
Secure Key Generation from Biased PUFs

Roel Maes1, Vincent van der Leest1, Erik van der Sluis1, and Frans
Willems2

1 Intrinsic-ID, Eindhoven, Netherlands
{roel.maes, vincent.van.der.leest, erik.van.der.sluis}@intrinsic-id.com

2 T.U. Eindhoven, Eindhoven, Netherlands
f.m.j.willems@tue.nl

Abstract. PUF-based key generators have been widely considered as a
root-of-trust in digital systems. They typically require an error-correcting
mechanism (e.g. based on the code-offset method) for dealing with bit
errors between the enrollment and reconstruction of keys. When the used
PUF does not have full entropy, entropy leakage between the helper data
and the device-unique key material can occur. If the entropy level of the
PUF becomes too low, the PUF-derived key can be attacked through the
publicly available helper data. In this work we provide several solutions
for preventing this entropy leakage for PUFs suffering from i.i.d. biased
bits. The methods proposed in this work pose no limit on the amount
of bias that can be tolerated, which solves an important open problem
for PUF-based key generation. Additionally, the solutions are all evalu-
ated based on reliability, efficiency, leakage and reusability showing that
depending on requirements for the key generator different solutions are
preferable.

1 Introduction

A Physically Unclonable Function (PUF) implemented on an integrated
circuit (IC) can be used as a hardware root-of-trust for a digital sys-
tem, e.g. to generate and store the system’s private master keys. These
PUF-based key generators provide a secure and efficient alternative for
protected non-volatile memories (e.g. Flash, EEPROM, antifuses, etc.).
For such applications, a high-quality PUF is needed which is both unpre-
dictable as well as reliable, i.e. PUF responses are random per instanti-
ation but repeatable with limited noise over time and under all circum-
stances. To achieve this, both entropy extraction (for unpredictability)
and error-correction coding (for reliability) are required in key genera-
tors. A secure key derivation function is used for entropy extraction to
derive a cryptographic key from a random seed. For error-correction, a
commonly used technique is the code-offset method that stores helper
data during an enrollment phase, which is later used to correct bit er-
rors that occur in the PUF response when reconstructing the key. This

helper data should not provide any information about the key, because it
is generally stored and/or transferred publicly.

It has recently been pointed out [9] that if a PUF does not have
full entropy, information about the secret key material is leaked by the
helper data. If this entropy leakage becomes too large, the derived key
will not have full entropy; this poses a serious threat to the security of the
key generator. The main focus of this work is the development of (pre-
)processing methods that prevent this leakage in case of biased PUFs.
Using innovative approaches, the overhead of these algorithms on PUF
size is minimized, while guaranteeing reliability of the system.

Related Work. PUF-based key generators based on error-correcting codes
were firstly introduced in [13] for Arbiter PUFs and later on in [5] for
SRAM PUFs, both using a configuration based on linear block codes.
Efficiency optimizations were proposed based on code concatentation [1]
and soft-decision decoding [17,10]. Later key generators based on ring
oscillator PUFs were presented in [22,18]. Potential security issues can
arise with these key generators when their input (i.e. the PUF response)
does not not have full entropy, see e.g. [6], which was recently emphasized
strongly in [9].

Contributions. The primary contribution of this work is the introduction
of a number of solutions that prevent entropy leakage between helper
data and the secret of a PUF-based key generator, in case of i.i.d. but
biased PUF response bits. The presented solutions are all scalable in that
they can handle an arbitrary amount of PUF response bias, given that
the available PUF response is large enough to provide a sufficient input
bits. This solves an important open problem with existing PUF-based
key generators, which was even hypothesized to be unsolvable in [9]. The
introduced methods are all proven to be secure and are compared based
on their reliability, efficiency, leakage and reusability. This comparison
shows that depending on requirements for the key generator, different
solutions are preferable. Additionally, this work provides a new model
for entropy leakage due to PUF bias as well as a model for the relation
between PUF bias and the bit error rate of the corresponding PUF. The
first model is an improvement over existing models, e.g. as used in [9],
while the second model is a new concept which is an extension on the
models from [14].

2 PUF-based Key Generation and Bias

2.1 General Construction

PUF

RNG
Seed (S)

Response (X)

Encode
Code Word (C) Helper Data (W)

KDF
Enrolled Key (K)

PUF
Noisy Response (X')

Noisy Code Word (C')
Decode

Decoded Seed (S')

Reconstructed Key (K')

Enrollment: Reconstruction:

KDF

Fig. 1. PUF-based key generator based on the code-offset method.

Fig. 1 shows a generic PUF-based key generator using the code-offset
method from [4], with which many earlier proposed implementations
(e.g. [5,1,17,10]) conceptually comply. Encode() and Decode() are the en-
coding and corresponding decoding function of an error-correcting code.
In this work it is considered that the error-correcting code is a binary
linear block code. KDF() is a key derivation function for generating a
strong key from a random source with possibly reduced entropy. This can
be a strong extractor [4] (for information-theoretic security), or a crypto-
graphically secure key derivation function, see e.g. [12,11]. KDF() could
also be applied on the PUF response X instead of on the random seed S.
However, for analysis in this work, both variants are equivalent (see [16]).
Key generators have the following two key properties:

1. Reliability: if the occurence of (bit) errors betweenX andX ′ is limited,
then with high probability K ′ will be equal to K.

2. Security: if X is sufficiently unpredictable, then K is secure even to a
party which observes W .

Reliability is accomplished by use of an error-correcting code able to cope
with typically occuring amounts of bit errors. In a construction like Fig. 1
this results in a disclosure of information by W on X, since W is assumed
to be public. However, the security property guarantees that if there is
sufficient entropy in X, there will be enough left after this disclosure to
derive a secure key. The security of the key is hence conditioned on the
entropy of X. This aspect is the main subject of this work, where we will
make this condition explicit and study its implications.

2.2 Entropy Leakage

Given that KDF() is a secure key derivation function, the security of the
derived key K depends on the unpredictability of the input of KDF().

