
Improved Side-Channel Analysis of Finite-Field
Multiplication

Sonia Belaı̈d1, Jean-Sébastien Coron2, Pierre-Alain Fouque3, Benoı̂t Gérard4,
Jean-Gabriel Kammerer5, and Emmanuel Prouff6

1 École normale supérieure and Thales Communications & Security, France
2 University of Luxembourg, Luxembourg

3 Université de Rennes 1 and IRISA, France
4 DGA/MI and IRISA, France

5 DGA/MI and IRMAR, France
6 ANSSI, France

Abstract. A side-channel analysis of multiplication in GF(2128) has recently
been published by Belaı̈d, Fouque and Gérard at Asiacrypt 2014, with an appli-
cation to AES-GCM. Using the least significant bit of the Hamming weight of the
multiplication result, the authors have shown how to recover the secret multiplier
efficiently. However such least significant bit is very sensitive to noise measure-
ment; this implies that, without averaging, their attack can only work for high
signal-to-noise ratios (SNR > 128). In this paper we describe a new side-channel
attack against the multiplication in GF(2128) that uses the most significant bits
of the Hamming weight. We show that much higher values of noise can be then
tolerated. For instance with an SNR equal to 8, the key can be recovered using
220 consumption traces with time and memory complexities respectively equal to
251.68 and 236. We moreover show that the new method can be extended to attack
the fresh re-keying countermeasure proposed by Medwed, Standaert, Großschädl
and Regazzoni at Africacrypt 2010.

Keywords: Side-Channel Analysis, Galois Field Multiplication, LPN problem.

1 Introduction

Side-Channel Attacks. The cornerstone of side-channel analysis (SCA for short) is
that information about some key-dependent variable x leaks through e.g. the power
consumption or the electromagnetic information of the device manipulating x. A side-
channel attack classically follows a divide-and-conquer approach and the secret is re-
covered by exhaustively testing the likelihood of every possible value for every secret
piece. This modus operandi implicitly assumes that x depends on a short portion of the
secret (for example only 8 bits if x corresponds to the output of the AES sbox). It is
particularly suited to the context of software implementations where the processing is
sequentially split into operations on data whose size depends on the device architecture
(e.g. 8 bit or even 32 bit for smart cards).

Side-Channel Analysis of Finite-Field Multiplication. At Asiacrypt 2014 [BFG14],
Belaı̈d, Fouque and Gérard consider an attack scenario dedicated to hardware imple-
mentations where many operations are performed simultaneously. Following previous
works as [MSGR10,MSJ12], they assume that when performing a multiplication a · k
over GF(2n) for some known a, only the Hamming weight of the result a ·k ∈ GF(2n)
is leaking, with some noise; the goal is to recover the secret multiplier k. Formally, after
denoting byN (0, σ) the Gaussian distribution with null mean and standard deviation σ
and by HW the Hamming weight over GF(2n), for a given basis of GF(2n), the SCA
then amounts to solve the following problem:

Definition 1 (Hidden Multiplier Problem). Let k ← GF(2n). Let ` ∈ N. Given a
sequence (ai,Li)1≤i≤` where ai ← GF(2n) and Li = HW(ai · k) + εi where εi ←
N (0, σ), recover k.

The Belaı̈d-Fouque-Gérard Attack and the LPN Problem. As noted in [BFG14],
for σ = 0 (no noise) the above problem is easy to solve. Namely the least signifi-
cant bit of the Hamming weight of x is the xor of the bits of x. Hence for known ai
the least significant bit of HW(ai · k) is a linear function of the bits of the secret k.
Therefore every Hamming weight gives a linear equation over the n bits of k and, if
the system of equations has rank n (which happens with good probability), the secret
k can be recovered by solving a linear system. However such least significant bit is
very sensitive to the observation noise εi. Even for relatively high signal-to-noise ratios
(i.e., low σ), this induces a significant error probability for the linear equations. This
is all the more damageable that a device is never exactly leaking the Hamming weight
of manipulated data, and a modeling (aka epistemic) error therefore adds to the obser-
vation noise. The problem of solving a system of noisy linear equations over GF(2) is
known as the Learning Parity with Noise (LPN) problem. New algorithms for solving
LPN have recently been proposed [GJL14,BTV15]. The previous best method to solve
the LPN problem was the Fouque-Levieil algorithm from [LF06], which is a variant of
the algorithm BKW proposed by Blum, Kalai and Wasserman in [BKW00]. According
to [BFG14] the Fouque-Levieil algorithm can solve the LPN for n = 128 bits with error
probability p = 0.31 (corresponding to SNR = 128) with 248 acquisitions and 250 com-
plexity (it becomes 2334 when SNR = 8). Therefore the Belaı̈d-Fouque-Gérard (BFG
for short) algorithm for solving the Hidden Multiplier Problem is quite efficient for
relatively high signal-to-noise ratios (SNR > 128); however it becomes prohibitively
inefficient for smaller values (e.g., larger values of σ).

