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Abstract. In this paper we demonstrate the first real-world cloning at-
tack on a commercial PUF-based RFID tag. The examined commercial
PUFs can be attacked by measuring only 4 protocol executions, which
takes less than 200 ms. Using a RFID smartcard emulator, it is then pos-
sible to impersonate, i.e., “clone” the PUF. While attacking the 4-way
PUF used by these tags can be done using traditional machine learning
attacks, we show that the tags can still be attacked if they are config-
ured as presumably secure XOR PUFs. We achieved this by using a new
reliability-based machine learning attack that uses a divide-and-conquer
approach for attacking the XOR PUFs. This new divide-and-conquer
approach results in only a linear increase in needed number of challenge
and responses for increasing numbers of XORs. This is in stark contrast
to the state-of-the-art machine learning attacks on XOR PUFs that are
shown to have an exponential increase in challenge and responses.
Hence, it is now possible to attack XOR PUF constructs that were pre-
viously believed to be secure against machine learning attacks. Since
XOR Arbiter PUFs are one of the most popular and promising electrical
strong PUF designs, our reliability-based machine learning attack raises
doubts that secure and lightweight electrical strong PUFs can be realized
in practice.
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1 Introduction

Physical Unclonable Functions (PUFs) have gained extensive research attention
since they were first proposed in 2001 [21]. PUFs use the inherent manufacturing
differences within every physical object to give each physical instance a unique
identity. While the first proposal was based on light scattering [21], in the same
year the first electrical PUF, the Arbiter PUF, was proposed by Gassend et al.
[8]. PUFs have some unique characteristics that make them an interesting re-
search target for lightweight authentication schemes as well as anti-counterfeiting
solutions. Furthermore, PUFs have gained a lot of attention as a secure key gen-
eration and storage mechanism. One of the key features is their “unclonability”,
the fact that it should be impossible to build two physical instances of a PUF
that have the same characteristics.

PUFs are usually divided into two categories: weak PUFs and strong PUFs. A
strong PUF can be queried with an exponential number of challenges to receive



an exponential number of responses. They can be used in authentication proto-
cols as well as for key generation and storage. Weak PUFs on the other hand
only have a very limited challenge space and can only be used for key generation
and storage. In practice, PUFs have two main drawbacks. One drawback is that
PUFs are susceptible to environmental conditions and noise and therefore their
responses are unreliable. To counter this unreliability, either error correction is
needed or some false response bits need to be tolerated by the used PUF pro-
tocol. The other major drawback is that existing electrical strong PUFs can be
simulated in software and the required parameters for such a software model can
be approximated using machine learning techniques. This is particularly true for
the Arbiter PUF. Several constructions based on the Arbiter PUF have been
proposed such as the XOR PUF [31] and the Feed-Forward PUF [15]. They have
have in common that some non-linearity is added to make machine learning at-
tacks more difficult. While it is possible to attack XOR PUFs using machine
learning for small numbers of XORs, XOR PUFs are widely assumed to be se-
cure against machine learning attacks if enough XORs are used [29, 12, 28]. This
makes the XOR PUF one of the most promising strong PUF designs.

PUFs have already made the step out of the scientific research labs into
commercial products. For example, NXP and Microsemi use PUF-based key
storage in some of their products. But PUFs are not only used for secure key
storage in commercial products. There are also PUF-based RFID tags available.
These extremely lightweight tags are promoted as a secure alternative to memory
tags and are proposed as an anti-counterfeit solution for medical drugs and
luxury products. They can furthermore be used for access control and payment
applications. In this paper we take a closer look at such commercial PUF-based
RFID tags. We show that it is possible to perform a machine learning attack on
these RFID tags with measurement times below a second. It is then possible to
“clone” the RFID tags using an RFID smartcard emulator.

While the examined PUF architecture in these tags is extremely weak and
can be attacked in seconds using traditional machine learning attacks, we also
show that PUF constructions that are supposedly secure can be attacked. We
achieve this by using a new reliability-based machine learning attack. This new
attack scales very well with the number of XORs and therefore increasing the
number of XORs cannot defeat it.

1.1 Related work

There has been extensive research on finding different electrical PUFs. Popular
weak PUF proposals are for example ring-oscillator PUFs [31], SRAM-PUFs [9],
sense-amplifier based PUFs [23, 10] or bus-keeper PUFs [30]. Most strong PUF
designs are variants of the Arbiter PUF such as the XOR PUF [31], Feed-Forward
PUF [15] or the Lightweight PUF [18]. Compared with the number of papers
that either propose new PUFs or discuss their performance in terms of reliability
and uniqueness, e.g., [14, 16, 33] relatively little research has focused on machine
learning attacks. Most of our knowledge of machine learning attacks on PUFs is
based on the 2010 CCS paper by Rührmair et al. [29]. In their paper Rührmair et



al. showed that XOR PUFs, Feed-Forward PUFs and Lightweight PUFs can be
attacked using ES and LR-based machine learning algorithms. However, their
results showed that the required number of challenge and response pairs (CRPs)
to model an XOR PUF grows exponentially with an increase in the number of
XORs. Therefore, they concluded that XOR PUFs can withstand these machine
learning attacks if enough XORs are used. Their initial analysis was conducted
on simulated data but they later verified the results by using measurements
taken from an ASIC [26].

Besides the search for PUFs which can withstand machine learning attacks,
protocol and system level countermeasures have been proposed to combat ma-
chine learning. The first system level countermeasure is the idea of controlled
PUFs [7]. In a controlled PUF, the PUF responses are not directly revealed but
instead only the hash value of several PUF responses is transmitted. Since PUFs
are unreliable, such controlled PUFs also need an error correction mechanism.
Other more lightweight proposals are the Reverse Fuzzy Extractor [13] or the
the Slender PUF protocol [17, 25]. A good overview of different proposals and
their security can be found in [6]. Another line of research examines different
side-channel attacks on PUFs, e.g. in [3, 5, 19, 24, 32]. PUFs have also gained at-
tention as building blocks for cryptographic protocols with formal definitions of
strong PUFs [1, 4, 20]. However, it was pointed out that most existing PUFs do
not match the formal PUF models [27].