In a construction as in Fig. 1, the input of KDF() is a seed S which is
randomly generated during the one-time enrollment, and reconstructed
from W and a noisy PUF response X ′ during later reconstructions. Since
W is considered public, S needs to be sufficiently unpredictable even when
conditioned on W . In terms of entropy,3 this is expressed as follows:

H(S|W) = H(S)− I (S;W) , (1)

or the conditional entropy of S given W is the original entropy of S
reduced with the entropy leakage of S by W , which is expressed by the
mutual information between S and W .4 For the remainder of this work
it is assumed that S is a fully random bit string of length k, i.e. H(S) =
|S| = k. For a key generator design as in Fig. 1, deploying a linear block
code with generator matrix G (where all rows of G are independent) and
parity-check matrix H, the entropy leakage is:

I (S;X ⊕ SG) = k −H(X) +H(XH>), (2)

(proof, see [16]). This expression of entropy leakage is a known fact about
code-offset schemes,5 but is not very well-established in the context of
PUF-based key generators.6 Combining (1) and (2) gives:

H(S|W) = H(X)−H(XH>). (3)

The remaining entropy of S after observing W is hence equal to the
entropy of the PUF response X reduced with the entropy of the syndrome
of X under the used linear error-correcting block code.

If X has full entropy then the entropy leakage as given by (2) becomes
zero and H(S|W) = k. Hence, in that case S remains fully random and
can be used as a secure input for key derivation. However, if X does
not have full entropy, the entropy leakage might no longer be zero and
S might not be completely unpredictable after observation of W . In the
following, we study the effect of reduced entropy of X on the security of
S, and in particular what occurs when X suffers from bias.

3 In this work, unpredictability of random variables is expressed by Shannon entropy,
as is done in many earlier work on this subject, e.g.[7]. Note that Shannon entropy
serves as a lower bound for average guesswork [19]. For a stronger (less practical)
provable security notion, the more pessimistic min-entropy measure should be used.

4 Note that H(X|W) = H(S|W), see [16]. This shows the equivalence in security (in
terms of entropy) for a key generated from S or X.

5 E.g., a variant thereof appeared before in an early version of [21].
6 This has led to some confusion and occasional misinterpretations, i.e. under- or

overestimations of the leakage. A discussion on this is e.g. found in [3]

2.3 Entropy Leakage due to PUF Bias

The most common cause of reduced entropy of X is the presence of global
bias on the bits of X, i.e. globally ‘0’-bits occur consistently more often
than ‘1’-bits or vice-versa. We say that an n-bit PUF response X is p-
biased (0 ≤ p ≤ 1) if the a-priori expected number of ’1’-bits in X is
p · n, or p is the a-priori probability of a random bit of a PUF response
evaluating to ‘1’. An unbiased PUF has p = 50%, but from experiments it
is clear for most PUFs p deviates slightly from 50%, or even significantly
(see e.g. [7,13,8]).

We now investigate entropy leakage on S when X has reduced entropy
caused only by global bias. In that case H(X) = nh(p) with h() the
binary entropy function. From (2) and (3) it is evident that the quantity
H(XH>) plays a central role in the entropy leakage. In any case, it holds
that H(XH>) ≤ |XH>| = (n− k), which results in the lower bound:

H(S|W) ≥ k − n(1− h(p)). (4)

This is a known practical bound for constructing a secure PUF-based key
generator (see e.g. [15]), but it needs to be stressed that this is a lower
bound and hence any conclusions based on it could be overly pessimistic.7

We present two methods for calculating the entropy leakage exactly
in the case of global bias for codes with certain properties:

– For codes with a simple structure, a closed expression for H(XH>)
can be derived. In particular for repetition codes it holds that:8

H(XHrep
>) = −

n−1∑
t=0

(
n− 1

t

)
f(t;n, p) log2 f(t;n, p) (5)

with f(t;n, p) = pt(1− p)n−t + pn−t(1− p)t.

– For non-trivial but relatively short codes (e.g. n < 32), the distribu-
tion of XH> can be determined exhaustively from the known distri-
bution of X. H(XH>) then follows from the distribution of XH>.

Fig. 2(a) shows H(S|W) for repetition codes with a p-biased PUF.9

Both the lower bound (4) and the exact calculation (5) are shown. It is
clear that for p 6≈ 50%, the lower bound is not tight and significantly

7 Note that in particular for a too high bias this entropy bound even becomes negative,
making it absolutely clear that this is a pessimistic lower bound.

8 See [16] for the derivation of this formula and similar for min-entropy in [3].
9 Only p ≤ 0.5 is shown; entropy-vs-bias graphs are symmetrical around p = 0.5.

Bias p

R
em

ai
ni

ng
 E

n
tr

op
y

H
(S

|W
)

n =
 3

n =
 5

n =
 7 n =

 9
n

= 1
1

n = 3 n
=

 5

n
 =

 7
n
 =

 9
n
 =

 1
1

(a) For repetition codes (n = 3 . . . 11),
calculated with the lower bound from (4)
and exactly based on (5).

R
em

ai
ni

ng
 E

n
tr

op
y
H
(S
|W
)

Bias p

(b) For the key generator from [10], cal-
culated with the lower bound formula fol-
lowing from plugging (6) into (3).

Fig. 2. H(S|W) in case of a p-biased PUF response.

underestimates the remaining entropy; e.g. for n = 5 the lower bound
reaches zero for p = 24%, while exact calculation shows that about 0.35bit
of entropy is actually still left. The lower bound is hence rather pessimistic
for biases not close to 50% and a more exact calculation is preferable. This
also partially refutes the so-called “repetition code pitfall” as stated in [9]
which was solely based on the pessimistic conclusions from (4).

On the other hand, it is clear from Fig. 2(a) that a biased PUF re-
sponse still severely reduces the remaining entropy of the seed S. This
could be problematic, in particular for key generators deploying concate-
nated codes with a repetition code as the inner code, as shown next.

2.4 Effect of PUF Bias on a PUF-based Key Generator

In [10], one of the most efficient key generators to date10 was proposed
using a concatenation of r = 15× a (24, 12)-Golay code word for the outer
code and a (8, 1)-repetition code as inner code. The decoder consists of a
hard-in-soft-out repetition decoder and a soft-in-hard-out Golay decoder.
This construction extracts a 128-bit key with a failure rate < 10−6, from
2880 PUF response bits with average bit error rate ≤ 15%.11 As a safety

10 Efficient in terms of PUF size, while following the design of Fig. 1 and using only a
single enrollment measurement per derived key

11 The key generator from [10] is based on an SRAM PUF, but in this work we make
abstraction of the actual PUF used. Our analysis and solutions apply to all PUF
types with i.i.d. response bits suffering from bias.

measure for reduced PUF entropy, the seed S from which the key is
derived has a length of 15 × 12 = 180 bits.12 We will study the effect
of global PUF bias on this construction, and how much protection this
implemented safety measure offers.

