,
and only 4 multiplications are needed for the DES SBoxes).

Recently, a sequence of works continued to improve the original work [ISW03]
and led, in particular, to exhibit a new scheme enabling to securely evaluate
any function of algebraic degree 2 at the cost of a single multiplication (with
the ISW gadget). The application of this work to the AES SBox led the au-
thors of [GPS14] to describe a scheme which can be secure at any order n and
is a valuable alternative to the scheme proposed in [RP10]. In parallel, some
schemes [BGN+14, NRS11, PR11] have been proposed which remain secure in
the probing model even in presence of so-called glitches [MS06] and the recent
work [RBN+15] has investigated relations between these schemes and the ISW
construction.

Refined Security Model: t-SNI Security. Since in this paper we are inter-
ested in efficiency improvements, we would like to use the optimal n = t + 1
number of shares instead of n = 2t + 1 as in the original ISW countermeasure.
For n > 2t+1 shares the security proof for the single ISW multiplication gadget
easily extends to the full circuit [ISW03]; however for n > t + 1 shares only
one must be extra careful. For example, for the Rivain-Prouff countermeasure,
it was originally claimed in [RP10] that only n > t + 1 shares were required,
but an attack of order d(n − 1)/2e + 1 was later described in [CPRR13]; the
security proof in [RP10] with n > t + 1 shares actually applies only when the
ISW multiplication is used in isolation, but not for the full block-cipher.

To prove security with n > t+1 shares only for the full block-cipher, a refined
security model against probing attacks was recently introduced in [BBD+15a],
called t-SNI security. As shown in [BBD+15a], this stronger definition of t-SNI
security enables to prove that a gadget can be used in a full construction with
n > t+ 1 shares, instead of n > 2t+ 1 for the weaker definition of t-NI security
(corresponding to the original ISW security proof). The authors show that the
ISW multiplication gadget does satisfy this stronger t-SNI security definition.
They also show that with some additional mask refreshing, the Rivain-Prouff
countermeasure for the full AES can be made secure with n > t + 1 shares.
Due to its power and simplicity, the t-SNI notion appears to be the “right”
security definition against probing attacks. Therefore, in this paper, we always
prove the security of our algorithms under this stronger t-SNI notion, so that our

2 A multiplication over a field of characteristic 2 is F2-linear if it corresponds to a
Frobenius automorphism, i.e. to a series of squarings.

4

algorithms can be used within a larger construction (typically a full block-cipher)
with n > t+ 1 shares only.

Our Contribution. Our goal in this paper is to further improve the efficiency
of the masking countermeasure. As recalled above, until now the strategy fol-
lowed by the community has been to reduce the number of calls to the ISW
multiplication gadget. In this paper, we follow a complementary approach con-
sisting in reducing the complexity of the ISW multiplication gadget itself. Our
core idea is to use common shares between the inputs of multiple ISW multi-
plication gadgets, up to the first n/2 shares; in that case, a given processing
performed in the first ISW gadget can be re-used in subsequent gadgets.

Consider for example the alternative evaluation circuit for x254 in AES used
in [GHS12], as illustrated in Fig. 1. It still has 4 non-linear multiplications as in
the original circuit [RP10], but now the two multiplications x14 ← x12 · x2 and
x15 ← x12 · x3 can be evaluated in parallel, moreover with a common operand
x12. Let denote by d ← c · a and e ← c · b those two multiplications with
common operand c. In the ISW multiplication gadget, one must compute all
cross-products ci · aj and ci · bj for all 1 6 i, j 6 n. Now if we can ensure that
half of the shares of a and b are the same, that is aj = bj for all 1 6 j 6 n/2, then
the products ci ·aj and ci · bj for 1 6 j 6 n/2 are the same and can be computed
only once; see Fig. 2 for an illustration. This implies that when processing the
second multiplication gadget for e ← c · b, we only have to compute n2/2 finite
field multiplications instead of n2. For two multiplications as above, this saves
the equivalent of 0.5 multiplication.

c

a

d← c · a

c

b

e← c · b

Fig. 2. When half of the shares in a and b are the same, the multiplications correspond-
ing to the left-hand blocks are the same. This saves the equivalent of 0.5 multiplications
out of 2.