1.2 Contribution and organization

The main contribution of the paper can be summarized as follows:

1. We present the first cloning attack on a commercial strong PUF-based RFID
tag, demonstrating the gap between the promised and achieved security with
strong PUFs in practice. The employed 4-way PUF can be attacked using
machine learning with measurement times of less than 200 ms. An RFID
smartcard emulator with hardware costs of less than $25 can then be used
to “clone” the PUF.

2. A new reliability-based machine learning attack on XOR PUFs is introduced.
Even XOR PUFs with parameters previously considered computationally
infeasible to attack using machine learning cannot withstand this new attack.
Our results show that the widely believed assumption that the number of
required responses for a machine learning attack on XOR PUFs increases
exponentially with the number of XORs is wrong. Hence, plain XOR PUFs
cannot be used in practice, regardless of the parameters used.

Besides these main results, our analysis of the RFID tags also gives important
insight into how many CRPs an attacker can collect in practice. In the security
analysis of many designs less than a million challenge and responses are used. In
contrast, the measurements of the PUF-based RFID tags show that it is quite
realistic that an attacker can collect billions of responses.

The reliability-based machine learning attack introduced in this paper is
based on a machine learning algorithm called CMA-ES. This machine learning



algorithm together with the Arbiter PUF is introduced in the background sec-
tion. In Section 3, the targeted commercial PUF-based RFID tags are discussed
in detail, while in Section 4 the cloning attack on these tags is discussed. In
Section 5 the new reliability-based machine learning attack on XOR PUFs is
introduced. Finally, the implications of these attacks are discussed in the last
section.

2 Background

The PUF tags that we examine use an n-way PUF, which is a variant of the
Arbiter PUF. In this Section we will first introduce the Arbiter PUF and explain
how the Arbiter PUF can be modeled in software and then how the needed
parameters can be approximated using machine learning.

2.1 Arbiter PUF

The schematic of an Arbiter PUF can be seen in Figure 1. An Arbiter PUF
consists of a top and bottom signal that are fed through k delay stages. Each
individual delay stage consists of two 2-bit multiplexers (MUXes) that have
identical layouts and that both get the bottom and top signals as inputs. Since
the layout of the two paths is identical, one would expect the introduced delay to
be identical as well. However, in practice each transistor in the multiplexers has
slightly different delay characteristics due to process variations. Hence, the delay
introduced by the multiplexers is different for the top and bottom signal. Since
each chip has different process variations, these delay differences are unique for
every chip. If the challenge bit ci for stage i is ’1’, the multiplexers switch the
top and bottom signals, if it is ’0’ the two signals are not switched. This way,
the race signal can take different paths: a n-stage Arbiter PUF has 2n different
paths the race signals can take. An arbiter at the end of the PUF determines
which of the two signals is faster. The arbiter has an output of ’1’ if the top
signal arrives first and ’0’ if the bottom signal is the first to arrive.

Fig. 1. Schematic of an n-bit Arbiter PUF.

In order to increase the resistance of Arbiter PUFs against machine learning
attacks adding a non-linear element to the PUF design was proposed. One of the
most common methods to add non-linearity to a PUF design is the XOR PUF.
In an n-XOR PUF, n Arbiter PUFs are placed on the chip. Each of the Arbiter



PUFs receives the same challenges and the responses of the n PUFs are XORed to
build the final response bits. While the machine learning resistance increases by
XORing more PUFs, adding additional PUF instances obviously also increases
the area overhead of the design. Furthermore, the XOR PUFs become more
unreliable the more PUFs are XORed. This limits the number of XORs that can
be used in practice. The response of an n-stage Arbiter PUF is determined by
the delay difference between the top and bottom signal. This delay difference is
the sum of the delay differences of the individual stages. The delay difference of
each stage depends on the corresponding challenge. Hence, there are two delay
differences per stage i, the delay differences δ1,i corresponding to a challenge of
‘1’ and δ0,i corresponding to a challenge of ‘0’. The most efficient way to model
a k-stage Arbiter PUF is by computing a delay vector ~w = (w1, ..., wk+1) from
these stage delay differences as follows:

w1 = δ0,1 − δ1,1, (1a)
wi = δ0,i−1 + δ1,i−1 + δ0,i − δ1,i for 2 ≤ i ≤ k, (1b)

wk+1 = δ0,k + δ1,k (1c)

The delay difference ∆D at the end of the Arbiter is the result of the scalar
multiplication of the transposed delay vector ~w with a feature vector ~Φ that is
derived from the challenge c:

∆D = ~wT ~Φ (2a)

r =
{

1, if ∆D < 0.
0, if ∆D > 0.

(2b)

The feature vector ~Φ is derived from the challenge vector ~c as follows:

Φi =
k∏

l=i

(−1)cl for 1 ≤ i ≤ k (3a)

Φk+1 = 1 (3b)

It was shown in the past how the delay vector ~w can be approximated efficiently
using different machine learning techniques.