Since the concatenation of two linear block codes forms a new block
code, all the entropy leakage results from Sects. 2.2 and 2.3 remain valid.
Assuming the bits of X are i.i.d., then it holds for r× a generic (n2, k2)-
block code concatenated with a (n1, 1)-repetition code that:

H(XH>) ≤ r ·
(
n2 ·H(X1:n1Hrep

>) +H(X1:n2H2
>)
)
, (6)

with X1:n1 and X1:n2 vectors of n1 and n2 bits from X.13 This is an
upper bound (≤) since the entropy contributions of both right terms in
(6) could partially overlap,14 but the same entropy cannot be leaked twice.
We evaluate (6) exactly for the example key generator by calculating the
repetition code entropy term using (5), and the Golay code term using the
exhaustive method. The result is plugged into (3) and shown in Fig. 2(b).

From Fig. 2(b) it is clear that bias significantly affects the remaining
seed entropy for this realistic key generator. For p < 41.8% (p > 58.2%),
the remaining entropy (lower bound) even falls below 128 bits, and the
input of the key derivation function has potentially less than 128 bits of
entropy. Hence one can no longer claim that the derived 128-bit key has
full entropy.15 Hence, the safety measure of using a 180-bit seed effectively
keeps this key generator secure for PUFs with a bias 41.8% ≤ p ≤ 58.2%.

In case of a seed of only 128 bits, the key’s security would be reduced
for any PUF with even the slightest bias. On the other hand, in order to
cope with even more bias, overhead on the seed length will have to be
increased even further. In Tab. 1 we scaled the seed length (and PUF size
and failure rate) with the same code construction but increasing the num-
ber of Golay code words r. Unfortunately, the resistance to bias does not
scale accordingly. The extra bias this generator can handle by increasing
the seed gradually becomes very small. For the used code construction it

12 [10] aims for a seed of 171 bits, but this is rounded up to 180 for practicality. The
need for having 171-bit seeds originated in [5], but the reasoning is not fully clear.

13 Since bits of X are assumed i.i.d., which particular bits from X are considered for
the entropy calculation is of no importance.

14 X1:n1Hrep
> and X1:n2H2

> are not necessarily independent.
15 Note that this does not directly imply that the key becomes predictable, just that

it is potentially less unpredictable than it should be according to its length.

cannot increase much beyond 50%±13.0%16. Also, the cost for achieving
this (slightly) increased bias resistance is a doubling of the PUF size.

Code words r Seed Length |S| PUF Size |X| Failure Rate H(S|W) ≥ 128 for p ∈

15 180 2880 4.8 · 10−7 50%± 8.2%
20 240 3840 6.4 · 10−7 50%± 10.8%
25 300 4800 8.0 · 10−7 50%± 12.1%
30 360 5760 9.6 · 10−7 50%± 13.0%

Table 1. Effect of scaling the seed length of the key generator from [10].

The conclusions about the studied key generator from [10], as summa-
rized by Fig. 2(b) and Tab. 1, can be generalized to all key generators of
the same design. The details differ slightly depending on the used codes,
but the tendencies are always the same: global bias on PUFs relatively
quickly reduces the remaining seed entropy, and increasing seed length
has only a limited effect on the bias resistance and comes at a high cost
in PUF size. This restricts the efficient use of key generators like Fig. 1
to PUFs with a limited global bias, roughly in the order 50% ± 10%.
Since many experimentally studied PUF constructions have a global bias
within this range, this is not necessarily problematic. However, for other
PUFs with larger bias this key generator design cannot be used, and it
was hypothesized (e.g. in [9]) that secure key derivation from such PUFs
is impossible. In the following we will counter this by presenting a number
of solutions that efficiently generate secure keys from PUFs with arbitrar-
ily large global bias. These solutions are generic, so they could be used to
deal with other (than global) types of bias with only minor modifications.

3 Debiasing Solutions

3.1 Basic Concept

In Sect. 2.4 we have shown that classic code-offset based key generators
can only cope with a limited amount of PUF bias. In order to overcome
this, we propose to extend the key generator design with a debiasing step
prior to generating the code-offset helper data, as shown in Fig. 3. The
idea is that the debiased PUF response Y which is actually enrolled is
less biased than the original X, and hence the entropy leakage due to bias

16 Note that we cannot increase beyond r = 31, without increasing the length of the
repetition code, otherwise the failure rate gets too large.

PUF

RNG
Seedg(S)

Responseg(X)

Encode
CodegWordg(C) HelpergDatag(W)

KDF
EnrolledgKeyg(K)

PUF
NoisygResponseg(X')

NoisygCodegWordg(C')
Decode

DecodedgSeedg(S')

ReconstructedgKeyg(K')

Enrollment: Reconstruction:

KDF

Debias
(enroll)

Debias
(reconstruct)

DebiasedgResponseg(Y) DebiasedgNoisygResponseg(Y')

DebiasinggDatag(D')

Fig. 3. Debiasing PUF-based key generator based on the code-offset method.

is reduced, or ideally zero. This seems a rather straightforward extension
of the classic key generator design from Fig. 1, but there are a number of
important and non-trivial points to consider when doing this:

Reliability A debiasing step should not compromise the reliability of the
key generator. This requirement excludes many potential debiasing
options that blow up the bit error rate of the enrolled bit string. On
the other hand, certain debiasing solutions allow for an intelligent
combination of debiasing and error-correction, as shown next.

Efficieny A debiasing step typically compresses or discards part of the
PUF response, hence introducing a debiasing overhead. It will become
clear that basic debiasing methods have a rather high overhead. We
propose innovative optimizations specifically tailored for PUF-based
key generation which significantly reduce overhead.

Leakage Debiasing typically also produces side information during en-
rollment which is required during reconstruction. This debiasing data
D hence needs to be stored/transfered publicly with the code-offset
helper data W , potentially introducing new entropy leakage. For each
presented debiasing method, we will prove that the combined entropy
leakage of the debiasing data D and helper data W is zero.

Reusability The classic code-offset scheme from Fig. 1 is reusable as
shown in [2]. This means that the same PUF can be enrolled many
times, each time producing a different key K and helper data W ,
without leaking more entropy than under just one single enrollment.
This property does not necessarily hold when a debiasing step is used.
We will investigate the reusability of each proposed debiasing method.