To ensure that the two inputs have half of their shares in common, we intro-
duce a new gadget called CommonShares with complexity O(n), taking as input
two independent n-sharings of data and outputting two new n-sharings, but with
their first n/2 shares in common. Obviously this must be achieved without de-
grading the security level; we show that this is indeed the case by proving the
security of the full SBox evaluation in the previous t-SNI model, with n > t+ 1
shares. Note that we cannot have more than n/2 shares in common between two
variables a and b, since otherwise there would be a straightforward attack with
fewer than n probes: namely if ai = bi for all 1 6 i 6 k, then we can probe the

5

2(n−k) remaining shares ai and bi for k+1 6 i 6 n; if k > n/2 this gives strictly
less than n shares, whose xor gives the secret variable a⊕ b. Hence having half
of the shares in common is optimal.

More generally, the 16 SBoxes of AES can be processed in parallel, and there-
fore each of the 4 non-linear multiplications in x254 can be processed in parallel.
As opposed to the previous case those multiplications do not share any operand,
but we show that by using a generalization of the CommonShares algorithm be-
tween m operands instead of 2, for every multiplication in the original circuit
one can still save the equivalent of roughly 1/4 multiplication. This also applies
to other block-ciphers as well, since in most block-ciphers the SBoxes are ap-
plied in parallel. One can therefore apply the technique from [CRV14] based on
fast polynomial evaluation, and using our CommonShares algorithm between the
inputs of the evaluated polynomials, we again save roughly 1/4 of the number of
finite field multiplications. Our results for various block-ciphers are summarized
in Table 1, in which we give the equivalent number of non-linear multiplications
for a single SBox evaluation, for various block-ciphers; we refer to Section 5 for a
detailed description. Finally, we show in the full version of this paper [CGPZ16]
how to apply our common shares technique to the Threshold Implementations
(TI) approach for securing implementation against side channel attacks, even in
the presence of glitches.

SBox
Methods AES DES PRESENT SERPENT CAMELLIA CLEFIA

Parity-Split [CGP+12] 4 10 3 3 22 22

Roy-Vivek [RV13] 4 7 3 3 15 15,16

[CRV14] 4 4 2 2 10 10

Our Method 2.8 3.1 1.5 1.5 7.8 7.8

Table 1. Equivalent number of non-linear multiplications for a single SBox evaluation,
for various block-ciphers.

Practical Implementation. A practical implementation of our common shares
technique is described in Section 7, for the n-shared evaluation of x254 in AES,
on ATmega1284P (8-bit AVR microcontroller) and ARM Cortex M0 (32-bit
CPU). We obtain that our technique is relatively practical: for a large number of
shares, we get roughly a 20% speed improvement compared to the Rivain-Prouff
countermeasure (but only roughly 5% compared to the quadratic evaluation
technique in [GPS14]).

2 Security Definitions

Given a variable x ∈ F2k and an integer n, we say that the vector (x1, . . . , xn) ∈
(F2k)n is an n-sharing of x if x =

⊕n
i=1 xi. We recall the security definitions

from [BBD+15a], which we make slightly more explicit. For simplicity we only

6

provide the definitions for a simple gadget taking as input a single variable x
(given by n shares xi) and outputting a single variable y (given by n shares yi).
We provide the generalization to multiple inputs and outputs in the full version
of this paper [CGPZ16]. Given a vector (xi)16i6n, we denote by x|I := (xi)i∈I
the sub-vector of shares xi with i ∈ I.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)16i6n

and outputting (yi)16i6n. The gadget G is said t-NI secure if for any set of t1
intermediate variables and any subset O of output indices, there exists a subset
I of input indices with |I| 6 t1 + |O|, such that the t1 intermediate variables and
the output variables y|O can be perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input (xi)16i6n

and outputting (yi)16i6n. The gadget G is said t-SNI secure if for any set of t1
intermediate variables and any subset O of output indices such that t1 + |O| 6 t,
there exists a subset I of input indices with |I| 6 t1, such that the t1 intermediate
variables and the output variables y|O can be perfectly simulated from x|I .

The t-NI security notion corresponds to the original security definition in the
ISW probing model; it allows to prove the security of a full construction with
n > 2t + 1 shares. The stronger t-SNI notion allows to prove the security of a
full construction with n > t+1 shares only [BBD+15a]. The difference is that in
the stronger t-SNI notion, the size of the input shares subset I can only depend
on the number of internal probes t1, and must be independent of the number of
output variables |O| that must be simulated (as long as the condition t1+|O| 6 t
is satisfied). Intuitively, this provides an “isolation” between the output shares
and the input shares of a given gadget, and for composed constructions this
enables to easily prove that a full construction is t-SNI secure, based on the
t-SNI security of its components.