2.2 Evolution Strategies

Evolution Strategies (ES) are widely used machine learning techniques that are
inspired by evolution theory. In evolution, a species can adapt itself to environ-
mental changes by means of natural selection, also called survival of the fittest.
In every generation, only the fittest specimen survive and reproduce, while the
weak specimen die and hence do not reproduce. Since the specimen of the next
generation inherit the genes of the fittest specimen of the previous generation, the
species continuously improves. In ES-based machine learning attacks on PUFs,
the same principle of survival of the fittest is used. As discussed, a PUF instance



can be described by its delay vector ~w. The goal of a machine learning attack on
an Arbiter PUF is to find a delay vector ~w that most precisely resembles the real
PUF instance. The main idea of an ES machine learning attack is to generate
random PUF instances (i.e., random delay vectors ~w) and check which instances
are the fittest, i.e., which PUF instances resemble the real PUF model the most.
The fittest PUF instances are kept as parents for the next generation while the
other PUF instances are discarded. In the next generation, children are gener-
ated using the parent’s delay vector together with some random mutations, i.e.,
some random modifications of the delay vector. From these child instances the
fittest instances are determined again and kept for the next generation as par-
ents. This process is repeated for many generations in which the PUF instances
gradually improve and resemble the real PUF behavior more and more.

In order to perform an ES machine learning attack it needs to be possible to
describe a PUF instance by a vector ~w. Furthermore, a fitness test is needed that,
given delay vectors ~w, can determine which instances, i.e., which delay vectors,
are the fittest. Since Arbiter PUFs can be modeled using the delay vector w,
if an ES machine learning attack is feasible depends on whether or not a good
fitness test for these PUF models exist. Typically, the used fitness test for an
Arbiter PUF is the model accuracy between the measured responses ~r of the
physical PUF and the computed responses ~r′ of the PUF instance under test.
The PUF instances with the highest model accuracies are considered the fittest.

There exist many variants of ES machine learning algorithms which mainly
differ in how many parents are kept in each generation, how the children are
derived from the parents and how the random mutation is controlled. Typi-
cally, the mutation is done by adding a random Gaussian variable N(0, σ) to
each parameter. Different methods have been proposed for controlling the muta-
tion parameter σ. The closer the PUF instances are to the optimal solution, the
smaller σ should be. One approach to control σ is to deterministically decrease σ
in every generation. In contrast, in self-adaption the mutation parameter adapts
itself depending on how the machine learning algorithm is currently perform-
ing. For the reliability-based machine learning attack the Covariance Matrix
Adaptation (CMA) ES machine learning algorithm with the default parameters
suggested in [11] is used. CMA-ES uses recombination, i.e., one child instance
depends on several parent instances. It also uses self-adaption, i.e. the mutation
strength is not controlled deterministically but adapts itself depending on how
the ES algorithm is performing.

3 The PUF-based RFID tags

We ordered PUF-based RFID tags from an RFID company that — in addition
to our main order of plain sticker type tags — provided us with samples in four
different formats: smartcard format, sticker format, wristband and anti-metal
label. Please note that the RFID company that manufactures the RFID tags is
different from the manufacturer of the PUF ICs. A picture of the tags as well
as the used RFID reader can be seen in Figure 2. The sticker-type tags can be



used as an anti-counterfeit solution for medical drugs and luxury goods and cost
only a few cents when ordered in large quantities. The RFID smartcard format
as well as the wristband format can be used for access control, authentication
and payment applications. The anti-metal label tags are designed in such a way
that they also work when attached to metal and can for example be placed upon
a smartphone. The brand names on the sample tags suggest that the smartcard
and wristband tags were intended for payment and access control applications
while the anti-metal tags featured the brand name of a loyalty program.

Fig. 2. The RFID smartcard emulator Chameleon and the target PUF-based RFID
tags in different formats.

In the following the architecture of the tags is described in more detailed.
How this architecture has been reverse-engineered is explained in detail in Sec-
tion 4. The main feature of the PUF-based RFID tags is that each tag can be
authenticated based on the built-in 4-way Arbiter PUF. The structure of the
used 4-way PUF is depicted in Figure 3. A 64-bit master challenge is sent from
the reader to the tag. This master challenge is fed into a 64-bit LFSR that gen-
erates subsequent challenges. Each 64-bit challenge is then sent to what we call
the mixer function. The mixer function generates four subchallenges by shuf-
fling the provided 64-bit challenge similar to a Lightweight PUF. Each of these
four subchallenges are fed to the same 64-bit Arbiter PUF. The resulting four
response bits are XORed with each other to form a single response bit. Such a
PUF, in which a single Arbiter PUF is used and n response bits are XORed, is
called an n-way PUF. In the PUF protocol, 256 response bits are generated for
each 64-bit master challenge.

Traditionally, the authentication process of an Arbiter PUF is based on a
setup stage in which responses for randomly generated challenges are collected
and stored in a database. During the authentication step, challenges from this
database are selected and sent to the tag. The responses of the tag under test are
then compared to the responses stored in the database. If the response matches,
the tag is authenticated. However, such a system has some drawbacks. A large



Fig. 3. Internal structure of the PUF tag. A 64-bit Galois LFSR is used to generate
challenges from a master challenge. Each challenge is fed into the mixer function which
generates four subchallenges by permuting the input challenge. These four subchal-
lenges are successively fed into the 64-stage Arbiter PUF. The four responses of the
Arbiter PUF are then XORed to provide a response bit that is sent to the reader.

database of CRPs needs to be kept for every tag. If the tags are used as an anti-
counterfeit solution, every verifier needs an up-to-date database with the CRPs
from all tags. In practice, this requires an internet connection in most scenarios.

For the PUF-based RFID tags a different system that allows offline authen-
tication was chosen. It is based on the idea that Arbiter PUFs can be modeled
in software if the internal delay parameters are known. While this usually is
an undesired property, it can be helpful to construct PUF protocols that do
not need pre-collected CRPs. During a set-up phase, the internal parameters
of the 4-way PUF are computed. We are not sure how this is done exactly for
the tags under test since this step was already conducted by the manufacturer.
One possible solution would be that during the set-up phase the individual PUF
responses are directly transmitted without XORing them. With only a few hun-
dred of these response bits it is possible to build an accurate model of the PUF
parameters. After a PUF model is built, this phase should be disabled so that
only the obfuscated outputs, i.e., the outputs of the 4-way PUF are transmitted.