We will now introduce and discuss a number of increasingly more sophis-
ticated debiasing methods and investigate these properties.

3.2 CVN: Classic von Neumann (VN) Debiasing

The classic randomness extractor as proposed by von Neumann [20] con-
siders consecutive pairs of bits. If both bits are equal they are discarded,

1 0 0 0 1 0 0 1 0 0 0 0 1 1
≠

1
≠

1
≠

0
= = = =

0 1
≠

0

Response X:

Debiased Response Y:
von Neumann extraction:

0 0
=

1 0 1 1 0 0 0 1Debiasing Data D: 0

Fig. 4. Debiasing with a classic von Neumann extractor (enrollment only).

if they are opposed then the first bit is retained as a debiased bit. It is
well known that if the input bits are i.i.d. but globally biased, then the
output bits are perfectly random. Fig. 4 shows how the classic von Neu-
mann (CVN) extractor can be used as a debiasing step in a key generator.
During enrollment (shown), the output of the CVN extractor becomes the
debiased response Y which is used to calculate the code-offset helper data
on. Also, for each considered bit pair of X a selection bit is used to show
whether (1) or not (0) the first bit of that pair was retained in Y . These
selection bits are the debiasing data D which is transfered alongside the
helper data W . During reconstruction, the retained bits Y ′ from the noisy
PUF reponse X ′ are selected with the bits in D.

Reliability A nice feature of debiasing methods like CVN is that they
hardly affect the error rate of the PUF response bits, contrary to
other methods such as hash functions or XOR-combiners.17 This is the
main motivation to use a von Neumann-like extractor as a debiasing
step in a PUF-based key generator. Therefore, all following proposed
debiasing solutions are variants of this classic von Neumann debiasing.

Efficiency If X is a p-biased n-bit PUF response, then the number of
unbiased bits retained by CVN is binomially distributed with param-
eters (bn2 c, 2p(1 − p)). The debiasing overhead of CVN is hence very
high; even when the input X is already unbiased, CVN will still dis-
card on average 3/4 of the bits. However, in practical situations this
ratio is even lower; to obtain |Y | unbiased bits with a maximum failure
rate pfail, n needs to be large enough to meet:

F−1bino

(
pfail; bn2 c, 2p(1− p)

)
≥ |Y |. (7)

E.g. for |Y | = 1000, p = 50% and pfail = 10−6, this yields n ≥ 4446, or
a debiasing overhead factor of about 4.4. If X is actually biased this
even becomes worse; e.g. for p = 30%, n ≥ 5334 or a factor of 5.3.

Leakage Due to the properties of CVN, Y will be perfectly random
regardless of the bias on X, and hence according to (2) we have
I (S;W) = 0. However, since CVN debiasing also produces public
information D, we need to consider I (S; (W,D)) instead. It can be

17 Von Neumann extractors have a small effect on bit error rate, shown in Sect. 4.1.

shown that I (S; (W,D)) = 0 for CVN (proof, see full version [16]),
hence the combination of (W,D) leaks no information on the seed S.

Reusability A key generator using CVN for debiasing is not reusable.
An example of the insecurity from enrolling the same PUF more than
once is shown in Fig. 5. Here one learns from the helper data W (1) of
the first enrollment that the first and fifth bit of X(1) are equal since
they are both XOR-ed with the same 2-bit repetition code word. In
the second enrollment, X(2) a noisy version of X(1) is enrolled, with
differing bits marked in black. Because of these few differing bits, the
first and fifth bit of X(2) are now enrolled in two different code words.
However, from the first enrollment one has learned that these two
bits are equal. From this knowledge, one can deduce that the two
code words in the second enrollment, and their corresponding seed
bits, are also equal (with high probability). The 2-bit seed S(2) hence
has only two possible values instead of four. In general, one can say
that I

(
S(2); (W (1), D(1),W (2), D(2))

)
> I (S; (W,D)) = 0 and hence

there is (more) leakage when the PUF is enrolled more than once. The
reason for this reuse insecurity is the stochastic nature of the CVN
step which is caused by random bit errors in between enrollments.
Due to these differing bits, enrolled bits can shift between code words
in between enrollments, which causes this particular type of leakage.

======
1 0 0 0 1 0 0 1 0 0 0 0 1 1
≠

1
≠

1
≠

0
=

0 1
≠

0

ResponseyX(1):

DebiasedyResponseyY(1):
von Neumann extraction:

0 0

0 0 1 12-bityRepetitionyCodeyWordsyC(1):

1 1 1 1HelperyDatayW(1):

SeedyS(1) = (0, 1)

1 0 0 1 1 0 0 1 0 0 0 0 1 1
≠

1
=≠

0
≠

1
=

0 0
≠

0

X(2):

Y(2):

0 0
=

0 0 0 0C(2):

1 0 1 0W(2):

S(2) = (0, 0)

Enrollment 1 Enrollment 2

FromyW(1)yityfollowsythat X1
(1) = X5

(1) WithyhighyprobabilityyalsoyX1
(2) = X5

(2)yandyhenceyS(2)yisyeithery(0, 0)yory(1, 1)

X1
(1) X5

(1) X1
(2) X5

(2)

Fig. 5. Insecurity of CVN in case of reuse.

Summarizing, by using CVN as a debiasing step in a design like Fig. 3,
one can build a PUF-based key generator which leaks no information on
the secret seed S even if X is biased. Note that CVN poses no limit on
the amount of bias on X that can be tolerated; in theory X can have
an arbitrarily high bias, the leakage will always be zero. However, the
efficiency restriction as expressed by (7) will pose a limitation in practice,
since the PUF size n cannot become arbitrarily large. Nonetheless, this
is still a major advancement in PUF-based key generators, since it shows
that a secure key can be derived from a PUF with arbitrary bias, whereas
the classic design of Fig. 1 was limited to PUFs with a bias in the range

50%± 10% as discussed in Sect. 2.4. The cost paid for this advancement
is an increase in the PUF’s size (overhead factor > 4) and the loss of the
reusability property. In the following we will address these issues, first by
proposing overhead optimizations in Sect. 3.3, and next by proposing a
debiasing solution which retains the reusability property in Sect. 3.4.