Our new Attack. In this paper we describe a new algorithm for solving the Hid-
den Multiplier Problem, in which we use several most significant bits of the Hamming
weight instead of the single least significant bit; we show that much smaller values of
SNR can then be tolerated (SNR ' 8), which increases the practicability of the attack.
Our technique works as follows. We only keep the observations with small Hamming
weight or high Hamming weight. Namely if HW(ai · k) is close to 0, this means that
most of the bits of ai · k are equal to 0. This can be written as a system of n equations
over the bits of k, all equal to 0, where some of the equations are erroneous. Similarly

if the Hamming weight is close to n, we can assume that all n equations are equal to
1, and we obtain again a set of n noisy equations. Hence in both cases we obtain an in-
stance of the LPN problem. For example, if we only keep observations with Hamming
weight less than n/4 or greater than 3n/4, we obtain a set of noisy equations with error
probability less than 1/4.

To solve the LPN problem we will use BKW style algorithms [BKW00]. The main
drawback of these algorithms is the huge samples requirement that makes them unprac-
tical for side-channel attacks. In this paper we use some improvements to reduce the
query complexity using Shamir-Schroeppel [SS79] or the variant proposed by Howgra-
ve-Graham and Joux in [HGJ10]. We also take advantage of secret-error switching
lemma [Kir11,ACPS09] to further reduce the time complexity.

Since our attack is based on filtering for abnormally low or high Hamming weights,
it is much less sensitive to noise in Hamming weight measurement than the BFG attack,
which relies on the least significant bit of the Hamming weight. Namely even for small
SNR (i.e., close to 8), our filtering remains essentially correct, whereas the information
from the least significant bit of the Hamming weight is buried in noise and becomes
useless. However, for high SNR, our attack requires a larger amount of observations.
Therefore in the latter contexts, the BFG attack stays better.

We also describe an attack when the messages ai can be chosen. In that case, the
attack becomes much more efficient. We also attack a fresh re-keying scheme proposed
in [MSGR10] to defeat side-channel cryptanalysis. Whereas the latter scheme is not
vulnerable to the technique used in [BFG14], we demonstrate that our attack enables to
recover the secret key very efficiently.

Organization of the paper. In Section 2, we recall the field multiplication for the AES-
GCM, the leakage model, the LPN problem and the BKW algorithm. Then, we present
our new attack in Section 3 and the new algorithmic techniques to reduce the number
of queries. In Section 4 we describe a new chosen message attack and in Section 5 our
attack on the fresh re-keying scheme. Finally, in Section 6 we present the result of our
practical experiments.

2 Preliminaries

2.1 Galois Field Multiplication

For any positive integer n, the finite field of 2n elements is denoted by GF(2n) and
the n-dimensional vector space over GF(2) is denoted by GF(2)n. Choosing a basis of
GF(2n) over GF(2) enables to represent elements of GF(2n) as elements of GF(2)n and
vice versa. In the following, we assume that the same basis is always used to represent
elements of GF(2n) over GF(2).

This paper analyses the multiplication in the field GF(2n), with a particular focus
on n = 128, with the representation GF(2)[x]/(x128 + x7 + x2 + x+1) which is used
in the AES-GCM protocol. If a = (a0, a1, · · · , a127) and k = (k0, k1, · · · , k127) are
two elements of GF(2128) viewed as 128-bit vectors, the multiplication a · k can be

represented by a matrix/vector product in the following way:
a0 a127 · · · a1 ⊕ a127 ⊕ a126
a1 a0 ⊕ a127 · · · a2 ⊕ a123 ⊕ a1 ⊕ a127 ⊕ a122
...

...
. . .

...
a127 a126 · · · a0 ⊕ a127 ⊕ a126 ⊕ a121

 ·


k0
k1
...

k127

 =


z0
z1
...

z127

 , (1)

where the product · is processed over GF(2).

2.2 Probabilities

In this paper we shall use an upper-case letter, e.g. X , to denote a random variable,
while the lower-case letter, x, shall denote a value taken by X . The probability of an
event ev is denoted by Pr(ev). The mean and the variance of a random variable X are
respectively denoted by E (X) and Var(X) (the standard deviation of X is the square
root of the variance). A continuous random variable X with mean µ and variance σ2 is
said to follow a normal (Gaussian) distribution, denoted by X ∼ N (µ, σ), if, ∀ x ∈ R,
Pr[X 6 x] =

∫ x
−∞ φµ,σ(x) where φµ,σ is the normal probability distribution function

(pdf) defined by

φµ,σ(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 .