3 The Rivain-Prouff Countermeasure

In this section we recall the Rivain-Prouff countermeasure [RP10] for securing
AES against high-order attacks. It can be seen as an extension to F2k of the
original ISW countermeasure [ISW03] described in F2. The Rivain-Prouff coun-
termeasure is proved t-SNI secure in [BBD+15a]; therefore it can be used to
protect a full block-cipher against t probes with n > t + 1 shares, instead of
n > 2t+ 1 shares in the original ISW probing model.

3.1 The Rivain-Prouff Multiplication

The Rivain-Prouff countermeasure is based on the SecMult operation below,
which is similar to the ISW multiplication gadget but over F2k instead of F2.
The SecMult algorithm enables to securely compute a product c = a · b over F2k ,
from an n-sharing of a and b, and outputs an n-sharing of c. Here we use the
linear memory version from [Cor14], using similar notations as in [BBD+15a].

7

Algorithm 1 SecMult

Require: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Ensure: shares ci satisfying

⊕n
i=1 ci = a · b

1: for i = 1 to n do
2: ci ← ai · bi
3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do
6: r ← F2k . referred by ri,j
7: ci ← ci ⊕ r . referred by ci,j
8: r ← (ai · bj ⊕ r)⊕ aj · bi . referred by rj,i
9: cj ← cj ⊕ r . referred by cj,i

10: end for
11: end for
12: return (c1, . . . , cn)

It is shown in [BBD+15a] that the SecMult algorithm is t-SNI secure with n >
t+ 1 shares. For completeness we provide a proof of Lemma 1 in the full version
of this paper [CGPZ16]; our proof is essentially the same as in [BBD+15a]. In the
full version of this paper [CGPZ16], we also provide a slightly different, more
modular proof in which we separate the computation of the matrix elements
vij = ai · bj from the derivation of the output shares ci.

Lemma 1 (t-SNI of SecMult). Let (ai)16i6n and (bi)16i6n be the input shares
of the SecMult operation, and let (ci)16i<n be the output shares. For any set of
t1 intermediate variables and any subset |O| 6 t2 of output shares such that
t1 + t2 < n, there exist two subsets I and J of indices with |I| 6 t1 and |J | 6 t1,
such that those t1 intermediate variables as well as the output shares c|O can be
perfectly simulated from a|I and b|J .

3.2 Mask Refreshings

To obtain security against t probes with n > t+1 shares instead of n > 2t+1, the
previous SecMult algorithm is usually not sufficient; one must also use a mask
refreshing algorithm. The following RefreshMask operation is used in [BBD+15a]
to get the t-SNI security of a full construction.

The following lemma is proven in [BBD+15a], showing the t-SNI security
of RefreshMask. In the full version of this paper [CGPZ16] we also provide a
modular proof, using the same approach as in Lemma 1; namely the above
RefreshMask algorithm can be viewed as a SecMult with multiplication by 1,
with shares (1, 0, . . . , 0); therefore the same proof technique applies.

Lemma 2 (t-SNI of RefreshMask). Let (ai)16i6n be the input shares of the
RefreshMask operation, and let (ci)16i6n be the output shares. For any set of
t1 intermediate variables and any subset |O| 6 t2 of output shares such that
t1 + t2 < n, there exists a subset I of indices with |I| 6 t1, such that the t1

8

Algorithm 2 RefreshMask

Input: a1, . . . , an

Output: c1, . . . , cn such that
⊕n

i=1 ci =
⊕n

i=1 ai

1: For i = 1 to n do ci ← ai

2: for i = 1 to n do
3: for j = i + 1 to n do
4: r ← {0, 1}k
5: ci ← ci ⊕ r
6: cj ← cj ⊕ r
7: end for
8: end for
9: return c1, . . . , cn

intermediate variables as well as the output shares c|O can be perfectly simulated
from a|I .

3.3 Application to the Computation of x254 in F28

To compute y = x254 over F28 with 4 multiplications, the following sequence of
operation is used in [RP10], including two RefreshMask operations.

Algorithm 3 SecExp254

Input: shares x1, . . . , xn satisfying x =
⊕n

i=1 xi

Output: shares y1, . . . , yn such that
⊕n

i=1 yi = x254

1: For i = 1 to n do zi ← x2
i .