A verifier that is in possession of these delay parameters does not need a
database with stored CRPs to authenticate the tag. Instead, the responses for
arbitrary challenges can be computed on-the-fly in software. The distribution
of the PUF parameters is realized by storing the parameters on the tag in an
encrypted form. A legitimate verifier who has the corresponding key can decrypt
the encrypted delay parameters and use these parameters to verify the tag. Note
that the encrypted PUF parameters are only stored and not encrypted on the
tag. Hence, no encryption function and no secret key is needed on the tag itself.
However, this method also has major drawbacks. The verifier needs to be a
trusted entity since the security of the system depends on keeping the key secret.
This can be problematic and trusted readers need to have the highest standards



of physical attack security. Furthermore, a verifier can make a software clone
of a PUF and hence the unclonability is not given any more. Therefore, such a
system does not provided one of the key features, that the PUFs are unclonable,
anymore.

Table 1. PUF-based RFID tag protocol

tags reader/tool
ID, physical PUF, enck(~w) ID, k

auth←−−−−−−−−−
UID,enck( ~w)−−−−−−−−−→ choose challenge C

~c = LFSR(C) C←−−−−−−−− ~c = LFSR(C)
~r ← PUF (~c) ~w = deck(~w)

~r−−−−−−→ ~r′ ← PUF_Model(~c, ~w)
if HD(~r, ~r′) ≤ τ accept

4 Attacking the PUF tags

The first step of attacking the PUF tags was to reverse-engineer the used PUF
design, which was not known to us in detail. The RFID company provided us with
a software tool to test the tags. The authentication protocol used in the software
tool is depicted in Table 1. The software tool starts the authentication process
by sending a query auth to the PUF tag. The PUF tag answers with its UID
and the encrypted PUF parameters. Then the tool generates a random master
challenge C and sends it to the tag. The tag answers with the corresponding
response string ~r. The tool decrypts the encrypted PUF delay vector ~w using the
secret key k and uses this delay vector to compute the expected response string
~r′. If the mismatch between the received response string r and the computed
response string ~r′ is below a threshold τ , the PUF tag is authenticated. The tool
also supports an “online” verification that works in a similar way. The difference
is that the decryption of the PUF parameters and the response computation is
performed by a trusted server and not by the software tool. The tags we received
were already programmed and contained encrypted PUF parameters with the
key from the test tool. The fact that the software tool also computes the PUF
responses based on the encrypted PUF parameters made reverse-engineering of
the PUF much easier. No hardware reverse-engineering was needed. Instead, the
reverse-engineering was performed on the software tool using IDA Pro. Via this
reverse-engineering, we were able to derive the structure of the 4-way PUF as
already introduced in Figure 3, including all parameters such as the exact LFSR
and the details of the mixer function.



4.1 Machine learning attack

To collect the CRPs necessary to attack the 4-way Arbiter PUF, we used a
Matlab script to send random challenges to the reader. A single protocol ex-
ecution, which consisted of sending a 64-bit challenge and receiving a 256-bit
response, took roughly 53 ms. However, the response collection can be sped up
by not sending a new master challenge between each measurement. Without a
new master challenge, the last LFSR state of the previous challenge is used as a
new master challenge. Using this trick, the measurement time can be reduced to
43 ms per 256-bit response. Hence, with this setup more than 5,000 response bits
can be collect in one second and more than 350,000 in one minute. We would
like to stress that we see these numbers are of general interest as a reference
when accessing the security of PUFs against machine learning. Given a setup
like ours, it is quite reasonable that an attacker can collect billions of CRPs.

To attack the PUF tags we tested Logistic Regression (LR) in conjunction
with RProp as proposed in [29] as well as a CMA-ES machine learning algorithm.
Both algorithms can be used to attack the PUF but the LR algorithm greatly
outperforms the CMA-ES algorithm. To evaluate the machine learning attack,
a training set was used by the machine learning algorithm to train the PUF
parameters and a separate set, the reference set, was used to evaluate the re-
sulting model accuracy. We were able to reliably perform a LR machine learning
attack using a training set consisting of data from only 4 protocol executions,
i.e., 4 · 256 = 1024 CRPs with a resulting average model accuracy of 85.8%.
Please note that the achieved model accuracy is very close to the observed aver-
age reliability of the PUF tags of 87.5% and therefore sufficient to impersonate
the PUF. All of the 10 different tags we tested could be successfully attacked.
The measurement time of 1024 CRPs is only 172 ms and the computation time
was in average around 40 seconds on a laptop. When more than 1024 CRPs are
used, the computation time actually decreases significantly to a few seconds.

Hence, the 4-way PUF employed on these PUF-based RFID tags does not
provide any protection against machine learning attacks and it is trivial for an
attacker to recover the PUF parameters needed to model the PUF.

4.2 Cloning a PUF tag

The machine learning attack from the previous Section provided us with the
PUF parameters that can be used to build a software model of the PUF. The
remaining question is how we can actually use these PUF parameters to build a
clone of the PUF tags. For this the freely programmable RFID smartcard emula-
tor Chameleon was used. The Chameleon is based on an 8-bit ATXmega32A4U
microcontroller clocked at 8 MHz and can be seen on the left side of Figure 2. It
has the size of a standard smartcard, costs less than $25 and is also available in
a version powered by a small battery. The Chameleon is an open-source project
and details of the Chameleon, the PCB layout and the firmware can be found
online at GitHub [22]. One key feature of the Chameleon is that it is possible to
set the UID, which cannot be done in most commercial RFID cards and tags.