The other distributions used in this paper are the uniform distribution over GF(2)n,
denoted by U(GF(2)n), and the Bernoulli distribution Ber(p) over GF(2), with Pr[X =
1] = p, for some p ∈ [0, 1]. We shall also use the Binomial distribution which is defined
over {0, . . . , n} by Pr[X = j] =

(
n
j

)
pj(1− p)n−j and is denoted by B(n, p).

2.3 Leakage Model

A common assumption is to consider that a processing on an embedded device leaks a
noisy observation of the Hamming weight of the manipulated values. Namely, for such
manipulated value z ∈ GF(2)n, it is assumed that the adversary obtains the following
observation L(z):

L(z) = HW(z) + ε , (2)

with an independent noise ε satisfying ε ∼ N (0, σ). In practice, each bit of z can leak
differently. Instead of the Hamming weight, the deterministic part of the observation
can hence be modeled as a multivariate polynomial in the bits of z, where the coeffi-
cients are taken in R, see [SLP05,RKSF11,DDP13]. For most of current microprocessor
architectures, the latter polynomial is well approximated by a linear combination of the
bits of z, leading to generalize (2) with L(z) =

∑n−1
i=0 βizi + ε. For simplicity, we will

describe our attack under the noisy Hamming Weight leakage model given by (2) but in
Section 6, we will show that it also works for such generic leakage model.

In the rest of the paper, the level of noise in the observations is quantified with the
signal-to-noise ratio (SNR for short), that we define as the ratio between the signal
variance and the noise variance. This value, which equals n/(4σ2) under Assumption

(2), is a useful notion to compare different contexts where the variances of both the
signal and the noise are different (e.g. with different devices).

As in [BFG14], the main purpose of our attack is to show that the key k can be
recovered with only the observations L(k · ai) for many known ai’s. Thus, we assume
that the attacker has no access to the internal leakage of the field multiplication k · ai
and that the n-bit results are stored in n-bit registers, which is the worst case to attack.

2.4 Learning Parities with Noise.

As briefly explained in the introduction the problem of recovering a secret k from noisy
observations of HW(a · k) relates to the well known LPN problem.

Definition 2 (Learning Parity with Noise (LPN) Problem). Let k ∈ GF(2)n and
p ∈ (0, 1/2). Given a family of ν values (ai)06i<ν in GF(2)n and the family of corre-
sponding observations (bi = 〈ai,k〉+ei)06i<ν , where 〈·, ·〉 denotes the scalar product
∈ GF(2)n and where the ai are drawn uniformly in GF(2n) and the ei are generated
according to Bernoulli’s distribution Ber(p) with parameter p, recover k.

We denote by LPN(n, ν, p) an instance of the LPN problem with parameters (n, ν, p).
In this paper, the noisy equations 〈ai,k〉+ ei will come from the noisy observations of
a device performing field (or ring) multiplications in the form z = a · k in GF(2n).

2.5 The BKW algorithm and its Variants

Blum et al. described in [BKW00] a subexponential algorithm for solving the LPN
problem: it performs a clever Gaussian elimination using a small number of linear com-
binations, which reduces the dimension of the problem. Then, Levieil and Fouque pro-
posed a practical improvement in [LF06] for the second phase of the algorithm and
Kirchner [Kir11] proposed to switch secret and error [ACPS09] to further improve the
method. Later Arora and Ge [AG11] proposed an algebraic approach for specifically
structured noise. Recently Guo et al. proposed to use error-correcting codes [GJL14].

The BKW algorithm. Given as input bi = 〈ai,k〉+ ei for known ai’s, the goal of the
BKW algorithm is to find linear combinations of the ai’s with ` terms such that:

ai1 ⊕ · · · ⊕ ai` = uj , (3)

where (uj)1≤j<n is the canonical basis, that is uj has its jth coordinate equal to 1 and
the other coordinates are 0. Then one gets:

〈uj ,k〉 = kj =
⊕̀
r=1

bir ⊕
⊕̀
r=1

eir .

It is not difficult to evaluate the new bias of the linear combination of equations
using the Piling-Up lemma. Letting δ = 1 − 2p, for ` variables e1, . . . , e` such that
Pr[ei = 1] = p = (1− δ)/2, we have Pr[e1⊕ · · ·⊕ e` = 0] = 1+δ`

2 . This shows that if

we sum ` error terms ei with Pr[ei = 1] = (1− δ)/2, the resulting error term e is such
that Pr[e = 1] = (1− δ′)/2 with δ′ = δ`. If ` is not too large, then the bias of the error
term

⊕`
r=1 eir is also not too large and with enough such equations and a majority vote

one can recover the jth coordinate of k.