3.3 Pair-Output (2O-VN) and Multi-Pass Tuple-Output VN
Debiasing (MP-TO-VN)

1 0 0 0 1 0 0 10 0 0 0 1 1
≠

1
= ≠

1
≠

0
= == == ==

0 1
≠

0

0 0
==

0 0 1 1

0 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0

(Even)yRepetitionyCodeyWordsyC:

Helper/DebiasingyDatay(W, D):

1 0 0 0 1 1 0 10 0 1 0 1 0 0 0 0 0

0 0 0 1 1 1
DecodedySeedyS': 0 1

1 0NoisyyCodeyWordsyC':

0 0 0 0 0 0 0 0 0 0

DebiasingyDatayD:
DebiasedyNoisyyResponseyY': 1 1 0 00 1

0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0HelperyDatayW:

1 0

Enrollment

Reconstruction

ResponseyX:
von Neumann extraction:

DebiasedyResponseyY:

NoisyyResponseyX':

SeedyS = (0, 1)

(a) Debiasing with a pair-output von
Neumann extractor.

1 0 0 0 1 0 0 10 0 0 0 1 1
≠ = ≠ ≠= == == ==

0 1
≠

1 0

HelperPDataPW:
0 0
X X

Enrollment

Reconstruction

0 0 0 0 0 0 1 1

0 1 1 1
≠ ==

1 1
= ≠ ≠

1 0 1 0 0 1 0 0 1 1 0 1 0 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0
==

0 0
≠

1 0

1 0 1 0 1 00 01 10 1 0 1 1 01 1X X
0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 00 0DebiasingPDataPD:

0 0 1 1

1 0 0 1 0 00 0 0 1 0 1 0 0 1 10 01 01 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 0 0 0 0 1 0 00 0

1 0 1 0 1 0
0 0 10 0 0

X X1 0 1 0 1 00 01 10 1 0 1 1 01 1X X

0 0 0 0

0 0 0 0 1 1 1 1 1 1 11 11 1 0 0 0
0 1 1

1 1 1 0 0 0 0 1 0 00 0

X X

X X
0 0

ResponsePX:
1st Pass von Neumann extraction:

2nd Pass von Neumann extraction:

DebiasedPResponsePY:

(Even)PRepetitionPCodePWordsPC:

SeedPS = (0, 1, 1)

NoisyPResponsePX':
(1stPPass)PDebiasingPDataPD:

(2ndPPass)PDebiasingPDataPD:
DebiasedPNoisyPResponsePY':

HelperPDataPW:

NoisyPCodePWordsPC':
DecodedPSeedPS':

(b) Debiasing with a multi(2)-pass tuple-
output von Neumann extractor.

Fig. 6. Key generators with improved efficiency VN debiasing. Extra retained bits are
marked in grey. Bit errors during reconstruction are marked in black.

The first proposed optimization (shown in Fig. 6(a)) consists of two
minor modifications to the CVN debiasing solution of Sect. 3.2:

1. Instead of using only the first bit of each selected pair as in CVN,
both bits of a selected pair are retained, hence the name pair-output
von Neumann or 2O-VN debiasing.

2. The most inner code in the code-offset scheme is an even-length rep-
etition code (e.g. 4 bits in Fig. 6(a)).

The second modification ensures that each pair retained by the first modi-
fication is used within the same repetition code word. This is an important
condition for the security of this construction. In Fig. 6(a) the helper data
W and the debiasing data D are combined in a single bit string (W,D),
where a value 00 signifies that a pair is not retained, whereas a non-zero
value (01 or 10) is the code-offset helper data of a retained pair.18

18 This is just one possible exemplary representation of (W,D).

Reliability The reliability analysis of 2O-VN is comparable to CVN and
is explained in more detail in Sect. 4.1.

Efficiency It is clear that the debiasing overhead of 2O-VN is about half
that of CVN. The constraint on n now becomes:

F−1bino

(
pfail; bn2 c, 2p(1− p)

)
≥ |Y |2 . (8)

E.g. for |Y | = 1000, p = 50% and pfail = 10−6, this yields n ≥ 2322, or
a debiasing overhead factor of about 2.3, and for p = 30%, n ≥ 2794
or an overhead factor of 2.8.

Leakage It can be shown that I (S; (W,D)) = 0 still holds for 2O-VN
debiasing.This appears counterintuitive since Y is no longer i.i.d. but
contains explicit dependencies, i.e. for each pair (Y2i−1, Y2i)i>0 it holds
that Y2i−1 = Y2i or the parity is odd. However, note that the code-
offset helper data of a repetition code anyway discloses the parities
of all bit pairs of Y used within the same code word. Hence if a bit
pair is used within the same repetition code word, as guaranteed by
the 2O-VN modifications, it is no problem that its parity is known
since it would have been disclosed anyway. More intuitively, one can
see (e.g. in Fig. 6(a)) that the known dependencies in Y do not help
an outsider in predicting anything about S from (W,D).

Reusability 2O-VN debiasing is not reusable for the same reasons as
CVN debiasing (see Sect. 3.2).

Extension to Multi-Pass Tuple Output (MP-TO-VN). The efficiency of
2O-VN can be further improved by reconsidering the discarded bits in a
second pass, shown in Fig. 6(b). Bits are now grouped as quadruplets, and
the extractor compares the first half of a quadruplet to the second half.
More passes are possible (not shown in Fig. 6(b)) where in general the
i-th pass considers tuples of 2i bits which were not retained by any of the
previous passes. Hence the name multi-pass tuple-output von Neumann
or MP-TO-VN. For (M=2)P-TO-VN, the constraint on n becomes:

∑|Y |−1
a=0

∑bn4 c
b=0 fbino

(
a−4b
2 ; bn2 c, 2p(1− p)

)
· fbino

(
b; bn−(a−4b)4 c, 2p2(1−p)2

(p2+(1−p)2)2

)
< pfail (9)

E.g. for |Y | = 1000, p = 50% and pfail = 10−6, this yields n ≥ 1538, or
an overhead factor of 1.5, and for p = 30%, n ≥ 2068 or a factor of 2.1.
For more passes similar constraints can be derived and the overhead will
reduce even further. However, the extra reduction for each additional pass
quickly becomes small and almost negligible for more than three passes.