We implemented the used communication protocol of PUF-based RFID tags on
the ATXmega as well as a software model of the 4-way PUF. The computation
of the PUF responses is time-critical, as there is a timeout if the computation of
the PUF responses takes too long. To speed up the PUF computation we only
used 5-bit precision integers for the PUF delay vector ~w since in this case no
overflows occur on an 8-bit system. The delay vector has been computed using
the machine learning attack described in the previous section.

The implementation was done using C and the computation of a 128-bit re-
sponse block on the Chameleon took roughly 400,000 clock cycles which results
in a computation time of 12.8 ms at a clock frequency of 32 MHz. In our ex-
periments, this was fast enough not to trigger any timeouts. As mentioned, we
only used 5-bit delay parameters for each PUF which reduced the model ac-
curacy and resulted in a mismatch of around 20% between the responses from
the Chameleon and the responses computed by the demo tool. The mismatch
of around 20% in average is similar to the mismatch observed between the com-
puted responses of the software tool and legitimate tags. This mismatch is well
within the acceptable error rate of the software tool. If 16-bit precision numbers
are used, the parameters derived by the machine learning attack actually have
a higher model accuracy than the encrypted PUF parameters. We verified this
attack using the test tool and the software declared the Chameleon an authentic
PUF tag. This proves that cloning attacks on such PUF-based RFID tags can
be performed in practice. Interestingly, the biggest challenge for an attacker in
practice is actually to find a suitable programmable RFID chip in which the at-
tacker can freely set the UID. However, in absent of freely programmable RFID
smartcards, this can be simply solved by building your own RFID smartcard
emulator.

5 Reliability-based machine learning attacks

In the previous section we have seen how to attack commercial PUF tags that
are based on a 64-stage 4-way PUF. It is well known that small XOR PUFs can
be attacked using machine learning and hence it is not a big surprise that the
employed 4-way PUF can be attacked. In this section we therefore take a closer
look at more secure architectures. In particular, we introduce a new reliability-
based machine learning attack that scales much better with increasing XORs
than the machine learning attacks from [29]. In traditional machine learning
attacks, the attacker tries to model the PUF-based on the values of the response
bits. However, not only the value of the responses contains useful information.
The reliability of a response, i.e., how often the PUF evaluates to the same
response bit for a given challenge, also holds valuable information. Delvaux et
al. were the first to point this out [5]. They observed that the delay difference for
a specific challenge of an Arbiter PUF is directly proportional to the unreliability
of the corresponding response bit if the environmental conditions are kept stable.
This is due to the fact that the various sources of noise add an approximately
Gaussian delay Dnoise = norm(µ, σ) to the delay difference ∆D. Hence, when



also considering noise, Equation 2 of the PUF model changes to:

∆D = ∆DP UF +Dnoise = ~wT ~Φ+Dnoise (4a)

r =
{

1, if ∆DP UF +Dnoise < 0.
0, if ∆DP UF +Dnoise > 0.

(4b)

The key observation is that if the delay difference ∆DP UF for a given challenge
~Φ is very large, it is unlikely that the noise term Dnoise changes the sign of ∆D.
However, if the delay difference ∆DP UF is close to zero, the chance that the
response bit changes due to Dnoise is much higher. Delvaux et al. used the exact
reliability value of individual response bits to approximate delay differences for
this response [5]. With the exact delay difference of individual responses the
individual stage delays can be computed by solving a set of linear equations.
However, Delvaux et al. pointed out that this approach is not as efficient as
machine learning algorithms. Furthermore, their method cannot be applied to
an XOR PUF, since you need to know the individual response bit for each Arbiter
PUF as well as their exact reliability.

Becker et al. extended the idea of using unreliability and proposed a fault
attack that is based on machine learning [3]. Changing the environmental con-
ditions such as temperature or supply voltage has a similar effect as thermal
noise, but is usually larger. The idea of the fault attack on controlled PUFs is to
change the supply voltage for specific response bits and observe if the response of
the controlled PUF changes. This information is then used in a CMA-ES based
machine learning attack. This paper extends the basic idea behind this attack
by adding a divide-and-conquer strategy in order to gain the ability to attack
XOR PUFs. Furthermore, in this paper no active fault attack by changing the
supply voltage is performed. Instead, only the inherent unreliability of the PUF
is used. The measurements therefore can be conducted under the same environ-
mental conditions. With this new strategy, we are able to break XOR PUFs that
would be computationally infeasible to attack using traditional machine learning
algorithms focusing on the output bits.

5.1 CMA-ES attack based on reliability

The main idea of the reliability-based CMA-ES attack is to make repeated mea-
surements for the same challenge so observe which response bits are stable and
which response bits sometimes flip. If a response for a given challenge is unstable,
it is likely that the corresponding delay difference ∆DP UF is close to zero, i.e.,
|∆DP UF | < ε. But if a response bit has a high reliability for a given challenge,
it is likely that the delay difference is large, i.e., |∆DP UF | > ε. We slightly mod-
ify the CMA-ES machine learning algorithm by using a fitness function that is
based on this observation. The goal of the fitness function is to test which of a
given set of PUF models ~w performs best, i.e., which is the fittest. In the first
step the same challenge ~Φi is sent to the PUF l times to collect l response bits



ri,1, ri,2, .., ri,l. Then the reliability hi is computed for challenge ~Φi using the
following formula:

hi = | l2 −
l∑

j=1
ri,j | (5)

To test the fitness of a given PUF model ~w the attacker first computes a hypo-
thetical reliability h̃i for all challenges ~Φi by testing if the corresponding absolute
delay difference |∆Di| is larger than an error boundary ε:

h̃i =
{

1, if |~wT ~Φi| > ε

0, if |~wT ~Φi| < ε
(6)