Finding linear combinations. To find linear combinations satisfying (3), we first split
the ai’s into a blocks of b bits, where n = a · b (e.g. for n = 128 we can take a = 8 and
b = 16). Initially we have ν vectors ai. Consider the rightmost b bits of each ai, and sort
the ai’s into 2b classes according to this value. We xor all elements of each class with
a single one element of it, and we discard this element. Hence we get at least ν − 2b

new vectors a
(1)
i , whose rightmost b bits are zero; these a

(1)
i are the xor of 2 initial

vectors ai. One can then proceed recursively. For the next block of b bits we get at least
ν − 2 · 2b vectors a

(2)
i whose rightmost 2b bits are zero; they are the xor of 4 initial

vectors ai. Stopping at the last-but-one block, we get at least ν − (a − 1) · 2b vectors,
for which only the first b-bit block is possibly non-zero, and which are the xor of 2a−1

initial vectors ai. Among these ν − (a− 1) · 2b vectors, we select the ones equal to the
basis vectors uj and we perform a majority vote. With the xor of ` = 2a−1 vectors, the
bias is (1 − 2p)2

a−1

. Therefore for the majority vote we need roughly c/(1 − 2p)2
a−1

such vectors, for some logarithmic factor c [BKW00]. A variant of BKW algorithm
is described by Levieil and Fouque in [LF06]: it finds linear combinations similarly,
however at the end, it uses a Walsh Transform to recover the last b bits of k at once.

3 Our New Attack

In this section, we describe our new side-channel attack on the result of the multiplica-
tion in GF(2n), which benefits from being weakly impacted by the observation noise.
As in [BFG14], we aim at recovering the n-bit secret key k from a sequence of t queries
(ai,HW(k · ai) + εi)06i<t where the ai are drawn uniformly in GF(2n) and the εi are
drawn from the Gaussian distribution N (0, σ).

3.1 Overview

The cornerstone of the attack is to filter the collected measurements to keep only the
lowest and the highest Hamming weights. Then we assume that for each low (resp.
high) Hamming weight, the multiplication result is exactly n bits of zeros (resp. ones).
As a consequence, each filtered observation of zi = ai · k gives n equations each with
some error probability p. In our context, the equations correspond to the row-by-column
scalar products in (1) and the binary error associated to the ith equation is denoted by
ei, with Pr[ei = 1] = p. Therefore given t messages and corresponding measurements,
we get an instance of the LPN(n, n · t, p) problem that we can solve using techniques
described in Section 3.3. To correctly scale the latter techniques, we need to know the
error probability p with good precision. In the next section we show how to compute p
from the filtering threshold and the measurement noise σ in (2).

3.2 Filtering

We describe here how we filter the lowest and highest leakage and we compute the error
probabilities of our final set of equations. In order to catch the extreme Hamming weight
values of the multiplication results, we choose a threshold real value λ and we filter all
the observations below n/2 − λs and above n/2 + λs, with s =

√
n/2 the standard

deviation of the leakage deterministic part (here the Hamming weight). In the first case,
we assume that all the bits of the multiplication result are zeros and in the second case
we assume that they are all set to one. In both cases, we get n linear equations on the
key bits, each having the same error probability p.

We first compute the proportion of filtered acquisitions before focusing on the error
probability p. Let z = a · k be the result of a finite field multiplication; since z ∼
U(GF(2)n), we deduce HW(z) ∼ B(n, 1/2). Moreover since L(z) = HW(z)+ε, with
ε ∼ N (0, σ), we obtain that the pdf h of L(z) is defined over R by:

h(x) = 2−n
n∑
y=0

(
n

y

)
φy,σ(x) .

Since our filtering rejects the observations with leakage L(z) between n/2−λs and
n/2 + λs for some parameter λ, the proportion of filtered acquisition F (λ) is then:

∀λ ∈ R, F (λ) = 1− 2−n
n∑
y=0

(
n

y

)∫ n/2+λs

n/2−λs
φy,σ(t)dt . (4)

After filtering, our attack consists in assuming that the n bits of z are all zeros
if L(z) < n/2 − λs, and are all ones if L(z) > n/2 + λs. Therefore in the first
case out of the n equations, HW(z) equations are erroneous, whereas in the second
case n− HW(z) equations are erroneous. In the first case, this corresponds to an error
probability HW(z)/n, while in the second case this corresponds to an error probability
1− HW(z)/n. On average over filtered observations, we obtain an error probability:

p(λ) =
1

F (λ)

n∑
y=0

(
n
y

)
2n

(
y

n

∫ n/2−λs

−∞
φy,σ(t)dt+

(
1− y

n

)∫ +∞

n/2+λs

φy,σ(t)dt

)
.

This error probability p(λ) (or p for short) is a crucial parameter as it gives the error
probability in the LPN problem. Our goal is to minimize p in order to minimize the
complexity of solving the LPN problem. This can be done by increasing the filtering
threshold λ; however a larger λ implies that a larger number of observations must be
obtained initially. Therefore a tradeoff must be found between the error probability p in
the LPN problem and the proportion F (λ) of filtered observations.