For MP-TO-VN to be leakage-free, it needs to be ensured that bits
which were retained as a 2i-bit tuple are always used within the bounds

of a single repetition code word for calculating the helper data. This
could entail that retained tuples need to be reshuffled or that a retained
tuple is cropped when a code word bound is reached; e.g. in Fig. 6(b) the
final two bits are discarded, they cannot be used for the next code word.
Depending on the method used, it could be needed to keep track in which
pass a certain bit pair was retained. In Fig. 6(b), this is done by letting
D have three possible values for each bit pair, i.e. ‘not retained’ (00),
‘retained in first pass’ (01) or ‘retained in second pass’ (10). The leakage
and reusability analysis for MP-TO-VN are the same as for 2O-VN.

3.4 ε-2O-VN: Pair-Output VN Debiasing with Erasures

1 0 0 0 1 0 0 10 0 0 0 1 1
≠ = ≠ ≠= == == ==

0 1
≠ε-von Neumann extraction:

0 0
==

Inner Code:

RepetitionfCodefWordsfC:

Helpery/Debiasing)fDatafW:

Enrollment

0 0 0 00 0

0 1 0 0
≠ ==

0 1
≠

0 0 0 00 01 1 1 1 1 1 1 1 1 1 1 1

1 0 ε ε 1 0 ε ε ε ε ε ε ε ε ε ε0 1 0 1 0 1 0 1

1 0 ε ε 1 0 ε ε ε ε ε ε ε ε ε ε1 0 0 1 1 0 1 0

1 0 0 1 0 0 0 0 1 0 0 0 0 1 001 0 1 00 0 1

1 0 ε ε 1 0 ε ε ε ε ε ε ε ε ε ε1 0 0 1 1 0 1 0

0 0 0 0 0 1 1 1ε ε ε ε 0 ε ε ε ε ε ε1 ε ε

-4 -2 0 +4

Seed Code Word

(0, 0) → (0, 0, 0, 0)

(0, 1) → (0, 1, 0, 1)

(1, 0) → (1, 0, 1, 0)

(1, 1) → (1, 1, 1, 1)

Seed Code Word Distance

(0, 0) ← (0, 0, 0, 0) ← 22

(0, 1) ← (0, 1, 0, 1) ← 18

(1, 0) ← (1, 0, 1, 0) ← 30

(1, 1) ← (1, 1, 1, 1) ← 26

Outer Code

Soft-In/Hard-OutfDecodingfyMin.Distance)

(0, 1)

Inner Code: Hard-In/Soft-OutfRepetitionfDecoding:

DecodedfSeedfS':

Reconstruction

1

0

1

1

ResponsefX:SeedfS = (0, 1)

NoisyfResponsefX':

Helpery/Debiasing)fDatafW:

DebiasedfResponsefY:

NoisyfRepetitionfCodefWordsfC':

Outer Code

Fig. 7. Debiasing with a pair-output von Neumann extractor with erasures. Bit pairs
discarded by 2O-VN are now retained as erasures (ε, marked in grey). Bit errors during
reconstruction (w.r.t. enrollment) are marked in black.

Now we propose (Fig. 7) a modification of the 2O-VN debiasing solu-
tion from Sect. 3.3 which makes the key generator reusable again:

1. During enrollment 2O-VN debiasing is applied, yet bit pairs which
are not retained by 2O-VN are not completely discarded but replaced
with erasure symbols (ε), hence the name pair-output von Neumann
debiasing with erasures or ε-2O-VN. The length of Y (i.e. the number
of symbols) is hence equal to the length of X.

2. The most inner code is again an even-length repetition code (e.g. 6
bits in Fig. 7). The code-offset helper data between the code words
and Y is calculated with the ε-XOR operation denoted as ⊕○, which
is defined as the regular XOR (⊕) if both operands are regular bits,
but produces an ε if one or both of its operands is an ε.

3. During reconstruction, the noisy code words will also contain ε sym-
bols. These are to be treated as regular bit erasures by the decoder,
which hence needs to be able to handle both errors and erasures.
Fig. 7 uses a concatenated code of an inner 6-bit repetition code and
an (exemplary) (4, 2) outer code. The repetition code is decoded with
a hard-in-soft-out decoder which treats erasures as non-preferential
code bits. The outer code is decoded with a soft-in-hard-out decoder
(i.c. a trivial minimum-distance list decoder) to retrieve the seed S.

Reliability It is evident that ε-2O-VN debiasing impacts the reliability
of a key generator, since the used error-correcting code needs to be
able to deal with bit errors caused by noise, as well as with erasures
caused by bias. For an n-bit p-biased PUF response X, the proba-
bility of having e

2 erasures is binomially distributed with parameters
(bn2 c, p

2 + (1 − p)2). In Sect. 4.2, it is demonstrated how this affects
the reliability/efficiency of a realistic key generator.

Efficiency ε-2O-VN is very efficient in terms of debiasing overhead factor
|X|
|Y | , since |X| = |Y |. However, the cost for ε-2O-VN sits in the fact

that a more powerful error-correcting code (hence with a smaller code
rate) needs to be used to account for the introduced erasures. For
ε-2O-VN debiasing, reliability and efficiency need to be considered
together, as demonstrated in Sect. 4.2.

Leakage The ε-2O-VN debiasing method does not produce any explicit
debiasing data D. All required information is contained in W which
uses the symbols 0, 1 and ε. For leakage, we need to consider I (S;W)
again, but now in the new setting of ε-2O-VN. It can be shown that
classic von Neumann debiasing with erasures is leakage-free (proof, see
full version [16]). From this, the security of pair-output von Neumann
debiasing with erasures follows in the same manner as for 2O-VN due
to the fact that the most inner code is a repetition code.

Reusability ε-2O-VN debiasing is reusable, i.e. I
(
S(i); (W (1),W (2), . . .)

)
=

I (S;W) = 0 (proof, see full version [16]). This means that the same
PUF can be enrolled an arbitrary number of times without the com-
bination of all produced helper data strings leaking anything about
any of the enrolled seeds. A key generator with ε-2O-VN debiasing
(re)gains this property since the debiasing is no longer stochastic:
randomly differing bits between enrollments do no longer affect the
selection of bit pairs since all bit pair positions are always retained.
Unfortunately, ε-2O-VN cannot be extended to multiple passes in the
same manner as MP-TO-VN without compromising the reusability
property.

4 Objective Comparison of Debiasing Solutions

4.1 Relation Between PUF Bias and Bit Error Rate

Similarly to global bias, we define the global bit error rate to be pe if the
a-priori expected number of differing bits between two evaluations X and
X ′ of the same n-bit PUF response is pe · n, or put otherwise pe is the
a-priori probability that Xi 6= X ′i for a random bit i of a PUF.