In the next step the attacker checks how well the hypothetical reliability vector
h̃ = h̃1, .., h̃n matches the measured reliability vector h = h1, .., hn. This is
done by computing the Pearson correlation coefficient between h and h̃. The
correlation coefficient shows the linear relationship between the two vectors. It
can therefore be used to test how well the hypothetical reliability vector h̃ of a
PUF model ~w matches the observed reliabilities h. The higher the correlation
coefficient, the fitter the PUF model is. The only other modification to the
CMA-ES algorithm is that the parameter ε is an additional parameter that
needs to be approximated by the machine learning algorithm. Hence, k + 2
instead of k + 1 parameters need to be approximated by the machine learning
algorithm for a k-stage Arbiter PUF. Otherwise, the reliability CMA-ES works
like a traditional CMA-ES attack: In each generation several PUF models are
generated and then evaluated using the fitness test. The best models are kept
and are used to generate the PUF models for the next generation. This way the
PUF model gradually improves with each generation.

The attack was first tested using CRPs taken from the 4-way PUF of the
commercial RFID tags. In a 4-way PUF, four individual response bits are XORed
to form the final response bit. Hence, an attacker does not know the reliability
for a given PUF response since it is only possible to measure the reliability of
the final response bit. Therefore the fitness function needs to be adjusted. In
a first step, the reliability values for the four subchallenges of the 4-way PUF
are computed and then the reliability values of the four subchallenges are sim-
ply added up. Note that the more subchallenges are expected to be unreliable,
the more likely it is that the measured response bit is unreliable as well. We
performed the reliability-based CMA-ES attack on the 4-way PUF using the
reliability information of l = 5 measurements. The attack was less efficient than
a traditional CMA-ES attack and required around 4,000 CRPs. Nevertheless,
the result shows that the reliability CMA-ES attack works in practice. For a
larger number of XORs the reliability-based attack outperforms traditional ma-
chine learning algorithms significantly. To test this, two consecutive response
bits of the 4-way PUF were XORed, effectively turning the 4-way PUF into an
8-way PUF. The number of needed CRPs for a traditional machine learning
attack greatly increases when the number of XORs is increased, due to the in-
creased non-linearity of the XORs as well as due to the fact that unreliability



also increases. The 8-way PUF could be attacked with 300,000 CRPs using a LR
machine learning algorithm. In comparison, the reliability-based CMA-ES at-
tack still only needed 4,000 CRPs. This result might be surprising at first, since
the number of needed CRPs did not increase at all compared to the 4-way PUF.
But in the fitness function of a reliability-based machine learning attack on an
n-way PUFs, the reliability of each individual response is added and not XORed.
Therefore, the number of XORs has only a small impact on the machine learning
algorithm. As a matter of fact, we can still attack the PUF with 4,000 CRPs
if a 20-way PUF is built by XORing 5 consecutive bits of the 4-way PUF. The
reliability of a 20-way PUF is only around 63.1% and hence not really useable in
practice. Still, the reliability-based machine learning attack finds a PUF model
with a model accuracy of 61.1% for the 20-way PUF. The model accuracy of the
underlying 4-way PUF is actually still around 87% for this attack. Hence, unlike
for traditional machine learning attacks, increasing the XORs in an n-way PUF
does not increase the machine learning resistance.

5.2 Attacking XOR PUFs

The most popular strong PUF design is not the n-way PUF, but the XOR PUF
which uses a different Arbiter PUF for each XOR. Every additional XOR also
adds additional parameters that need to modeled in addition to the increased
non-linearity of the XOR. This leads to an exponential increase in needed CRPs
with each additional XOR. It is therefore assumed that if enough stages and
XORs are used, XOR PUFs can withstand machine learning attacks [12, 28].
However, in the following we show how even XOR PUF instances that are pre-
sumably secure can be attacked using the reliability-based machine learning
attack.

For an n-XOR, k-stages PUF, (k + 1) · n parameters need to be determined
in a machine learning attack. However, in the reliability-based machine learning
attack a divide-and-conquer strategy can be used to attack each Arbiter PUF
individually. This reduces the parameters that need to be approximated in one
machine learning run to only k + 1. This is the main reason why the reliability-
based machine learning attack significantly outperforms other machine learning
attacks on XOR PUFs. The idea behind the divide-and-conquer approach is that
the reliability of a response bit depends equally on each of the n employed Arbiter
PUFs. Let us assume that for a PUF model ~w and challenge ~Φi of one of the n
Arbiter PUFs, the expected reliability is low, i.e., h̃i = 0. Then the measured
reliability hi should also be low, since a bit flip of one of the response bits that
are XORed directly results in a bit flip of the output of an XOR PUF. Hence,
in this case the measured reliability hi matches with the computed reliability
h̃i. If the computed reliability for the challenge ~Φi is high, i.e., h̃i = 1, and the
observed reliability is also high, the computed and observed reliability vectors
match each other. However, one of the other n−1 remaining Arbiter PUFs might
be unreliable for this specific challenge. Hence, we might sometimes observe an
unreliable response despite our hypothesis assuming a reliable response. But
since we always guess the unreliable case correct, our hypothesis vector h̃ is still



correlated with the observed reliability vector h, even if it is not a complete
match. The unreliability introduced by the other n−1 Arbiter PUFs is therefore
nothing else but noise from a machine learning perspective. Since the CMA-ES
machine learning algorithm in conjunction with the correlation coefficient as
a fitness function is very robust to noise, the CMA-ES algorithm still finds an
accurate PUF model for the Arbiter PUF under test. Hence, in this attack we do
not target all Arbiter PUFs at once. Instead we model one Arbiter PUF at a time.
This is the main reason why our attack scales so well with the number of XORs.
Each additional Arbiter PUF only adds additional noise to the computation.
Furthermore, the relative increase in noise by adding a single XOR decreases
with the number of XORs. Hence, the machine learning attack complexity only
increases linear with the number of added XORs.