The main advantage of our attack is that this error probability p is quite insensitive
to the noise σ in the observations, as illustrated in Table 1. For n = 128 and for various
values of σ, we provide the corresponding filtering threshold λ that leads to a filtering
probability F (λ), expressed with log2 1/F (λ); we then give the corresponding error
probability p. For example, for SNR = 128, with λ = 6.00 we get a filtering proba-
bility F (λ) = 2−30, which means that on average 230 observations are required to get

n = 128 equations for the LPN problem; in that case the error probability for the LPN
problem is p = 0.23. We see that this error probability does not grow too fast as SNR
decreases, as we get p = 0.25 for SNR = 8 and p = 0.34 for SNR = 0.5.

Table 1. Error probability p and λ w.r.t. the filtering proportion F (λ) and the SNR

log2(1/F (λ)) 30 25 20 15 10 5 30 25 20 15 10 5

SNR = 128, σ = 0.5 SNR = 2, σ = 4
λ 6.00 5.46 4.85 4.15 3.29 2.16 7.42 6.73 5.97 5.09 4.03 2.64
p 0.23 0.25 0.28 0.31 0.34 0.39 0.28 0.30 0.32 0.34 0.37 0.41

SNR = 8, σ = 2 SNR = 0.5, σ = 8
λ 6.37 5.79 5.14 4.39 3.48 2.28 10.57 9.58 8.48 7.21 5.71 3.73
p 0.25 0.27 0.29 0.32 0.35 0.40 0.34 0.36 0.37 0.39 0.41 0.44

Study in the general case. For completeness, we exhibit hereafter the expressions of
the probabilities F (λ) and p(λ) when the leakage satisfies (2) for another function than
HW(·). If we relax the Hamming weight assumption but still assume that the noise is
independent, additive and Gaussian, we get the following natural generalization of (2):

L(z) = ϕ(z) + ε ,

where ϕ(z) .
= E (L(Z) | Z = z) and ε ∼ N (0, σ). This leads to the following gener-

alization of (4):

∀λ ∈ R, F (λ) = 1−
∑

y∈Im(ϕ)

P (ϕ(Z) = y)

∫ λs

−λs
φy,σ(t+ µ)dt ,

where µ and s respectively denote the mean and the standard deviation of ϕ(Z). Anal-
ogously, we get:

p(λ) =
1

F (λ)

n∑
y=0

(
n
y

)
2n

(
y

n

∫ λs

−∞
gy(t+ µ)dt+

(
1− y

n

)∫ +∞

λs

gy(t+ µ)dt

)
,

where for every y, the pdf gL|HW(Z)=y is defined by:

gy(`) =

(
n

y

)−1 ∑
z∈HW−1(y)

φϕ(z),σ(`) .

In the case ϕ = HW (i.e., when the device leaks perfectly in the Hamming weight
model), it can be checked that gy is simply the pdf of N (HW(y), σ), otherwise it is a
Gaussian mixture. In Section 6, we will approximate it by a Gaussian pdf with mean
E (L(Z) | HW(Z) = y) and standard deviation

√
Var(L(Z) | HW(Z) = y).

3.3 Solving the LPN Problem

Numerous algorithms for solving LPN are known in the literature; a good survey is
given by Pietrzak in [Pie12]. They generally require a huge number of LPN equations.
However in our context, these equations come from side-channel acquisitions and thus
remain in a rather scarce number. A well-known result of Lyubashevsky reduces the
sample complexity, but its limitations on the noise render it inapplicable to our prob-
lem [Lyu05]. In this section we summarize the ideas we set-up for solving the LPN
problem with a reduced number of samples and under reasonable levels of noise.

We take the point of view of an attacker: she has a limited quantity of side-channel
information, thus a limited number of initial LPN samples. She also has a limited com-
puting power and (most importantly) memory. She has two goals: firstly she wants to
make sure that the attack will indeed be feasible in theory (this depends on the final
number of reduced equations), thus she must compute it as exactly as possible (she
cannot afford to miss one bit of complexity in the computations). Secondly, she has
reasonable but limited resources and wants to make the attack as efficient as possible.

Algorithm sketch. The main parameter of the algorithm is the initial bias: it deter-
mines the number of linear combinations steps we will be able to do before the final
bias explodes. We fix it to 3 reductions (8 linear combinations). We look for small-
weight linear combinations of initial equations that have their MSB cancelled. There’s
not enough initial LPN equations to use BKW or LF1 (cf section 2.5) algorithms di-
rectly (they do not remove enough bits per iteration).