⊕
i zi = x2

2: (zi)16i6n ← RefreshMask((zi)16i6n)
3: (yi)16i6n ← SecMult((zi)16i6n, (xi)16i6n) .

⊕
i yi = x3

4: For i = 1 to n do wi ← y4
i .

⊕
i wi = x12

5: (wi)16i6n ← RefreshMask((wi)16i6n)
6: (yi)16i6n ← SecMult((yi)16i6n, (wi)16i6n) .

⊕
i yi = x15

7: For i = 1 to n do yi ← y16
i .

⊕
i yi = x240

8: (yi)16i6n ← SecMult((yi)16i6n, (wi)16i6n) .
⊕

i yi = x252

9: (yi)16i6n ← SecMult((yi)16i6n, (zi)16i6n) .
⊕

i yi = x254

10: return y1, . . . , yn

Using the two previous lemmas, one can prove the t-SNI security of Sec-
Exp254; we refer to [BBD+15a] for the proof.

Lemma 3 (t-SNI of x254). Let (xi)16i6n be the input shares of ExpSec254,
and let (yi)16i6n be the output shares. For any set of t1 intermediate variables
and any subset |O| 6 t2 of output shares such that t1 + t2 < n, there exists a
subset I of indices with |I| 6 t1, such that those t1 intermediate variables as well
as the output shares y|O can be perfectly simulated from x|I .

9

As explained in [BBD+15a], since the SecExp254 operation has the t-SNI
property, it can be used to secure a full AES against t probes with n > t + 1
shares.

4 Secure Computation of 2 Parallel Multiplications with
Common Operand, and Application to AES

In this section we show a first efficiency improvement of the Rivain-Prouff coun-
termeasure for AES recalled in the previous section. Namely, we show that when
two finite-field multiplications d← c · a and e← c · b have the same operand c,
we can save n2/2 field multiplications in SecMult by making sure that the inputs
a and b have half of their shares in common; we then show how to apply this
technique to the evaluation of the AES SBox, by using an alternative evaluation
circuit for x254.

Arithmetic Circuit with Depth 3 for x254. The original arithmetic circuit
for computing y = x254 over F28 from [RP10] and recalled in Section 3.3 has 4
multiplicative levels, with a total of 4 non-linear multiplications. Below we use
an alternative circuit with only 3 multiplicative levels, still with 4 multiplica-
tions, as described in [GHS12]; see Fig. 1 for an illustration.
• Level 1: compute x3 = x · x2 (1 mult) and then x12 = (x3)4.
• Level 2: compute x14 = x12 · x2 (1 mult) and x15 = x12 · x3 (1 mult), and

then x240 = (x15)16.
• Level 3: compute x254 = x240 · x14 (1 mult).

Multiplications with Common Shares. In the arithmetic circuit above, the
multiplications x14 ← x12 · x2 and x15 ← x12 · x3 can be computed in parallel;
moreover they have one operand x12 in common. More generally, assume that
we must compute two multiplications with a common operand c:

d← c · a
e← c · b

The SecMult algorithm will compute the cross-products ci · aj and ci · bj for all
1 6 i, j 6 n. Now assume that half of the shares of a and b are the same, that is
aj = bj for all 1 6 j 6 n/2. In that case the products ci ·aj for 1 6 j 6 n/2 have
to be computed only once, and therefore when processing e← c · b, we only have
to compute n2/2 multiplications instead of n2; see Fig. 2 for an illustration. For
an arithmetic circuit with 4 multiplications as above, this saves the equivalent
of 0.5 multiplication.

4.1 The CommonShares Algorithm

The CommonShares algorithm below ensures that the output shares a′i and b′i
corresponding to a and b are the same on the first half, that is a′i = b′i for all
1 6 i 6 n/2. In the rest of the paper, for simplicity we assume that n is even.