Firstly, note that a biased PUF will have a different bit error rate for
0 and 1 bits; e.g. for a PUF which is biased towards 0, the probability
of a bit error will be higher for a 1-bit than for a 0-bit. Such behavior
is typically expressed as a channel model, shown in Fig. 8(a) for our
situation. The assumptions are that the bias of X and X ′ are the same,
even with bit errors, and that the average bit error rate is equal to pe.
Note that von Neumann-based debiasing methods will (negatively) affect
this average bit error rate since the ratio of 0 and 1 bits which are retained
will be changed, favoring the lesser occuring but more error-prone kind.

0

1

0

1
p p

Xi Xi'

Enrollment: Reconstruction:

pe
2(1 − p)

pe

2p

1−

pe

2p

pe
2(1 − p)

1−

1− p 1− p

(a) Channel model for a PUF with
bias p and bit error rate pe.

Bias p

B
it

E
rr

or
 R

at
e
p
e

pe@50%=15%

pe@50%=10%

pe@50%=20%

pe@50%=25%

(b) Plot of pe = fbias(p; pe@50%)

Fig. 8. Relations between PUF bias and error rate.

Secondly, one notices that the heavier the bias p of a PUF response,
the smaller its bit error rate pe; e.g. in the extreme case of a p = 100%
biased PUF, the bit error rate pe will be zero. To objectively compare
PUFs with different bias levels, we need to make this relation between
biases and error rates explicit; e.g. there is a big difference between a PUF
with pe = 15% but no bias p = 50% and another PUF with pe = 15% and
a heavy bias of p = 30%. For objective comparison, we introduce the fixed
point pe@50% which is the (hypothetical) bit error rate a PUF would have if
it would have been unbiased (p = 50%). For a PUF with a given pe@50%, a
relation pe = fbias(p; pe@50%) can be derived based on the reliability model

for PUFs from [14] (see derivation in full version [16]). This function is
shown for different values of pe@50% in Fig. 8(b). This graph should be
interpreted as follows: if one wants to objectively compare the efficiency
of a key generator for an unbiased PUF, e.g. with pe = 15%, to a key
generator for a biased PUF, e.g. with p = 30%, then the corresponding
error rate for the biased PUF should be set to fbias(30%; 15%) = 13.0%.

4.2 Comparison of Debiasing Solutions

The different debiasing solutions proposed in Sect. 3 are evaluated and
compared to each other in an objective manner. The evaluation is done
for the key generator from [10], which uses a repetition code-Golay code
concatenation. The results are shown in Tab. 2. Three different debiasing
solutions are compared amongst each other and against the case when no
debiasing is used (see also Tab. 1)19. The row marked with a * is the best
proposal from [10] and is used as reference case. To make the comparison
objective, the effective bit error rate pe for each simulation scales with
the bias level according to fbias(p; pe@50%) as shown in Fig. 8(b) with
pe@50% = 15% corresponding to the error rate assumed in [10] and other
works. For realistic simulations, the channel model from Fig. 8(a) is used,
so 0-bits and 1-bits have different error probabilities in case of bias.

The three debiasing methods have different properties. 2O-VN and
2P-TO-VN have a non-zero enrollment failure rate; it is possible that in-
sufficient bits are retained after debiasing for successful enrollment. Also,
for both of these systems the error-correcting code used does not change
depending on the amount of bias (only the size of the PUF changes for
maintaining reliability), while for ε-2O-VN the repetition length scales
with the amount of bias and enrollment is always successful. The PUF
size overhead in comparison to * also varies between the mehods. It is
clear that the 2P-TO-VN is the most efficient method considering this
parameter (only 1.70 times the amount of * is required to deal with the
extreme case of 25% bias), but this method does not allow reuse for
enrolling multiple keys. If this property is required ε-2O-VN provides a
strong alternative, which requires more PUF data (2.57× * at 25% bias),
but provides a combination of properties that was not known to date.

19 Failure rates differ slightly from the results in Tab. 1 which were extrapolated
from [10]. For objective comparison, the results of Tab. 2 are based on a new sim-
ulations, with the Hackett Golay decoder from [10] implemented in Matlab. The
single Golay decoding failure rate pGolay-fail is estimated as the 95%-confidence up-
per bound from the simulations; the actual values for pGolay-fail are hence likely
smaller. The total reconstruction failure rate is computed as 1− (1− pGolay-fail)

r.

Solution R
e
u
sa

b
le
?

B
ia
s
p

R
e
sc
a
le
d

B
it

E
rr
o
r
R
a
te

p
e

D
e
b
ia
s

O
v
e
rh

e
a
d
|X
| /
|Y
|

N
r.

o
f
G
o
la
y

C
o
d
e
W

o
rd

s
r

R
e
p
e
ti
ti
o
n

C
o
d
e

L
e
n
g
th

n
r
e
p

P
U
F

S
iz
e
|X
|

S
e
e
d

L
e
n
g
th
|S
|

S
e
e
d

E
n
tr
o
p
y

H
(S
|(
W
,D

))

p
fa

il

(E
n
ro

ll
)

p
fa

il

(R
e
c
o
n
st
ru

c
t)

P
U
F

S
iz
e

O
v
e
rh

e
a
d

w
.r
.t
.
*

No Debias Yes 50.0% 15.0% 1.00 11 8 2112 132 132 0 5.61e-7 0.73
No Debias* Yes 41.8% 14.7% 1.00 15 8 2880 180 128 0 5.00e-7 1.00
No Debias Yes 40.0% 14.5% 1.00 19 8 3648 228 135 0 2.74e-7 1.27
No Debias Yes 37.0% 14.2% 1.00 30 8 5760 360 128 0 3.50e-7 2.00

2O-VN No 40.0% 14.5% 2.31 11 8 4888 132 132 9.14e-7 9.86e-7 1.70
2O-VN No 35.0% 13.9% 2.45 11 8 5168 132 132 9.42e-7 6.03e-7 1.79
2O-VN No 30.0% 13.0% 2.66 11 8 5616 132 132 9.63e-7 9.57e-7 1.95
2O-VN No 25.0% 11.9% 2.99 11 8 6314 132 132 9.90e-7 4.94e-7 2.19