We thus first (rather artificially) square the number ν of LPN samples: for all ele-
ments ai in the initial set, with error probability p (bias δ = 1 − 2p), we build the set
(ai,j)i 6=j

.
= (ai ⊕ aj)i,j . We then can do only 2 reductions. However, on the one hand,

BKW-like algorithms will still not find enough reduced equations. On the other hand,
exhaustively looking for reduced equations among all linear combinations of at most 4
(corresponding to 2 reductions) amplified equations would not be very efficient. Conse-
quently, we apply two steps of a generalized birthday paradox-like algorithm [Wag02].

Then assume that we obtain w-bits reduced equations. Once enough equations are
found (this depends on the final bias of the equations, which is δ8), we can directly apply
a Walsh-Hadamard transform (WHT) to recover the w LSB of the secret if the attacker
memory is greater than 2w w-bits words. If we can only obtain equations reduced to
w′ > w bits, we can simply guess the w′ − w bits of the secret and do a WHT on the
last w bits. In this case, the search space can be reduced using the error/secret switching
idea at the very beginning of the algorithm.

The algorithm steps as well as its time and space complexities are analyzed in de-
tails in [BCF+15]. From a practical perspective, the optimal choice depends on several
parameters: number of traces, filtering ratio, level of noise, available memory, comput-
ing power. Several trade-offs are thus available to the attacker. The most obvious one is
to trade side-channel measurements against computing needs. Using more traces either
makes it possible to reduce the bias of the selected equations, or increases their number,
reducing the reduction time (birthday paradox phase). In a nutshell, the more traces are
available, the better. Given a fixed number of traces (order of magnitude 220 to 224), the
attacker fixes the filtering threshold λ. Increasing λ improves the bias of the selected

equations. Thus less reduced equations are required for the WHT to correctly findw bits
of the secret. Nonetheless, increasing λ also reduces the number of initial equations and
thus makes the birthday paradox part of the algorithm slower. Concerning the reduction
phase, it is well known that balancing the two phases of the generalized birthday para-
dox is the best way to reduce its complexity. Finally doubling the memory makes it
possible recover one bit more with the WHT, while slightly more than doubling its time
complexity: we fill the table with equations that are 1 bit less reduced, halving the time
needed by the birthday paradox phase.

3.4 Comparison with state-of-the art attacks

Compared to [BFG14], our new attack performs better except in one scenario when
SNR = 128 and the number of available queries is very limited by the context. Indeed,
for SNR = 128 the attack in [BFG14] requires only 128 observations to get 128 equa-
tions with error probability 0.31 whereas our attack requires 215 observations to achieve
the same error probability. In the other contexts (i.e., for higher levels of noise) the at-
tack in [BFG14] faces strong limitations. Concretely, recovering the secret key becomes
very hard if the inputs are not chosen. On the contrary, since our attack benefits from
being quite insensitive to noise, it stays successful even for higher noise levels.

4 Extension to Chosen Inputs

In this section, we present a key-recovery technique which can be applied when the
attacker is able to control the public multiplication operands ai. It is based on comparing
the leakage for related inputs.

4.1 Comparing Leaks

In the so-called chosen message model, the attacker chooses ν messages (ai)06i<ν in
GF(2n) and gets the corresponding leakages L(k · ai) as defined by Equation (2).

From the underlying associative property of the field GF(2n), we remark7 that the
relation (2 · ai) · k = 2 · (ai · k) stands for every query ai. If the most significant bit of
ai ·k is zero, then the latter relation implies that the bits of ai ·k are simply shifted when
computing 2·(ai·k) which results in HW((2·ai)·k) = HW(ai·k). However, if the most
significant bit of ai ·k is one, then the bits are also shifted but the result is summed with
the constant value 23, which corresponds to the decimal representation of the binary
coefficients of the non-leading monomials of the polynomial x128 + x7 + x2 + x + 1
involved in the representation of the field GF(2128) in AES-GCM. In this case, the
Hamming weight values HW((2 · ai) · k) and HW(ai · k) are necessarily different.
Indeed, the bits are shifted, the less significant bit is set to one and the bits of (ai · k) at
positions 0, 1 and 6 are flipped. Thus, the absolute value of the difference between both
Hamming Weight values is equal to 3 with probability 1/4 or to 1 with probability 3/4.