10

Algorithm 4 CommonShares

Require: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Ensure: shares a′

i and b′i satisfying
⊕n

i=1 a
′
i = a and

⊕n
i=1 b

′
i = b, with a′

i = b′i for all
1 6 i 6 n/2

1: for i = 1 to n/2 do
2: ri ←$ F2k

3: a′
i ← ri, a′

n/2+i ← (an/2+i ⊕ ri)⊕ ai . a′
i ⊕ a′

n/2+i = ai ⊕ an/2+i

4: b′i ← ri, b′n/2+i ← (bn/2+i ⊕ ri)⊕ bi . b′i ⊕ b′n/2+i = bi ⊕ bn/2+i

5: end for
6: return (a′

i)16i6n and (b′i)16i6n

It is easy to see that we still get as output an n-sharing of the same variables
a and b, since for each 1 6 i 6 n/2 we have a′i ⊕ a′n/2+i = ai ⊕ an/2+i, and

similarly for b. As explained previously, we cannot have more than n/2 shares
in common between a and b, since otherwise there would be a straightforward
attack with fewer than n probes: namely if ai = bi for all 1 6 i 6 k, then we can
probe the 2(n− k) remaining shares ai and bi for k + 1 6 i 6 n; if k > n/2 this
gives strictly less than n shares, whose xor gives the secret variable a⊕ b. Hence
having half of the shares in common is optimal.

The following Lemma shows the security of the CommonShares algorithm; as
will be shown later, for this algorithm we only need the weaker t-NI security
property (instead of t-SNI).

Lemma 4 (t-NI of CommonShares). Let (ai)16i6n and (bi)16i6n be the input
shares of the algorithm CommonShares, and let (a′i)16i6n and (b′i)16i6n be the
output shares. For any set of t1 intermediate variables and any subsets of indices
I, J ⊂ [1, n], there exists a subset S ⊂ [1, n] with |S | 6 |I| + |J | + t1, such
that those t1 variables as well as the output shares a′|I and b′|J can be perfectly
simulated from a|S and b|S .

Proof. The proof intuition is as follows. If for a given i with 1 6 i 6 n/2 the
adversary requests only one of the variables ri, an/2+i⊕ri, bn/2+i⊕ri, a′n/2+i or

b′n/2+i, then such variable can be perfectly simulated without knowing any of the
input shares ai, bi, an/2+i and bn/2+i, thanks to the mask ri. On the other hand,
if two such variables (or more) are requested, then we can provide a perfect
simulation from the 4 previous input shares, whose knowledge is obtained by
adding the two indices i and n/2 + i in S . Therefore we never add more than
one index in S per probe (or per output index in I or J), which implies that
the size of the subset S of input shares is upper-bounded by |I| + |J | + t1, as
required.3

More precisely, we describe hereafter the construction of the set S ⊂ [1, n]
of input shares, initially empty. For every probed input variable ai and bi (for

3 Note that the proof would not work without the masks ri; namely with ri = 0 we
would need to know both ai and an/2+i to simulate a′

n/2+i; hence with t probes we
would need at least n > 2t + 1 shares, which would make CommonShares useless.

11

any i), we add i to S . For all 1 6 i 6 n/2, we let ti be the number of probed
variables among an/2+i ⊕ ri and bn/2+i ⊕ ri. We let:

λi := ti + |{i, n/2 + i} ∩ I| + |{i, n/2 + i} ∩ J | ,

We then add {i, n/2 + i} to S if λi > 2. This terminates the construction of S .
By construction of S , we must have |S | 6 |I|+ |J |+ t as required.

We now show that the output shares a′|I and b′|J and the t1 intermediate
variables of Algorithm CommonShares can be perfectly simulated from a|S and
b|S . This is clear for the probed input variables ai and bi. For all 1 6 i 6 n/2,
we distinguish two cases. If λi > 2, then {i, n/2 + i} ∈ S , so we can let ri ← F2k

as in the real algorithm and simulate all output and intermediate variables from
the knowledge of ai, an/2+i, bi and bn/2+i. If λi = 1, then if ti = 0, then only
a single output variable among a′i, b

′
i, a

′
n/2+i and b′n/2+i must be simulated.

Since each of those variables is masked by ri, we can simulate this single output
variable by generating a random value in F2k . Similarly, if ti = 1, then only one
of the two intermediate variables among an/2+i ⊕ ri and bn/2+i ⊕ ri is probed
(while no output variable must be simulated), and therefore we can also simulate
such variable by generating a random value in F2k . This terminates the proof of
Lemma 4. ut

4.2 The CommonMult Algorithm

To perform the two multiplications with the same operand d← c ·a and e← c ·b,
instead of doing two independent SecMult, we define the following CommonMult
algorithm below.