The only remaining question is how we can target a specif Arbiter PUF from
the set of Arbiter PUFs used in the XOR PUF. There are basically two ways to
build an XOR PUF. Either the same challenge is applied to all Arbiter PUFs,
or each Arbiter PUF gets a different challenge. The classic XOR PUF uses the
same challenges for all Arbiter PUFs. But results from [29] suggest that using
different challenges for each PUF makes machine learning attacks harder. Let us
first consider the case that each of the individual Arbiter PUFs gets their own set
of unique challenges. In this case an attacker can target a specific Arbiter PUF
based on which challenges the attacker uses in the machine learning attack. Since
each Arbiter PUF has a different set of challenges, one Arbiter PUF is attacked
after the other. Hence, to attack an n-XOR PUF, n individual reliability-based
machine learning attacks are performed. After PUF models for all n PUFs are
found, the entire XOR PUF can be modeled by simply XORing the individual
responses.

The CMA-ES machine learning algorithm is a non-deterministic algorithm
and sometimes does not converge to a near-optimal solution. In this case the
algorithm needs to be restarted. Machine learning runs that did not find an
accurate PUF model, i.e., that did not converge, have a much smaller fitness
value than successful runs. Therefore the correlation coefficient can be used to
test if a machine learning run was successful. If it was successful, the next PUF
can be targeted, otherwise the machine learning algorithm should be restarted
again with the same challenges. To test this we simulated different XOR PUFs
by assuming a random Gaussian distribution of the individual stage delay pa-
rameters δ of the individual Arbiter PUFs. Assuming a Gaussian distribution
is the common approach (e.g. used in [29]) and resembles a best-case scenario
from a security perspective. To model the impact of noise a random variable is
added to each computed delay difference ∆DP UF with a Gaussian distribution
of norm(0, σnoise). The challenges were generated randomly and all simulations
were carried out using matlab. To speed up the computation, a Mex function was
written in C for the computationally expensive part of the PUF computations
and the attacks were run on a AMD Opteron cluster with 4 nodes and 64 cores
each. Each attack only used 16 cores so that in total 16 attacks run simultane-
ously on the cluster. Now let us consider the case that the same challenge is



Table 2. Results of a reliability-based CMA-ES on different simulated n-XOR, 128-
stage PUFs with a noise level of σnoise = 1. In the top rows different challenges were
used for each Arbiter PUF and in the bottom rows the same challenges were used as
done in the classic XOR PUF . The results are the average of 10 independent attacks.
“Accuracy single Arbiter” is the maximum and minimum achieved model accuracy of
a single Arbiter PUF.

# XORs reliability # CRPs accuracy accuracy #runs accuracy time
reference set training set per XOR single Arbiter

1 98.0% 20 · 103 99.0 98.3 8.7 98.3%-99.3% 0.9 h
4 92.5% 150 · 103 97.6% 94.6% 4.0 99.0%-99.6% 1.8 h
8 86.2% 300 · 103 95.3% 89.0% 3.4 98.6%-99.7% 3.3 h
16 76.0% 500 · 103 90.8% 80.2% 19.4 98.7%-99.6% 30.5 h
321 63.7% 2000 · 103 83.6% 68.4% 9.5 99.1%-99.6% 60 h
4 92.5% 150 · 103 97.7% 94.2% 4.2 99.1%-99.7% 1.1 h
8 86.2% 300 · 103 95.7% 89.1% 7.2 99.1%-99.7% 3.4 h

162 76.1% 500 · 103 90.0% 80.1% 30.6 98.7%-99.6% 34 h

Table 3. Results of reliability-based CMA-ES attacks on a 8 XOR, 128 stages PUF
with different noise values σnoise. Again 10 attacks were performed per entry.

σnoise reliability reliability # CRPs accuracy #runs accuracy time
single Arbiter XOR PUF reference set per XOR single Arbiter

0.1 99.8% 98.4% 2500 · 103 96.0% 6.8 98.9%-99.7% 16.7 h
0.25 99.5% 96.2% 1000 · 103 95.5% 8.1 97.2%-99.8% 17.0 h
0.5 99.0% 92.6% 500 · 103 94.7% 7.5 98.9%-99.8% 6.6 h
1 98.0% 86.2% 300 · 103 95.3% 3.4 98.6%-99.7% 3.3 h
2 96.0% 75.8% 200 · 103 94.5% 1.6 98.8%-99.6% 1.2 h
4 92.1% 62.7% 100 · 103 84.6% 8.5 96.2%-98.2% 4.6 h

applied to all Arbiter PUFs, as is done in the classic XOR-Arbiter PUF. In this
case an attacker cannot target a specific Arbiter PUF using different challenges
since all PUFs get the same challenges. However, the probabilistic nature of
CMA-ES helps us in this case. The reliability-based machine learning algorithm
will converge to one of the Arbiter PUFs of the XOR PUF since the correlation
coefficient for a correct PUF model is higher than that for an inaccurate PUF
model. If the machine learning algorithm would always converge to the same
PUF, the attack would not be very helpful. However, due to the probabilistic
nature of CMA-ES, the algorithm converges to different PUFs in different runs,
even when called with the same inputs. The idea of the attack is to performed
as many independent machine learning runs until all n distinct PUF models
are found. Ideally, each of the n Arbiter PUFs should be equally likely to be
found by a single run. In practice, some Arbiter PUFs are “easier” and some
1 This row only uses the average from 3 independent attacks and not 10
2 For the classic 16-XOR PUF a 2-step approach was used in which the first 13 PUFs
were attacked using a reliability-based attack and the remaining 3 PUFs were at-
tacked using an traditional CMA-ES. “#runs per XOR” is the average of the 13
PUFs determined by the reliability-based attack.



are “harder” to attack for given challenges and reliability vectors. Hence, the
machine learning algorithm converges more often to some PUF instances than
others.

