
DPA, Bitslicing and Masking at 1 GHz

Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede

KU Leuven Dept. Electrical Engineering-ESAT/COSIC and iMinds
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{firstname.lastname}@esat.kuleuven.be

Abstract. We present DPA attacks on an ARM Cortex-A8 processor
running at 1 GHz. This high-end processor is typically found in portable
devices such as phones and tablets. In our case, the processor sits in a
single board computer and runs a full-fledged Linux operating system.
The targeted AES implementation is bitsliced and runs in constant time
and constant flow. We show that, despite the complex hardware and
software, high clock frequencies and practical measurement issues, the
implementation can be broken with DPA starting from a few thousand
measurements of the electromagnetic emanation of a decoupling capac-
itor near the processor. To harden the bitsliced implementation against
DPA attacks, we mask it using principles of hardware gate-level masking.
We evaluate the security of our masked implementation against first-
order and second-order attacks. Our experiments show that successful
attacks require roughly two orders of magnitude more measurements.

Keywords: Side-channel analysis, DPA, ARM Cortex-A8, bitslicing,
gate-level masking.

1 Introduction

Side-channel attacks allow to extract secrets, such as cryptographic keys or pass-
words, from embedded devices with relatively low effort. Kocher reported in his
seminal paper [23] extracting cryptographic keys from the observation of the
execution time taken by an implementation of Diffie-Hellman, RSA or DSS. A
common characteristic of side-channel attacks is that they target concrete imple-
mentations, and thus they are oblivious to the intrinsic mathematical security
of the algorithm. They can be readily applied to implementations of algorithms
that are resistant to traditional mathematical attacks.

Apart from timing, many other side-channels have been discussed in the
literature. Most notably, the instantaneous power consumption is a powerful
side-channel for embedded devices [24], and efficient exploitation mechanisms,
such as Differential Power Analysis (DPA), are known. DPA requires access to
the target device to collect a number of instantaneous power consumption traces
while the device is running the cryptographic implementation. The key can be
derived from the statistical analysis of the power consumption traces.

A popular variant of power analysis attacks are Electromagnetic Analysis
(EMA) attacks [17, 38]. EMA attacks measure the electromagnetic emanations



from the device and subsequently apply similar statistical techniques as DPA.
An advantage is that electromagnetic measurements do not require to estab-
lish electrical contact, thus EMA can be less invasive than conventional power
analysis.

Side-channel attacks on small embedded devices, such as microcontrollers
and cryptographic co-processors, are nowadays a well-understood threat and
a fruitful field of academic research. However, there are only a few studies of
side-channel attacks on more powerful general-purpose systems. This is highly
relevant to the gradual paradigm shift towards moving the cryptographic op-
eration to the main processor, as proposed in mobile payments and host card
emulation.

In this paper we investigate the DPA susceptibility of block-cipher imple-
mentations on high-end embedded devices. As an illustrative test case, we focus
on the Advanced Encryption Standard [2] (AES) and an ARM Cortex-A8 pro-
cessor. This processor core is found in portable consumer electronic devices, such
as phones (Apple iPhone4, Samsung Galaxy S, Google Nexus S), tablets, set-
top boxes, multimedia entertainment systems (Apple TV, Apple iPod Touch 4th
gen), home networking or storage appliances and printers.

The Cortex-A8 is a powerful and complex processor that features significant
differences with typical targets of side-channel attacks. It is a 32-bit processor
with a 13-stage pipeline, dynamic branch prediction, L1 and L2 cache memo-
ries, a rich ARMv7 instruction set and a separate SIMD execution pipeline and
register file (NEON). It can run at up to 1 GHz clock frequency. At the soft-
ware level, there is normally a full multi-tasking operating system with shared
resources, different competing processes and interrupts. It is not clear if DPA
can be successfully applied to such target devices. One goal of our work is to fill
this gap.

1.1 Related work

AES on high-end embedded devices. An efficient option for AES software
implementations on high-end processors is the T-table approach due to Daemen
and Rijmen [14]. Its core idea is to merge three of the four AES transformations
(SubBytes, ShiftRows and MixColumns) into four lookup tables. At the cost of
storing 4 kbytes, this method allows to compute an AES-128 encryption using
only 160 table lookups and 44 XOR operations. Since the four lookup tables
are rotations of each other, it is possible to reduce the memory requirements to
1 kbyte by storing a single table. For architectures with inline barrel shifter such
as ARM, this characteristic can be used without performance loss [33].

While efficient, implementations based on lookup tables are a target for side-
channel attacks on processors with cache memories. Exploiting cache-related
timing variabilities was already mentioned by Kocher [23], and further elaborated
on by Kelsey et al. [21] and Page [36]. In recent years, several practical attacks
against the T-table AES implementation of OpenSSL have been published, see
for instance the works of Bernstein [6], Bonneau and Mironov [9] and Osvik et



al. [34]. The root of the problem stems from the difficulty to load array entries
into the CPU registers without this depending on the index pointer. As suggested
by Bernstein et al. [7], a secure library should systematically avoid loads from
addresses that depend on secret data. While one could always resort to computing
the AES S-Box to achieve constant execution time, the performance penalties of
straightforward implementations would be considerable.