Algorithm 5 CommonMult

Input: shares satisfying c =
⊕n

i=1 ci, a =
⊕n

i=1 ai and b =
⊕n

i=1 bi.
Output: di such that

⊕n
i=1 di = c · a, and ei such that

⊕n
i=1 ei = c · b

1: (a′
i)16i6n, (b

′
i)16i6n ← CommonShares((ai)16i6n, (bi)16i6n)

2: (di)16i6n ← SecMult((ci)16i6n, (a
′
i)16i6n)

3: (ei)16i6n ← SecMult((ci)16i6n, (b
′
i)16i6n)

4: return (di)16i6n and (ei)16i6n.

The algorithm first calls the previous CommonShares subroutine, to ensure
that half of the shares of a and b are the same. It then applies the previous
SecMult algorithm twice to securely compute the two multiplications. Then the
multiplications ci · aj for 1 6 j 6 n/2 performed in the first SecMult can be re-
used in the second SecMult, so this saves n2/2 multiplications. More precisely,
for the SecMult computation performed at Line 3, we don’t have to compute
again the products ci · b′j for 1 6 j 6 n/2, since those products have already
been computed at Line 2 with ci · a′j , since a′j = b′j for all 1 6 j 6 n/2. However
reusing at Line 3 the products already computed at Line 2 requires to store

12

O(n2) values. In the full version of this paper [CGPZ16] we describe a different
version of the CommonMult algorithm above, where the matrix elements ci · aj
are computed on the fly and then used in both SecMult, with memory complexity
O(n) instead of O(n2).

The following Lemma shows that the CommonMult algorithm is t-SNI secure
in the ISW model, with n > t+1 shares. We provide the proof in the full version
of this paper [CGPZ16].

Lemma 5 (t-SNI of CommonMult). Let (ai)16i6n, (bi)16i6n and (ci)16i6n be
the input shares of the CommonMult operation, and let (di)16i6n and (ei)16i6n

be the output shares. For any set of t1 intermediate variables and any subsets
|O1| 6 t2 and |O2| 6 t2 of output shares such that t1 + t2 < n, there exist
two subsets I and J of indices such that |I| 6 t1 and |J | 6 t1, and those t1
intermediate variables as well as the output shares d|O1

and e|O2
can be perfectly

simulated from a|J , b|J and c|I .

4.3 Application to AES SBoxes

We are now ready to describe the full computation of y = x254 based on the
CommonShares algorithm; the algorithm SecExp254’ is described below; it is a
variant of Algorithm 3.

Algorithm 6 SecExp254’

Input: shares x1, . . . , xn satisfying x =
⊕n

i=1 xi

Output: shares y1, . . . , yn such that
⊕n

i=1 yi = x254

1: For i = 1 to n do zi ← x2
i .

⊕
i zi = x2

2: (xi)16i6n ← RefreshMask((xi)16i6n)
3: (yi)16i6n ← SecMult((zi)16i6n, (xi)16i6n) .

⊕
i yi = x3

4: For i = 1 to n do wi ← y4
i .

⊕
i wi = x12

5: (wi)16i6n ← RefreshMask((wi)16i6n)
6: (zi)16i6n, (yi)16i6n ← CommonMult((wi)16i6n, (zi)16i6n, (yi)16i6n) .⊕

i zi = x14,
⊕

i yi = x15

7: For i = 1 to n do yi ← y16
i .

⊕
i yi = x240

8: (yi)16i6n ← SecMult((yi)16i6n, (zi)16i6n) .
⊕

i yi = x254

9: return y1, . . . , yn

The following Lemma proves the t-SNI security of our new algorithm; there-
fore our new algorithm achieves exactly the same security level as Algorithm 3.
That is, it can be used in the computation of a full block-cipher, with n > t+ 1
shares against t probes. We provide the proof in the full version of this pa-
per [CGPZ16].

Lemma 6 (t-SNI of x254). Let (xi)16i6n be the input shares of the x254 op-
eration, and let (yi)16i6n be the output shares. For any set of t1 intermediate
variables and any subset |O| 6 t2 of output shares such that t1 + t2 < n, there

13

exists a subset I of indices with |I| 6 t1, such that those t1 intermediate variables
as well as the output shares y|O can be perfectly simulated from x|I .

Finally, we summarize in Table 2 the complexities of the above algorithms.
Table 2 shows that our new algorithm for x254 saves n2/2 multiplications, with
the same security level as in the original algorithm.

add # mult # rand

SecMult (Alg. 1) 2n2 n2 n2/2

RefreshMask (Alg. 2) n2 - n2/2

SecMult × 2 4n2 2n2 n2

CommonMult (Alg. 5) 4n2 3n2/2 n2

SecExp254 (Alg. 3) 10n2 4n2 3n2

SecExp254’ (Alg. 6) 10n2 7n2/2 3n2

Table 2. Complexity of CommonMult and SecExp254’; for simplicity we omit the O(n)
terms.