Without noise, we can perfectly distinguish whether both Hamming weight values
are equal or not, and thus get knowledge of the most significant bit of ai · k. Repeating

7 We can simply choose ai equal to 1.

the experiment for every power of two until 2128 (i.e., with 128 queries) gives us the
knowledge of every bit of the multiplication result and thus the recovery of k. With
noise, the recovery is no longer straightforward. To decide whether the noisy Hamming
weights are equal or different, we fix a threshold τ depending on the SNR. Namely,
if the distance |L((2 · ai) · k) − L(ai · k)| is greater than τs where s is the signal
standard deviation (here the standard deviation of HW(Z), say

√
n/2), then we decide

that HW((2·ai)·k) 6= HW(ai ·k) and thus that the most significant bit of (ai ·k) equals
one. The type I error probability pI associated to this decision (i.e., the probability of
deciding that the Hamming weights are different while they are equal) satisfies:

pI = P [|L((2 · ai) · k)− L(ai · k)| > τs | HW((2 · ai) · k) = HW(ai · k)]

= P [|εi+1 − εi| > τs] = 1−
∫ τs

−τs
φσ
√
2(u)du ,

where we recall that, according to (2), the variable εi (resp. εi+1) corresponds to the
noise in the ith (resp. (i+1)th) observation L(ai ·k) (resp. L(ai+1 ·k) = L((2·ai)·k)).

Similarly, the type II error probability pII (of deciding that the Hamming weight
values are equal when they are different) satisfies:

pII =
3

8

(∫ τs−1

−τs−1
φσ
√
2(u)du+

∫ τs+1

−τs+1

φσ
√
2(u)du

)
+

1

8

(∫ τs−3

−τs−3
φσ
√
2(u)du+

∫ τs+3

−τs+3

φσ
√
2(u)du

)
.

Since, the key bits are all assumed to be balanced between one and zero, the probability
of error p for each key bit is equal to 1

2 (pI + pII). Table 2 gives the thresholds τ which
minimizes the error probability for different values of standard deviations.8

Table 2. Optimal threshold and probability of deciding correctly w.r.t. the SNR.

SNR (σ) 128 (0.5) 8 (2.0) 2 (4.0) 0.5 (8.0)
τ 0.094 0.171 0.301 0.536
p 0.003 0.27 0.39 0.46

Comparing to Table 1, the error probabilities in Table 2 are much more advanta-
geous and only 129 queries are required. If the number of queries is not limiting, the
traces can be averaged to decrease the noise and thus improve the success rate. An-
other improvement is to correlate not only two consecutive powers of 2 but also non-
consecutive ones (e.g., 2j and 2j+2). Without noise, we do not get more information
but in presence of noise we can improve the probability of deciding correctly.

8 Note that we did not consider so far the bias induced by the recovery of the less significant bits
(whose values have been altered by previous squarings) since it is very negligible in practice.

4.2 Key Recovery

With the method described above, we only get 128 different linear equations in the key
bits. Thus, we cannot use an LPN solving algorithm to recover the secret key in pres-
ence of errors. However, since we can average the measurements, we can significantly
reduce the level of noise and remove the errors almost completely. For instance, with
an SNR of 128 (which can also be achieved from an SNR of 2 and 64 repetitions),
we get an average of 128 × 0.003 = 0.384 errors. Solving the system without error
is straightforward when we use the powers of two since we directly have the key bits.
Thus, inverting all the second members of the equations one-by-one to remove a sin-
gle error leads to a global complexity of 27 key verifications. This complexity is easily
achievable and remains reasonable to recover a 128-bit key.

5 Adaptation to Fresh Re-keying

The core idea of the fresh re-keying countermeasure originally proposed in [MSGR10]
for block cipher algorithm is to create a new session key from a public nonce for
each new processing of the encryption algorithm. It guaranties that the secret (mas-
ter) key is never used directly. To allow for the decryption of the ciphertext, the latter
one is sent together with the nonce. For soundness, the fresh re-keying must satisfy
two properties. First, it must be easy to protect against side-channel attacks. Secondly,
it must have a good diffusion so that each bit of the new session key depends on a
large number of bits of the master key, rendering attacks based on key-hypotheses test-
ing inefficient. To satisfy the first property, [MSGR10] proposes to base the re-keying
on linear functions. Efficient techniques are indeed known to secure the latter func-
tions against SCA (e.g. higher-order masking has linear complexity for linear functions
[ISW03,CGP+12]). To additionally satisfy the second property, [MSGR10] proposes to
define the linear functions from circulant matrices deduced from the random nonce.

Let k ∈ GF(28)n denote the master key which must be protected and let a ∈
GF(28)n denote the nonce (generated at random). The square matrix whose lines cor-
respond to all the rotations of the byte-coordinates of a (e.g. the ith row corresponds to
the vector a right-rotated i times) is denoted by circ(a0, · · · , an−1). It satisfies:

circ(a0, · · · , an−1) =


a0 an−1 an−2 · · · a1
a1 a0 an−1 · · · a2
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0

 ,

and the session key k′ is deduced from (k,a) as follows:

k′ = circ(a0, · · · , an−1) · k , (5)

where · denotes the scalar product in GF(28)n. After denoting the multiplication on
GF(28) by ⊗, Equation (5) implies in particular that the ith byte of k′ satisfies:

k′i =

n−1∑
j=0

ai+j mod n ⊗ kj .