It is in this context that bitsliced implementations rise as an attractive al-
ternative for AES in software. Originally proposed by Biham [8] to improve the
performance of DES in software, the idea behind bitslicing consists in describing
a cryptographic algorithm as a sequence of Boolean operations which can be
implemented with only bitwise instructions. Since there are no table lookups,
bitsliced implementations are inherently resilient to cache timing attacks. The
first bitsliced software implementation of the AES for x64 processors is due to
Matsui [27]. An alternative implementation for 64-bit platforms is presented by
Könighofer [25]. The advent of Single Instruction Multiple Data (SIMD) exten-
sions on Intel Core2 processors has enabled a more efficient usage of the 128-bit
XMM registers. Matsui and Nakajima [28] were first to take advantage of this and
proposed a high-speed bitsliced implementation of the AES at 9.2 cycles/byte,
albeit conditioned to input data blocks of 2 kbytes. More recently, Käsper and
Schwabe [20] proposed the fastest implementations of AES-CTR and AES-GCM
up to date, running at 7.59 cycles/byte and 10.68 cycles/byte, respectively.

Side-channel attacks on high-end embedded devices. With the notable
exception of cache timing attacks, the susceptibility of high-end embedded pro-
cessors to side-channel attacks has received only little attention in the literature,
particularly when compared to the attention that has been given to less complex
platforms. Gebotys et al. [18] showed how to attack Java implementations of AES
and ECC running on a PDA equipped with a “mid-range” 32-bit ARM7TDMI
at 40 MHz. The authors performed a differential EMA attack in the frequency
domain in order to deal with the issue of trace misalignment. A follow-up work
by Aboulkassimi et al. [3] similarly used differential EMA to attack AES im-
plementations. The target device was a mobile phone with a 32-bit processor
running at 370 MHz. Kenworthy and Rohatgi [22] applied Simple Power Analy-
sis (SPA) and leakage detection techniques to show the susceptibility of several
implementations to EMA. Although no processor frequency is specified, the ac-
quisition bandwidth of the setup used was limited to 60 MHz. Finally, Nakano
et al. [31] performed SPA attacks on ECC and RSA implementations running
on an Android Smartphone clocked at 832 MHz.

Masking countermeasures. A popular and well-studied countermeasure to
thwart power analysis attacks is masking [12, 19]. Contrary to other approaches,
masking is a provable sound countermeasure and widely employed in practice. In
its simplest form, masking consists of splitting every key-dependent intermediate
s that appears throughout the computation into two shares (s1, s2) such that
s1 ? s2 = s. The group operation ? is typically XOR. The splitting is such that
each share si is statistically independent of the intermediate s. This condition
should be preserved throughout the entire masked computation, and implies



that knowledge of any individual si does not reveal any information about the
intermediate s, and thus about the key.

Masking can be applied at different abstraction levels: from the algorithmic
level (public key cryptography algorithms [13, 30] as well as symmetric key al-
gorithms such as DES [19] or AES [4]) to the gate level [42]. Algorithm-level
masking can result in more compact implementations. However, this masking
method is not a general approach as it is tied to a specific algorithm. On the
other hand, gate-level masking performs the splitting at the bit level and pro-
vides the implementer with a set of secure logic gates to compute on. It it thus
a versatile method to securely implement any given circuit.

1.2 Contributions

Our first contribution is to investigate the feasibility of DPA attacks on mod-
ern gigahertz embedded processors. Our experimental platform is a Sitara ARM
Cortex-A8 32-bit RISC processor mounted on a Beaglebone Black (BBB) plat-
form and running a complete Ångström Linux distribution. Our test application
is a bitsliced implementation of AES-128 encryption immune to cache timing
attacks. Our experiments show that the most difficult part of an attack is of
practical nature (measurement point, triggering, alignment) and that basic DPA
attacks succeed with a few thousand measurements. For the sake of reproducibil-
ity, we describe all steps carried out in our analysis in detail.

Our second contribution is to apply gate-level hardware masking to protect
our implementation. We show that it is not difficult to equip an unprotected
bitsliced implementation with masking. In addition we fully implement a masked
AES on the same platform and test its resistance to first-order and second-
order attacks. Our experiments show that breaking our masked implementation
requires roughly two orders of magnitude more measurements than breaking the
unprotected implementation.

2 A bitsliced AES implementation

Our test application is a bitsliced implementation of the AES based on the con-
struction of Könighofer [25]. We adapted it for our 32-bit processor. Note that
this is a poor decision if one aims for performance, i.e. bitsliced implementations
pay off in software contexts only if the target processor contains large (and pos-
sibly many) registers. Nevertheless, our aim is neither to propose nor to achieve
high-throughput implementations, but rather analyze bitsliced implementations
from the DPA-security standpoint. In fact, and as will become clear later, our
insights also apply for larger wordsize architectures such as e.g. NEON.

Hardware description of AES. In the following we focus on AES-128 en-
cryption. The first step towards a bitsliced description consists in describing all
cipher transformations (AddRoundKey, SubBytes, ShiftRows and MixColumns)
as a fixed sequence of Boolean operations. The goal is to employ only bitwise
operations i.e. an equivalent gate representation in hardware contexts. The main



difficulty of this process consists in finding an efficient way to compute the non-
linear part of the AES S-Box.

There exist many hardware flavours of AES depending on whether they aim
for throughput, area, low-power, etc. For bitsliced contexts, we are interested
in compact implementations. Most successful designs in this direction compute
the inverse in GF (28) using subfield arithmetic, as originally suggested by Rij-
men [39]. This is the case of the works due to Rudra et al. [40], Wolkerstorfer
et al. [44] and Satoh et al. [41], the latter building also on the tower-field repre-
sentation of Paar [35]. As in [25], we employ the AES S-Box representation by
Canright [11] illustrated in Figure 1.

lin.
map

GF(24) sq.sc.

GF(24) inverter

inv.
lin.
map

8-bit
4-bit
1-bit

l1
GF(24) 
multiplier

l1 l2

l2

l1
l3

l1
GF(24) 
multiplier

l1

GF(24) 
multiplier

Fig. 1. AES S-Box representation due to Canright [11].