In practice, the attacker does not necessarily need to find all of the n PUFs
using the reliability-based machine learning attack. If only a few Arbiter PUFs
remain, the attacker can find the remaining PUF models using a traditional
LR or CMA-ES machine learning attack. When only a few PUFs remain, the
chances are high that the machine learning attack converges to a PUF that has
already been modeled. Therefore, this two step approach can considerably de-
creases the attack time for PUFs with many XORs such as a 16-XOR PUF. In
general, unsuccessful runs can be aborted early to greatly decrease the compu-
tation time of the attack. To determine which runs are likely to be unsuccessful,
the global mutation parameter σ in conjunction with the fitness value can be
used. Furthermore, the hamming distance between responses from the model
under test and the already computed PUF models can be used to detect runs
that are converging to a PUF model that has already been found. These runs
can also be aborted early to considerably speed up the computation time. The
results of the reliability-based machine learning attack are summarized in Ta-
ble 2. A noise level of σnoise = 1 was used which resulted in an reliability of 98%
for a 128-stage Arbiter PUF. This is a conservative estimation of the reliability
of Arbiter PUFs. For comparison, the observed unreliability of 64-stage Arbiter
PUFs in [14] was around 97% for nominal operation conditions. With this new
attack even a 32-XOR PUF could be attacked with only 2 million CRPs, which
would be impossible using LR. We also tested the attack for more reliable or less
reliable PUFs. The results of this experiment are summarized in Table 3. For
very reliable PUFs, more CRPs are needed, but the attack still works. To verify
these results using real measurements, we emulated an XOR PUF structure by
taking measurements from up to 8 different PUF RFID tags and XORed their
corresponding output bits. This effectively turned the 4-way PUF tags into a
mixture of an n-way and XOR PUF. In an 8-XOR-4-way PUF, 8 different 4-way
PUFs are XORed, which results in a total of 32 XORs for a single response bit.
The results of this experiment can be found in Table 4. The 8-XOR-4-way PUF
can be successfully attacked using 400,000 CRPs. Hence, our reliability-based
machine learning on XOR PUFs also works with real silicon data.

This shows that the exponential increase in number of required responses for
increasing XORs does not hold for the reliability-based machine learning attack.
Unlike previously stated, plain XOR PUFs are insecure, regardless of the used
parameters.

6 Discussion

In this paper we showed that the security of strong PUFs is still greatly lacking.
This is true for both commercially available PUFs as well as strong PUF pro-
posals by the scientific community. A lot of research effort has been focused on
finding different PUF architectures. However, we are still far behind to under-



Table 4. Results of a reliability-based CMA-ES on an n-XOR 4-way PUF construction
using l = 5 repeated measurements from the PUF-based RFID tags in which different
challenges were used for each 4-way PUF.

# PUFs # XORs # CRPs reliability accuracy accuracy accuracy time
reference set training set 4-way

1 4 4 · 103 87.5% 87.1% 88.6% 87.1 0.7 m
2 8 10 · 103 80.0% 78.5% 80.3% 88.0% 1.6 m
4 16 40 · 103 69.2% 67.2% 69.4% 87.9% 1.7 m
8 32 400 · 103 56.3% 55.6% 56.4% 87.5% 13.1 m

stand the full power of machine learning attacks, in particular if more information
than just the plain response bits is used. The newly proposed reliability-based
CMA-ES attack is a prime example for this.

Basically, to prevent a reliability-based CMA-ES attack, an attacker should
not be able to send the same challenge twice and observe the reliability of the
responses. This could be achieved if the challenges are generated by both the
tag as well as the verifier. However, this typically means that the verifier needs a
software model of the PUF. Proposal for such protocols have already been made,
see for example the Slender PUF protocol [25]. However, several key features of
PUFs are lost if a software model is needed. For example, the “unclonability”
feature is lost since everyone in possession of this software model can create a
software clone of the PUF. Furthermore, every entity that authenticates a PUF
instance needs to be a trusted entity, since such a software model can be seen as
the equivalent of a symmetric key. Such a PUF also violates the “unprotected
challenge-response interface” requirement as defined in [28] and hence is not a
strong PUF according to formal definitions. Another approach to prevent this
attack might be the idea of a controlled PUF [7]. However, recently it was shown
that it is possible to perform a reliability-based machine learning attack based
on the helper data of error correction codes [2]. Since controlled PUFs rely on
error correction code, this attack is directly applicable to controlled PUFs as
well. Hence, simply using a controlled PUF does not solve this problem. How to
build a strong PUF that resists the reliability-based machine learning attack is
therefore an interesting open research problem.

Our attack on the commercial PUF-based RFID tags shows the real-world
implications of this research. An attacker only needs to hold an RFID reader or a
NFC enabled smartphone within ca. 5 cm of the tags for 200 ms to collect enough
CRPs to build an accurate software model. We verified that it is possible to read
out the smartcard format PUF tags when they are carried within a wallet in the
back-pocket of a jeans. We showed that it is possible to clone the tags using a
self-made RFID smartcard emulator from off-the-shelf components for less than
$25. This allows an electrical “pickpocketing” attack that can be carried our
in real-time. Hence, while a lot of hope was put into strong PUFs as a secure
and lightweight authentication solution, it seems that both academia as well as
industry are still far away from achieving these goals.
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