2P-TO-VN No 40.0% 14.5% 1.58 11 8 3334 132 132 9.98e-7 6.31e-7 1.16
2P-TO-VN No 35.0% 13.9% 1.73 11 8 3650 132 132 9.44e-7 7.69e-7 1.27
2P-TO-VN No 30.0% 13.0% 1.96 11 8 4142 132 132 9.53e-7 8.67e-7 1.44
2P-TO-VN No 25.0% 11.9% 2.32 11 8 4890 132 132 9.92e-7 9.63e-7 1.70

ε-2O-VN Yes 40.0% 14.5% 1.00 11 20 5280 132 132 0 8.67e-7 1.83
ε-2O-VN Yes 35.0% 13.9% 1.00 11 22 5808 132 132 0 9.87e-7 2.02
ε-2O-VN Yes 30.0% 13.0% 1.00 11 26 6864 132 132 0 6.12e-7 2.38
ε-2O-VN Yes 25.0% 11.9% 1.00 11 28 7392 132 132 0 6.12e-7 2.57

Table 2. Comparison of debiasing solutions for the code-offset key generator from [10].
The fixed point bit error rate is set to pe@50% = 15%. The key generator is dimensioned
to generate a full-entropy 128-bit key with a maximum failure rate < 10−6.

5 Conclusion

This work solves the open problem of secure key generation from biased
PUFs using code-offset-based constructions. This is accomplished with-
out compromising the secret key’s security and for arbitrary bias levels.
Existing conventional methods will lead to leakage on the secret key when
the PUF is too biased, whereas our proposed debiasing techniques prevent
this leakage, while maintaining the high reliability and for some solutions
even the reusability of the key generator. This comes at a cost of PUF
size overhead, but using innovative approaches we were able to limit this
overhead and design a key generator based on the requirements at hand.

Remaining open questions and interesting future research directions
include: how to further optimize the efficiency of these debiasing solutions,
and how to prevent key leakage for PUFs which suffer from reduced en-
tropy for reasons other than bias, e.g. because of bit correlations.

References

1. Bösch, C., Guajardo, J., Sadeghi, A.R., Shokrollahi, J., Tuyls, P.: Efficient Helper
Data Key Extractor on FPGAs. In: Workshop on Cryptographic Hardware and
Embedded Systems (CHES). pp. 181–197 (2008)

2. Boyen, X.: Reusable Cryptographic Fuzzy Extractors. In: ACM Conference on
Computer and Communications Security—CCS 2004. pp. 82–91. New-York: ACM
Press (2004)

3. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Helper Data Algorithms
for PUF-Based Key Generation: Overview and Analysis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) (Nov 2014)

4. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing
38(1), 97–139 (Mar 2008)

5. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Workshop on Cryptographic Hardware and Embed-
ded Systems (CHES). pp. 63–80 (2007)

6. Ignatenko, T., Willems, F.: Information Leakage in Fuzzy Commitment Schemes.
Information Forensics and Security, IEEE Transactions on 5(2), 337–348 (June
2010)

7. Katzenbeisser, S., Kocabas, U., Rozic, V., Sadeghi, A.R., Verbauwhede, I., Wachs-
mann, C.: PUFs: Myth, Fact or Busted? A Security Evaluation of Physically Un-
clonable Functions (PUFs) Cast in Silicon. In: Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES). pp. 283–301 (2012)

8. Koeberl, P., Li, J., Maes, R., Rajan, A., Vishik, C., Wójcik, M.: Evaluation of
a PUF Device Authentication Scheme on a Discrete 0.13um SRAM. In: Trusted
Systems - INTRUST. Lecture Notes in Computer Science, vol. 7222, pp. 271–288.
Springer Berlin Heidelberg (2011)

9. Koeberl, P., Li, J., Rajan, A., Wu, W.: Entropy loss in PUF-based key genera-
tion schemes: The repetition code pitfall. In: IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST). pp. 44–49 (2014)

10. van der Leest, V., Preneel, B., van der Sluis, E.: Soft Decision Error Correction
for Compact Memory-Based PUFs using a Single Enrollment. In: Workshop on
Cryptographic Hardware and Embedded Systems (CHES). pp. 268–282 (2012)

11. Lily, C.: NIST Special Publication 800-108: Recommendation for Key Derivation
Using Pseudorandom Functions (revised) (Oct 2009)

12. Lily, C.: NIST Special Publication 800-56C: Recommendation for Key Derivation
through Extraction-then-Expansion (Nov 2011)

13. Lim, D., Lee, J., Gassend, B., Suh, G., van Dijk, M., Devadas, S.: Extracting secret
keys from integrated circuits. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 13(10), 1200–1205 (Oct 2005)

14. Maes, R.: An Accurate Probabilistic Reliability Model for Silicon PUFs. In: Work-
shop on Cryptographic Hardware and Embedded Systems (CHES). pp. 73–89
(2013)

15. Maes, R.: Physically Unclonable Functions - Constructions, Properties and Appli-
cations. Springer (2013)

16. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure Key Generation
from Biased PUFs. Cryptology ePrint Archive, Report 2015/831 (2015), this is the
full version of this work (including all appendices), available on http://eprint.

iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

17. Maes, R., Tuyls, P., Verbauwhede, I.: Low-Overhead Implementation of a Soft
Decision Helper Data Algorithm for SRAM PUFs. In: Workshop on Cryptographic
Hardware and Embedded Systems (CHES). pp. 332–347 (2009)

18. Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: A Fully Functional PUF-
Based Cryptographic Key Generator. In: Cryptographic Hardware and Embedded
Systems CHES 2012, Lecture Notes in Computer Science, vol. 7428, pp. 302–319.
Springer Berlin Heidelberg (2012)

19. Massey, J.L.: Guessing and Entropy. In: IEEE International Symposium on Infor-
mation Theory (ISIT). p. 204 (1994)

20. von Neumann, J.: Various techniques used in connection with random digits. In:
Applied Math Series 12. National Bureau of Standards, USA (1951)

21. Skoric, B., de Vreede, N.: The Spammed Code Offset Method. Cryptology ePrint
Archive, Report 2013/527 (2013), http://eprint.iacr.org/

22. Yu, M.D., MRaihi, D., Sowell, R., Devadas, S.: Lightweight and Secure PUF Key
Storage Using Limits of Machine Learning. In: Cryptographic Hardware and Em-
bedded Systems CHES 2011, Lecture Notes in Computer Science, vol. 6917, pp.
358–373. Springer Berlin Heidelberg (2011)

http://eprint.iacr.org/

	Secure Key Generation from Biased PUFs