Bitsliced format. In the standard AES representation a 128-bit input message
block A is described as a 4× 4 byte matrix. This is illustrated in the upper left
hand side of Figure 2. Each byte is addressed as Ai. The cipher transformations
are commonly defined at byte level in order to operate on the matrix represen-
tation of the state, e.g. either at element level (AddRoundKey and SubBytes), at
row level (ShiftRows) or at column level (MixColumns). This representation is
however inadequate for bitsliced implementations, as all steps are defined at bit
level. Therefore, one needs to find a different representation of the cipher state.
The most straightforward option consists in arranging the state as a vector of
128 elements, each corresponding to a bit. This choice is however unsuitable in
practice, as the state cannot be fully kept in registers and memory accesses easily
become a major bottleneck.

An alternative bitsliced representation uses a more compact state of 8 ele-
ments [20, 25, 27], each containing a particular bit of the 16 state bytes Ai. Let us
denote the bitsliced state elements by Ri. Going to the bitsliced domain requires
to split the bytes Ai and store the bits, from LSB to MSB, to the corresponding
registers, R1 to R8. Note that one input message block A fills only 16 bits in
each Ri. Therefore several input messages can be processed in parallel, e.g. by
storing bits from several input message blocks into each register. This is illus-
trated in Figure 2 for the case of 32-bit registers. In this case, a second plaintext
B is processed concurrently with A.



... 

... 

... 

... 
... 

... 

Normal Byte Ordering Bitsliced Ordering

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15

A4 A8 A12 A16

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

B4 B8 B12 B16

a1
1 b11 a5

1 b51 a9
1 b91 a13

1 b131 a12
1 b121 a16

1 b161

a1
8 b18 a5

8 b58 a9
8 b98 a13

8 b138 a12
8 b128 a16

8 b168

R1

R8

32 bits

Ai = [ai
8, a

i
7, a

i
6, a

i
5, a

i
4, a

i
3, a

i
2, a

i
1]

Bi = [bi8, b
i
7, b

i
6, b

i
5, b

i
4, b

i
3, b

i
2, b

i
1]

Fig. 2. Layout of bitsliced AES registers.

Coding style. We have coded our bitsliced AES implementation in C language
and mimicked the concept of hardware gates by using software macros for all
atomic operations. This approach allows us to write our program as a fixed
sequence of calls to five main macros: bitwise operations (XOR, AND and NOT),
data transfers (MOV) and left rotates (ROTL):

#define XOR(c,a,b) c = a ˆ b;
#define AND(c,a,b) c = a & b;
#define NOT(c,a) c = ˜ a;
#define MOV(c,a) c = a;
#define ROTL(c,a,l) c = (a � l) | (a � (32 - l));

The main benefit of this approach is that protecting the implementation
with gate-level masking requires only rewriting the macros. This point will be
elaborated on in Section 4.

3 Developing an attack

The BBB is a complex single board computer. The main component is a high-
performance TI AM3358 Sitara System on Chip (SoC) based on the ARM
Cortex-A8 core. To give an idea of the complexity, we point out that the main
processor can be clocked up to 1 GHz and that the SoC features a DDR3 memory
controller, a 3D graphics engine, a vast array of peripheral support (incl. USB,
ethernet) and two 32-bit sub-processors (technically, programmable real-time
units) for time-critical tasks, among others.



3.1 Strategies for side-channel measurements

From all the components of the single board computer, we are mostly interested
in the side-channel leakage of the ARM processor. An obvious way to access
it would be to measure the SoC’s power consumption. However, performing a
power measurement on a BGA package is not straightforward, as the pins are
covered by the package and not easily accessible.

A second strategy might be to measure the power consumption of the entire
single board computer. At least, doing the actual measurement should not be
difficult as the entire board is powered by a single 5 V supply (via USB or a
dedicated connector, e.g. if more than 500 mA is needed). But we expect the
global power consumption to be very noisy (many active components on the
board). Furthermore, there is a dedicated power management IC and numerous
decoupling capacitors between the power supply and the SoC. The high operating
frequencies of the processor require capacitor banks that can deal with low,
medium and high frequencies.

The third approach is the one we actually followed. We opted for a “contact-
less power measurement”. To clarify, others have used the same technique and
called it “electromagnetic measurement”. We do use an electromagnetic pen
probe but we do not aim at measuring emanations from the ARM processor.
Rather, we measure the EM field around different components on the board
that are somehow involved in the current loop to the ARM core. In general,
voltage regulators and decoupling capacitors [15, 32] are promising candidates.
In our case, the dedicated power management IC is quite complex and physically
located far away from the ARM core. For these reasons, we do not think that it
would provide a useful signal. Therefore the decoupling capacitors are the best
candidates. In general, the closer the capacitor is to the processor, the better
signal it can provide. In summary, we use an electromagnetic probe to measure a
signal that is correlated with the chip’s power consumption. We therefore think
of the technique as a contact-less power measurement.

3.2 Experimental setup

Our experimental setup comprises:

– a stock BBB platform running a complete Linux Ångström distribution.
We did not modify the software or the hardware and operate the board
in its factory configuration. The Linux distribution is based on Debian 7
with kernel version 3.8.13-bone47 (root@imx6q-wandboard-2gb-0). This
is a preemptive multitasking operating system with plenty of simultaneously
running processes. We did not switch off any running service. The command
ps aux reports 102 processes running on the system. Among others, we
found running the Xorg graphical server (with the onboard HDMI driver
output activated), the apache2 webserver (including the nodejs server-side
javascript runtime environment, to our surprise) and the sshd server (with an
open session running throughout all experiments for monitoring purposes).