5 Parallel Multiplications with Common Shares

In the previous section, we have shown that by using a different arithmetic circuit
for x254, two multiplications in F28 could be processed in parallel, moreover with
a common operand, and then by using half common shares we could save the
equivalent of 1/2 multiplication out of 4 in the evaluation of an AES SBox.

In the full version of this paper [CGPZ16], we consider the case of parallel
multiplications that do not necessarily share an operand. Previously we have
focused on a single evaluation of an AES SBox, but in AES the 16 SBoxes can
actually be processed in parallel, and therefore each of the 4 multiplications in
x254 can be processed in parallel. As opposed to the previous case those multi-
plications do not share any operand, but we show that by using a generalization
of the CommonShares algorithm between m operands instead of 2, for every
multiplication one can still save the equivalent of roughly 1/4 multiplication.

6 Parallel Computation of Quadratic Functions

In [CPRR15], the authors propose a generalization of an idea originally published
in [CPRR13] to securely process any function h of algebraic degree4 2, with

4 The algebraic degree of a function h is the integer value maxai 6=0(HW(i)) where
the ai’s are the coefficients of the polynomial representation of h and where HW(i)
denotes the Hamming weight of i.

14

application to the secure evaluation of SBoxes. The algorithm is based on the
following equation:

h

(
n∑

i=1

xi

)
=

∑
16i<j6n

(
h(xi + xj + sij) + h(xi + sij) + h(xj + sij) + h(sij)

)
+

n∑
i=1

h(xi) + ((n+ 1) mod 2) · h(0) (2)

which holds for any sij ∈ F2k . From the above equation, any function h of
algebraic degree 2 can be securely processed with n-th order security.

In the full version of this paper [CGPZ16], we recall the algorithm from
[CPRR15] for the secure evaluation of the quadratic function h(x), and its ap-
plication to AES. We then show how to use our common shares technique for
we provide for m parallel evaluations of h(x).

7 Implementation

We have done a practical implementation of our algorithms for the AES SBox.
More precisely we have implemented the n-shared evaluation of x254 in four
different ways:

• RP10: using the Rivain-Prouff algorithm, as described in Alg. 3;

• CM: using our common shares technique, as described in Alg. 6;

• GPS14: using quadratic functions, as described in the full version of this
paper [CGPZ16];

• GPS14CS: using quadratic functions and common shares, as explained in
the full version of this paper [CGPZ16];

8 shares 16 shares
RP10 CM GPS14 GPS14CS RP10 CM GPS14 GPS14CS

ATmega 20360 18244 11076 12447 70966 57644 39554 40086
ARM 20333 18156 13796 13156 77264 65556 54133 50560

32 shares Ratio for 8,16 and 32 shares
RP10 CM GPS14 GPS14CS CM/RP10 GPS14CS/GPS14

ATmega 268.103 209.103 152.103 147.103 0.9, 0.81, 0.78 1.1, 1, 0.97
ARM 303.103 251.103 215.103 200.103 0.89, 0.85, 0.83 0.95, 0.93, 0.93

Table 3. Performances comparison of the RP10, CM, GPS14 and GPS14CS algo-
rithms, on the ATmega and ARM platforms.

For portability, the code is written in C, except the field multiplication in F28

which is written in assembly for ATmega1284P (8-bit AVR microcontroller) and

15

for ARM Cortex M0 (32-bit CPU). Performance is evaluated using simulators
(AVR Studio for ATmega, Keil uVision for ARM). We assume that the random
generation of one byte takes 1 cycle. This assumption is reasonable: there are at
least several dozens of cycles between two 1-byte random number requests; on
chips embedding hardware RNG, this is often enough to get a random value by
a single memory access, without waiting. We give the average number of cycles
to compute one AES SBox among 16 SBoxes in Table 3.

Those implementation results show that our common shares technique is
relatively practical: for a large number of shares, we get roughly a 20% speed
improvement compared to the Rivain-Prouff countermeasure (but only roughly
5% compared to the quadratic evaluation technique in [GPS14]).

Acknowledgments. We wish to thank Sonia Beläıd who applied the EasyCrypt
verification tool [BBD+15b] on our AES SBox algorithm with common shares,
at order n = 6.