We power the board via the USB connection from the measurement PC. We
did not make any effort to supply the board with a particularly clean voltage.
The board is connected to the measurement PC via ethernet-over-USB. We
did not disable the blinking blue leds that indicate activity.

– A Langer magnetic near field probe, model RF-B. The reported frequency
bandwidth is from 30 MHz to 3 GHz [16].

– A wideband 30 dB low-noise amplifier from Langer, model PA 303. The
reported frequency bandwidth goes from DC to 3 GHz.

– A Tektronix DPO70404C 8-bit oscilloscope with an analog bandwidth of
4 GHz. Most of the time we sampled at 6 GS/s to make full use of our
setup’s bandwidth (Nyquist rate).

We use the Linux command cpufreq-set -f 1000 MHz to bring the system
into a high-performance state. In this state the board cannot enter low-power
mode and the processor core is permanently clocked at 1 GHz, which is well
within the bandwidth of our measurement setup. Figure 3 shows a photo of our
experimental setup (left) and a representation of our EM probe and the field
orientation it is able to register (right).

Fig. 3. Photo of our setup (left) and EM antenna schematic [16] (right).

3.3 Approach

Our first step is to find a suitable measurement position for the EM antenna.
The EM antenna tip is small enough (we measured a diameter of 2 mm) to allow
us to get in between components and to measure individual components’ EM
field without picking up too many signals from neighboring components. For the
purpose of locating an appropiate position for the EM antenna, we wrote a short
C program that exercises memory accesses and ran it on the BBB in a loop. The
program executes 1000 NOPs, then repeatedly fills a buffer in memory with the
value 0x00000000 and then with the value 0xffffffff 1000 times, followed by
again 1000 NOPs. We manually move the antenna over the PCB surface and
slowly from component to component. We carefully monitor the sampled signal



on the oscilloscope for a pattern that looks correlated to the execution of our
C code. We begin doing this by trial and error, and we focus on the capacitors
in the SoC’s power supply as explained above. Note that this is a tedious task
because we need to get not only the probe’s tip in the right location but we
also need to get the probe in the right orientation (see Fig. 3 right). As the
search was very time consuming we had a look at the BBB PCB schematics [1].
We identified a bank of capacitors in the SoC’s VDD core supply. They should
be good candidates for measurement points as their EM fields should contain
a lot of useful signal about the processor core’s activity. Next we locate these
decoupling capacitors on the PCB and manually scan them with the EM probe
one by one.

We did not find a useful signal around these capacitors (that does not mean
there is no useful signal) and reverted to trial and error testing of other de-
coupling capacitors in the SoC’s supply network. Eventually we found a good
signal near C66 (see Appendix A in the full version of this paper [5]), a 0.1 µF
multilayer ceramic capacitor in a 3.3 V supply rail. We used this probe position
and orientation for all measurements and did not further explore the board for
other useful signals.

Now that we found a suitable measurement point, the next step is to deal
with the timing and triggering. We run our bitsliced implementation of AES-
128 encryption from Section 2 on the BBB. We can send the inputs from the
measurement PC and read back the outputs as well. Recall that we keep an SSH
connection open between the measurement PC and the BBB for this purpose and
for monitoring. After some trial and error work we find a good pattern (related
to I/O) to trigger the oscilloscope on. Figure 4 shows the plot of an overview
measurement. Note that we need to substantially lower the sampling rate for
some of these long measurements. The execution of our C program causes the
dense pattern in the middle of the plot. The isolated peaks left and right of the
dense pattern are caused by other processes.

Fig. 4. Overview measurement of our unprotected AES.

Figure 5 shows the plot of a more focused measurement. We see patterns
caused by the reception of 34 bytes (two plaintext blocks of 16 bytes each and



two control words) followed by patterns caused by the AES encryption in the
middle of the figure. We do not know what causes the “block” pattern on the
figure’s right hand side.

Fig. 5. Overview measurement of our unprotected AES.

Figure 6 shows a zoom on the patterns caused by the AES operation. It is
tempting to let the human eye search for patterns of the ten AES rounds, but
in fact the AES makes only a small part of this measurement (as marked by the
dotted red rectangle in the figure). We are not sure what the other processing is.
We know that some of it is the conversion of plaintexts to the bitsliced format,
and from bitsliced format to ciphertexts.

Fig. 6. Measurement of our unprotected AES.

Figure 7 shows a plot of a measurement with the actual AES-128 encryption
in the middle of the plot. One would expect to see a sequence of nine very similar
patterns (the first nine AES rounds) followed by a different pattern (the tenth
round without MixColumns). However, in this figure we see a sequence of only
eight very similar patterns followed by a different pattern. It seems that our
measurement is missing one normal round. Our experiments confirm that what
we recognize corresponds to rounds two to ten. The execution of the first AES
round leads to a pattern that is more scattered over time, but it fills up the
instruction cache so that the next rounds are executed much faster which leads
to a more dense and clear pattern.



Fig. 7. One of the first measurements of our unprotected AES.

When we execute several encryptions in a batch, the second and all following
encryptions typically run from cache and show clear patterns also for the first
round that we can use for alignment. Figure 8 shows the single-sided amplitude
spectrum of a measurement. The spectrum shows a clear and sharp peak at
1 GHz.

Fig. 8. Single-sided amplitude spectrum of a measurement.

Even though we found a seemingly stable trigger, the measurements of the
AES encryption are actually heavily desynchronized. Recall that we are working
with a high-end ARM processor on a complex SoC and that our C program is
only one of more than 100 running processes (and we do not run it with ele-
vated priority!). Therefore, filtering out mis-triggered measurements and care-
fully aligning the remaining measurements is crucial. In fact, we spend about
seven times more time on the post-processing than on the measurement.

3.4 Attack

We aim to break our unprotected implementation with a first-order correlation
DPA attack [10] against the first round. The next step is to try to find a pattern
in the traces that is related to the (S-box computation in the) first round, and
to align all useful traces on that pattern. Finally we try to attack the implemen-
tation with 10 000 aligned measurements.



We need to think about a power model because the implementation is bit-
sliced. A typical byte-oriented implementation uses an S-box table in memory
and processes the AES state byte by byte. The key point here is that all 8 bits
of an S-box output are computed (or looked-up) at the same time. Hence one
can expect all bits of the S-box output to leak at the same time and this gives
rise to the commonly used “Hamming weight of the S-box output” power model.
This is different for our bitsliced implementation. The eight S-box output bits
are computed one after the other and stored in eight different registers. So if we
assume for a moment that the implementation processes one plaintext block at
a time, each of the eight registers holds 16 bits. For instance register R1 stores
the 16 LSBs of the 16 state bytes. With the usual divide and conquer approach
we aim to recover the key byte by byte. If we make a guess about one key byte
we can predict one S-box output but the eight bits are spread over eightregisters
that are not processed at the same time. For a normal univariate attack we can
therefore exploit only one bit effectively. The other 15 bits in the same register
are algorithmic noise. If we want to exploit more bits in the same register we
need to guess more key bytes, which quickly becomes computationally expensive.
Alternatively we can think to attack each of the eight bits of one S-box output
separately and then perform some majority voting, but we did not investigate
this approach.

Now in our implementation the situation is similar but it actually processes
two plaintext blocks in parallel. This means for instance that register R1 stores
32 LSBs, 16 of one plaintext and 16 of the other. As the key is fixed both plaintext
blocks get encrypted under the same key. Making a guess on one key byte we
can attack both encryptions at the same time and predict two bits in a register
(2 out of 32 instead of 1 out of 16 in the example above). Our power model is
hence the Hamming weight (HW) of two bits in a register that are affected by
the same sub-key. We stress that this observation has an important consequence:
processing more plaintext blocks in parallel does not make an attack harder
if the adversary is aware of the bitsliced implementation. In fact, the ratio of
predicted bits and processed bits, and hence the ratio of signal to algorithmic
noise, is constant.

Figure 9 shows an exemplary result of a 2-bit attack against one key byte.
The plot on the left hand side shows the correlation traces for all key hypotheses
obtained using 10 000 measurements. The trace for the correct key hypothesis
is plotted in black. The plot shows that the correct key hypothesis leads to
a distinguishable and clear correlation peak. The plot on the right hand side
shows the highest and lowest correlation value for each key hypothesis (from
the overall time frame) over the number of measurements. In addition we also
plot the 99.99% confidence interval for sample correlation equal to zero (dashed
lines). The plot shows that only few thousand measurements are required for the
correct key (black line) to stand out and hence for the attack to succeed.

Attacks targeting the same (other) key byte(s) using the leakage of other
(the same) register(s) give very similar results. Surprisingly full key recovery is
hence possible using only a few thousand measurements!



Fig. 9. Result of attack against unprotected implementation.

4 Masking a bitsliced AES implementation

Since a bitsliced software implementation mimics a hardware circuit, gate-level
masking appears as a very attractive candidate to protect our AES implemen-
tation. Applying gate-level masking to an already existing implementation can
actually be done in a pretty straightforward manner. It only requires to protect
the design’s elementary Boolean functionalities, while the original sequence of
operations remains unmodified. A direct consequence of this is that any optimiza-
tion performed in the unprotected implementation, e.g. to improve the design’s
throughput, is automatically inherited by the protected implementation.

Generally, linear functions such as the XOR gate, are trivial to mask by
just computing on each share independently. The challenging part of gate-level
masking is to provide a construction for non-linear gates. One of the first works
tackling this problem is due to Trichina [43]. Trichina gives a secure AND gate
that takes two shares of each input bit a, b and produces two output shares of
c = a · b. The secure AND gate consumes one fresh random bit r. If the input
bit a (resp. b) is shared into a1 and a2 (resp. b1 and b2), the two output shares
c1, c2 of the Trichina gate are defined as

c1 = r (1)

c2 = (((a1b1 ⊕ r)⊕ a1b2)⊕ a2b1)⊕ a2b2. (2)

It is easy to verify that this AND gate description is correct, namely, that
the output shares XOR to a · b. The description is also secure against first-
order attacks: each variable occurring during the execution is independent of any
unshared value a, b or c. Note however that the order of partial computations of
c2 is relevant for the security of the gate.

Masked bitsliced format. Applying first-order Boolean masking requires to
split any sensitive intermediate variable s into two shares such that s = s1 ⊕ s2.
For our implementation, this implies that each of the eight original state registers
Ri becomes a pair (R1

i ,R2
i ) such that Ri = R1

i ⊕ R2
i . We denote R1

i as mask
state and R2

i as masked state. The plaintext in bitsliced format is shared in this
way at the beginning of the execution.



Masked operations. Our original bitsliced implementation employs only five
operations which are described as macros. These are: XOR, AND, NOT, MOV and
ROTL. Our masked implementation substitutes each occurrence of these by its
secure equivalent: SXOR, SAND, SNOT, SMOV and SROTL, respectively. The secure
equivalents operate sequentially on the mask state R1

i and the masked state R2
i .