References

[BBD+15a] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, and
Benjamin Grégoire. Compositional verification of higher-order masking:
Application to a verifying masking compiler. Cryptology ePrint Archive,
Report 2015/506, 2015. http://eprint.iacr.org/.

[BBD+15b] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order
masking. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages
457–485, 2015.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vin-
cent Rijmen. Higher-order threshold implementations. In Palash Sarkar
and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 -
20th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-
11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer
Science, pages 326–343. Springer, 2014.

[Bla79] G.R. Blakely. Safeguarding cryptographic keys. In National Comp. Conf.,
volume 48, pages 313–317, New York, June 1979. AFIPS Press.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and
Matthieu Rivain. Higher-order masking schemes for s-boxes. In Anne
Canteaut, editor, FSE, volume 7549 of Lecture Notes in Computer Science,
pages 366–384. Springer, 2012.

[CGPZ16] Jean-Sebastien Coron, Aurelien Greuet, Emmanuel Prouff, and Rina
Zeitoun. Faster evaluation of sboxes via common shares. Cryptology ePrint
Archive, Report 2016/572, 2016. http://eprint.iacr.org/. Full version
of this paper.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In
CRYPTO, 1999.

16

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Copen-
hagen, Denmark, May 11-15, 2014. Proceedings, pages 441–458, 2014.

[CPRR13] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In Shiho
Moriai, editor, Fast Software Encryption - 20th International Workshop,
FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers, volume
8424 of Lecture Notes in Computer Science, pages 410–424. Springer, 2013.

[CPRR15] Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Algebraic decomposition for probing security. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 742–763. Springer, 2015.

[CRV14] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. Fast evaluation of
polynomials over binary finite fields and application to side-channel coun-
termeasures. In Cryptographic Hardware and Embedded Systems - CHES
2014 - 16th International Workshop, Busan, South Korea, September 23-
26, 2014. Proceedings, pages 170–187, 2014.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leak-
age models: From probing attacks to noisy leakage. In Advances in Cryptol-
ogy - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Den-
mark, May 11-15, 2014. Proceedings, pages 423–440, 2014.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the AES circuit. In Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, pages 850–867, 2012.

[GPS14] Vincent Grosso, Emmanuel Prouff, and François-Xavier Standaert. Effi-
cient masked s-boxes processing - A step forward -. In David Pointcheval
and Damien Vergnaud, editors, Progress in Cryptology - AFRICACRYPT
2014 - 7th International Conference on Cryptology in Africa, Marrakesh,
Morocco, May 28-30, 2014. Proceedings, volume 8469 of Lecture Notes in
Computer Science, pages 251–266. Springer, 2014.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, pages 463–481, 2003.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M.J.
Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666 of
LNCS, pages 388–397. SV, 1999.

[MS06] Stefan Mangard and Kai Schramm. Pinpointing the side-channel leakage
of masked AES hardware implementations. In Louis Goubin and Mitsuru
Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES
2006, 8th International Workshop, Yokohama, Japan, October 10-13, 2006,
Proceedings, volume 4249 of Lecture Notes in Computer Science, pages 76–
90. Springer, 2006.

17

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
implementation of nonlinear functions in the presence of glitches. J. Cryp-
tology, 24(2):292–321, 2011.

[PR11] Emmanuel Prouff and Thomas Roche. Higher-order glitches free imple-
mentation of the aes using secure multi-party computation protocols. In
CHES, pages 63–78, 2011.

[PR13] Emmanuel Prouff and Matthieu Rivain. Higher-Order Side Channel Secu-
rity and Mask Refreshing. In Thomas Johansson and Phong Q. Nguyen,
editors, Advances in Cryptology - EUROCRYPT 2013 - 32nd Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of
LNCS, pages 142–159. SV, 2013.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 764–783. Springer, 2015.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order
masking of AES. In Cryptographic Hardware and Embedded Systems, CHES
2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-
20, 2010. Proceedings, pages 413–427, 2010.

[RV13] Arnab Roy and Srinivas Vivek. Analysis and improvement of the generic
higher-order masking scheme of fse 2012. In Guido Bertoni and Jean-
Sébastien Coron, editors, CHES, volume 8086 of Lecture Notes in Computer
Science, pages 417–434. Springer, 2013.

[Sha79] Adi Shamir. How to Share a Secret. Communications of the ACM,
22(11):612–613, November 1979.

18