The implementations of SXOR, SMOV and SROTL are trivial, as they consist of
implementing the corresponding XOR, MOV or ROTL twice: one for R1

i and another
for R2

i . In a similar way, the secure SNOT is simply computed by applying NOT

to one of the shares. The implementation of SAND is more elaborate and follows
closely the lines of the Trichina gate. A circuit representation of the gate is shown
in the left part of Figure 10, while its macro representation is given in the right
part of Figure 10.

c1

a0

b0
a0

b1

a1

b1

a1

b0

r
c0 #define SAND(c, a, b){

t0 = a[0] & b[0];
t1 = a[0] & b[1];
c[0] = RAND();
t0 = t0 ˆ c[0];
t0 = t0 ˆ t1;
t1 = a[1] & b[0];
t0 = t0 ˆ t1;
t1 = a[1] & b[1];
t0 = t0 ˆ t1;
c[1] = t0;}

Fig. 10. Left: Trichina construction for the masked AND gate. Right: pseudocode for
the SAND operation following the Trichina AND construction.

In contrast to the original bitsliced macros, each variable in the macro is
now an array of 2 elements: mask state and masked state. Each of the two input
arrays (a, b) is thus composed of two registers (a[0],a[1]) and (b[0],b[1]),
respectively. Two temporal registers (t0 and t1) are additionally used to pre-
serve the correctness of the macro in case one of the source registers is also the
destination, e.g. to prevent errors when the macro is called as SAND(a,a,b). The
result is placed in the output array c composed of registers c[0] and c[1].

Randomness generation. The two operations that require randomness in the
masked bitsliced implementation are the initial plaintext sharing and each SAND

operation. We use the kernel’s /dev/urandom cryptographic RNG to obtain the
required randomness. We do not read a single byte each time a random byte
is needed, instead, we read a chunk of randomness and place it in an internal
buffer at the beginning of each encryption. Then, during the actual encryption
the randomness is simply taken from this internal buffer. We implemented this
mechanism to minimally interrupt the execution of the encryption and get clean
measurements.



We note that masking typically does not need cryptographically strong ran-
dom numbers for the masks. Although we used a cryptographically strong source
of randomness for the masks, a lighter RNG can be used if needed, e.g. for per-
formance reasons. When we later report that the RNG is switched off, we fill
the internal buffer from /dev/zero instead of from /dev/urandom.

Performance. We have compiled our implementations directly in the BBB us-
ing the compiler version available in the Ångström Linux distribution, i.e. gcc
version 4.6.3. No special flags have been used. The throughput loss of the pro-
tected implementation is roughly a factor 5 compared to the unprotected imple-
mentation. Further, the RAM usage increases by 32 bytes because of doubling
the register state size. Our internal buffer for storing random numbers holds
2048 bytes. The only macro in our implementation that consumes randomness
is SAND, which is used 37 times during the calculation of SubBytes. Taking
into account that 32 bytes are required to mask the input plaintexts, this gives
32 + 10× (37× 4) = 1512 random bytes per AES execution, or equivalently, 756
bytes per plaintext block.

5 Evaluation of masked implementation

In this section we evaluate the DPA resistance of our bitsliced and first-order
masked AES implementation.

5.1 Attack when RNG is off

We first attack the implementation with the RNG switched off. In this case the
implementation is effectively unprotected and we aim to break it with the same
first-order attack as before: we guess one key byte and use the HW of the two
affected bits in a register as power model. Since the code is different, the shape of
the measurements is different as well, and we need to work through trial and error
again to find a good pattern for trace alignment. And this is where the fact that
the implementation is effectively unprotected helps. We should be able to break
it easily, and we can use the attack result to judge and improve the discarding
of mis-triggered measurements and the alignment step until we are satisfied. As
a side note we also mention that we need to take longer measurements because
in particular the S-box computation takes more time.

Figure 11 shows the result of an exemplary attack against one key byte. The
plot on the left hand side shows that using 10 000 measurements the correct
key hypothesis leads to a clear correlation peak. The plot on the right hand
side confirms that, if the RNG is switched off, our masked implementation is
as insecure as the unprotected implementation and can be broken with a few
thousand measurements. Also in this case attacks targeting other key bytes and
using the leakage of other registers give similar results. Full key extraction with
a first-order attack is possible with a few thousand measurements.



Fig. 11. Result of attack against masked implementation with RNG off.

5.2 Attack when RNG is on

Now we switch on the RNG and evaluate how much protection our masked im-
plementation provides. Having performed the attacks with the RNG switched
off has two important advantages. First, we can keep all settings for trigger-
ing, for discarding mis-triggered measurements, and for alignment because the
executed code is exactly the same and the general shape of the measurements
does not change. And second, we know exactly when the S-box computations
are performed and we can therefore narrow down the time window to analyze
(including some margin).

It is well known that implementing masking securely in software is very diffi-
cult, and we do not expect our first attempt to mask a bitsliced implementation
to provide a high level of resistance to attacks. Nevertheless, to ensure that we
have enough measurements at hand to break our implementation we acquired
2 000 000 measurements. We stress that trace acquisition is rather quick, but in
contrast to most academic works we have to deal with the computationally in-
tensive and hence slow post-processing (discarding mis-triggered measurements
and alignment). After post-processing we are left with about 1.2 million aligned
measurements.

We applied the same 2-bit first-order DPA attack as before in various settings,
targeting different key bytes and registers. The results differ a lot depending on
the specific setting. To give an idea of the range, we provide two results in
Figure 12. They target different key bytes and registers but both plots on the
left hand side are computed using 1.2 million measurements. While in the upper
plots the attack clearly succeeds and requires about 600 000 measurements, the
attack in the lower plots fails even if using 1.2 million traces. Nevertheless, we
confirmed that, using alternative combinations of target key byte and register,
full key extraction with first-order DPA and using 1.2 million measurements is
possible.

Considering the well known difficulties with masking in software and the
surprisingly easy attacks against the unprotected implementation, we expected
attacks against our masked implementation to succeed with much less traces.
Our results are therefore promising and good news for the idea to combine
bitsliced software and gate-level masking. Recall that our implementations are



Fig. 12. Results of first-order attacks against masked implementation with RNG on.

coded in C, processed by a compiler and we have little control over the code that
is eventually executed. Also, we stress that this is our first attempt to mask the
implementation. The fact that the result of each individual Boolean operation
is registered in a bitsliced implementation probably helps. Glitches that are an
issue for masked hardware implementations [26] are no threat here.

We also performed a few exemplary univariate and bivariate second-order
attacks. Concretely, we processed the measurements to combine each pair of time
samples using the absolute difference combination function [29] or the centered
product combination function [37]. This combination step yields a combinatorial
blow-up in the number of time sample pairs to be analyzed jointly and makes
these attacks very computationally expensive.

We then applied the same 2-bit attack to the combined measurements. Fig-
ure 13 depicts the results of an exemplary attack using the absolute difference
combination function. The plot on the left hand side shows the maximum ab-
solute value of the correlation coefficient for each key byte hypothesis across all
pairs of time samples when using 1.2 million measurements. The correct value
(indicated by a dashed vertical line) clearly stands out. For the plot on the right
hand side we restrict the analysis to the single pair of time samples for which
the correct key guess gives maximal correlation. The plot shows that the attack
can be successful starting from around 400 000 measurements if the adversary
already knows which pair of time samples to analyze. In other words, a more re-
alistic attack will very likely require more measurements to succeed. An analysis
over all pairs of time samples is, however, computationally expensive.

Our results lead to two interesting observations. First, the second-order at-
tack only works when we use the absolute difference combination function. A



Fig. 13. Result of second-order attacks against masked implementation with RNG on.

similar attack using the centered product combination function is unsuccessful.
This is in contrast with theoretical results proving the optimality of the centered
product combination function for second-order attacks [37] in the “Hamming
weight leakage and Gaussian noise” model. We assume that our scenario does
not meet this model and that the absolute difference combination function has a
wider scope. And second, the number of measurements required for a successful
first-order attack is not substantially lower than the number of measurements
needed for our “idealized” second-order attack. This indicates that our masking
is effective (albeit its implementation is not perfect).

6 Conclusion

The threat of side-channel attacks to the security of microcontrollers and cryp-
tographic co-processors appears to be well understood by both industry and
academia. Yet the same cannot be said for high-end embedded processors as
used in phones and tablets. In this situation one may naturally wonder whether
such complex, high-performance devices operating in the GHz range and execut-
ing multitasking operating systems are at all vulnerable to DPA. In this work
we answer this question positively. By means of experiments we show that DPA
attacks against constant-time bitsliced implementations of the AES running on
a 1 GHz ARM Cortex-A8 processor are not only possible, but in fact rather easy
to mount. The most challenging parts of an attack are triggering and trace align-
ment. Finally, we mask our implementation inspired by gate-level masking and
evaluate its resistance against first-order and second-order DPA attacks. Our
results indicate that the implementation is more secure than we anticipated and
therefore highlight the potential of combining bitsliced software implementations
and gate-level masking.

Acknowledgements. We would like to thank the CHES 2015 reviewers for their

valuable feedback. This work has been supported in part by the Research Council of

KU Leuven (GOA/11/007), by the Flemish Government FWO G.0550.12N and by the

Hercules foundation (AKUL/11/19). Oscar Reparaz is funded by a PhD fellowship of

the Fund for Scientific Research - Flanders (FWO). Benedikt Gierlichs is a Postdoctoral

Fellow of the Fund for Scientific Research - Flanders (FWO).



References

1. BBB PCB schematics. http://elinux.org/Beagleboard:BeagleBoneBlack#

Board_Revisions_and_Changes.
2. Specification for the Advanced Encryption Standard (AES). Federal Information

Processing Standards (FIPS) Publication 197, 2001.
3. Driss Aboulkassimi, Michel Agoyan, Laurent Freund, Jacques J. A. Fournier, Bruno

Robisson, and Assia Tria. ElectroMagnetic analysis (EMA) of software AES on
Java mobile phones. In Information Forensics and Security - WIFS 2011, pages
1–6. IEEE, 2011.

4. Mehdi-Laurent Akkar and Christophe Giraud. An Implementation of DES and
AES, Secure against Some Attacks. In Çetin Kaya Koç, David Naccache, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2001, volume 2162 of LNCS, pages 309–318. Springer, 2001.

5. Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede. DPA,
Bitslicing and Masking at 1 GHz. Cryptology ePrint Archive, Report 2015/xyz,
2015. http://eprint.iacr.org/.

6. Daniel J. Bernstein. Cache-timing attacks on AES, 2005. http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf.
7. Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new

cryptographic library. In Alejandro Hevia and Gregory Neven, editors, Progress in
Cryptology - LATINCRYPT 2012, volume 7533 of LNCS, pages 159–176. Springer,
2012.

8. Eli Biham. A fast new DES implementation in software. In Eli Biham, editor, Fast
Software Encryption - FSE ’97, volume 1267 of LNCS, pages 260–272. Springer,
1997.

9. Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against AES. In
Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Embedded
Systems - CHES 2006, volume 4249 of LNCS, pages 201–215. Springer, 2006.

10. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic
Hardware and Embedded Systems - CHES 2004, volume 3156 of Lecture Notes in
Computer Science, pages 16–29. Springer, 2004.

11. David Canright. A Very Compact S-Box for AES. In Josyula R. Rao and Berk
Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES 2005, vol-
ume 3659 of LNCS, pages 441–455. Springer, 2005.

12. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, volume 1666 of LNCS, pages 398–
412. Springer, 1999.

13. Jean-Sébastien Coron. Resistance against Differential Power Analysis for Elliptic
Curve Cryptosystems. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES’99, volume 1717 of LNCS, pages 292–
302. Springer, 1999.

14. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

15. Abid Uveys Danis and Berna Ors. Differential power analysis attack considering
decoupling capacitance effect. In Circuit Theory and Design - ECCTD 2009, pages
359–362, 2009.

16. Langer EMV. Probe specification. http://www.langer-emv.com.



17. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic Anal-
ysis: Concrete Results. In Çetin Kaya Koç, David Naccache, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2001, volume
2162 of LNCS, pages 251–261. Springer, 2001.

18. Catherine H. Gebotys, Simon Ho, and C. C. Tiu. EM Analysis of Rijndael and
ECC on a Wireless Java-Based PDA. In Josyula R. Rao and Berk Sunar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2005, volume 3659 of
LNCS. Springer, 2005.

19. Louis Goubin and Jacques Patarin. DES and Differential Power Analysis (The ”Du-
plication” Method). In Cryptographic Hardware and Embedded Systems - CHES’99,
volume 1717 of LNCS, pages 158–172. Springer, 1999.

20. Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2009, volume 5747 of LNCS, pages 1–17. Springer, 2009.

21. John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side Channel Crypt-
analysis of Product Ciphers. Journal of Computer Security, 8(2/3):141–158, 2000.

22. Gary Kenworthy and Pankaj Rohatgi. Mobile Device Security: The case for
side-channel resistance, 2012. http://www.cryptography.com/technology/dpa/

dpa-research.html.
23. Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, volume 1109 of LNCS, pages 104–113. Springer, 1996.

24. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, volume 1666
of LNCS, pages 388–397. Springer, 1999.

25. Robert Könighofer. A fast and cache-timing resistant implementation of the AES.
In Tal Malkin, editor, Topics in Cryptology - CT-RSA 2008, volume 4964 of LNCS,
pages 187–202. Springer, 2008.

26. Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-Channel Leakage of
Masked CMOS Gates. In Alfred Menezes, editor, Topics in Cryptology - CT-RSA
2005, volume 3376 of LNCS, pages 351–365. Springer, 2005.

27. Mitsuru Matsui. How Far Can We Go on the x64 Processors? In Matthew J. B.
Robshaw, editor, Fast Software Encryption - FSE 2006, volume 4047 of LNCS,
pages 341–358. Springer, 2006.

28. Mitsuru Matsui and Junko Nakajima. On the Power of Bitslice Implementation
on Intel Core2 Processor. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems - CHES 2007, volume 4727 of
LNCS, pages 121–134. Springer, 2007.

29. Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA Re-
sistant Software. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2000, volume 1965 of LNCS, pages 238–
251. Springer, 2000.

30. Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Power Analysis
Attacks of Modular Exponentiation in Smartcards. In Çetin Kaya Koç and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES’99, volume
1717 of LNCS, pages 144–157. Springer, 1999.

31. Yuto Nakano, Youssef Souissi, Robert Nguyen, Laurent Sauvage, Jean-Luc Danger,
Sylvain Guilley, Shinsaku Kiyomoto, and Yutaka Miyake. A pre-processing com-
position for secret key recovery on android smartphone. In Information Security
Theory and Practice - WISTP 2014.



32. Colin O’Flynn and Zhizhang Chen. A Case Study of Side-Channel Analysis Using
Decoupling Capacitor Power Measurement with the OpenADC. In Joaqúın Garćıa-
Alfaro, Frédéric Cuppens, Nora Cuppens-Boulahia, Ali Miri, and Nadia Tawbi,
editors, Foundations and Practice of Security - FPS 2012, volume 7743 of LNCS,
pages 341–356. Springer, 2012.

33. Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canright. Fast soft-
ware AES encryption. In Seokhie Hong and Tetsu Iwata, editors, Fast Software
Encryption - FSE 2010), volume 6147 of LNCS, pages 75–93. Springer, 2010.

34. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: The case of AES. In David Pointcheval, editor, Topics in Cryptology -
CT-RSA 2006, volume 3860 of LNCS, pages 1–20. Springer, 2006.

35. Christof Paar. Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, University of Essen, 1994.

36. D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel.
Cryptology ePrint Archive, Report 2002/169, 2002. http://eprint.iacr.org/.

37. Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of second
order differential power analysis. IEEE Trans. Computers, 58(6):799–811, 2009.

38. Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards. In Isabelle Attali and Thomas P.
Jensen, editors, Research in Smart Cards - E-smart 2001, volume 2140 of LNCS,
pages 200–210. Springer, 2001.

39. Vincent Rijmen. Efficient implementation of the Rijndael S-box, 2001.
40. Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao,

and Pankaj Rohatgi.
41. Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A Compact

Rijndael Hardware Architecture with S-Box Optimization. In Colin Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, volume 2248 of LNCS, pages 239–
254. Springer, 2001.

42. Larry Puhl Thomas S. Messerges, Ezzat A. Dabbish. Method and apparatus for
preventing information leakage attacks on a microelectronic assembly, Septem-
ber 25 2001. US Patent 6,295,606.

43. Elena Trichina. Combinational Logic Design for AES SubByte Transformation
on Masked Data. Cryptology ePrint Archive, Report 2003/236, 2003. http://

eprint.iacr.org/.
44. Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. An ASIC Im-

plementation of the AES SBoxes. In Bart Preneel, editor, Topics in Cryptology -
CT-RSA 2002, volume 2271 of LNCS, pages 67–78. Springer, 2002.