It may be checked that the attack described in Section 3.1 applies against the mul-
tiplication specified by (5) similarly as for the multiplication in (1). Indeed, the matrix-
vector product defined in (5) over GF(28) can be rewritten over GF(2) expressing each
bit of k′ as a linear combination of the bits of k with coefficients being themselves
linear combinations of the bits of a ∈ GF(2)128. Eventually, exactly like in previous
section, for ν filtered messages the attack leads to an instance of the LPN(128, 128ν, p)
problem.9 Actually, looking further in the fresh re-keying protocol, we can improve the
attack by taking advantage of the context in which the fresh re-keying is used.

Until now, we have assumed that the multiplication output was stored in a 128-
bit register, which essentially corresponds to an hardware implementation and is the
worst case from the attacker point of view. If we switch to a software implementation
e.g. running on a w-bit architecture, then the attacker can now target the manipulation
ofw-bit sub-parts of the refresh key k′ which puts him in a more favourable context. By
moreover assuming that k′ is used as a secret parameter of a block cipher like AES (as
proposed in [MSGR10]), then the attacker can exploit information leakage when the
byte-coordinates of k′ are manipulated separately. Observing the manipulation of each
of the sixteen 8-bit chunks separately gives, for a same filtering ratio, a much lower
error probability on the equations that what was achieved in the previous (hardware)
context. This can be explained by the fact that exhibiting extreme Hamming weights
is obviously much more easier on 8 bits than on 128 bits. For instance, filtering one
observation over 210 (i.e., F (λ) = 2−10) with a SNR equal to 2 results in an error
probability of p = 0.28 for n = 128 and p = 0.065 for n = 8, that is more than four
times less. Table 3 gives the error probability p according to the proportion of filtered
acquisitions F (λ) for SNR equal to 128, 8, 2 and then 0.5 (as in Table 1) and n = 8.

Table 3. Error probability p according to the proportion of filtered acquisitions F (λ).

log2(1/F (λ)) 10 5 4 3 2 1 10 5 4 3 2 1

SNR = 128, σ = 0.125 SNR = 2, σ = 1
λ 2.93 2.15 2.02 1.47 1.33 0.71 3.88 2.62 2.28 1.89 1.42 0.83
p 2.8 · 10−19 0.09 0.11 0.17 0.21 0.28 6.5 · 10−2 0.16 0.19 0.22 0.26 0.32

SNR = 8, σ = 0.5 SNR = 0.5, σ = 2
λ 3.25 2.26 1.97 1.63 1.24 0.74 5.66 3.73 3.22 2.66 1.99 1.17
p 5.9 · 10−3 0.10 0.14 0.18 0.23 0.29 0.17 0.25 0.28 0.30 0.33 0.37

This confirms on different parameters that with much fewer observations, we have
smaller error probabilities. Therefore, even for F (λ) = 0.5 (i.e., we only filter one
observation over two), the system can be solved to recover the 128-bit key. Furthermore,
it is worth noting that this new attack on an AES using a one-time key allows to recover
the master key without observing any leakage in the fresh re-keying algorithm.

By using this trick which consists in observing the leakage of 8-bit session keys
in the first round of the AES, we can also mount an attack towards the outlines of the

9 As observed by the authors of [BFG14], the attack in [BFG14] does not apply to the multipli-
cation specified by (5), essentially because of the circulant property of the matrix.

approach proposed in [BFG14] against the AES-GCM multiplication. Since in this case
only the first matrix row is involved in the computation, the coefficients of the key bits
are different and each observation gives a useful linear equation. Plus, since we ob-
serve the leakage on 8-bit data, the noise impacts on the less significant bit of Hamming
weight is reduced, which improves the system solving. However, the resulting attack
remains much less efficient than our new attack, even in the number of required obser-
vations.

6 Practical Experiments

We showed in previous sections how to mount efficient side-channel attacks on finite-
field multiplication over 128-bit data in different scenarios according to the attacker
capabilities. In order to verify the truthfullness of our leakage assumptions, we have
mounted few of these attacks in practice and made some simulations. In particular,
we implemented the AES-GCM and the fresh re-keying protocol on an ATMega328p
and measured the leakage using the ChipWhisperer kit [OC14]. We also obtained the
100,000 traces of AES-GCM multiplication from [BFG14] corresponding to EM radi-
ations of an FPGA implementation on the Virtex 5 of a SASEBO board.

We first illustrate the leakage behavior we obtained on the ATMega328p. Then we
present experimental confirmations that the attack on AES-GCM with known inputs
can actually be mounted. Afterwards, we show how efficient is the attack on fresh re-
keying when the attacker can exploit 8-bit leakages of the first round of AES. Eventu-
ally, the reader may find in the extended version of this paper [BCF+15] an experiment
corresponding to the chosen-message attack presented in Section 4 for a 128-bit mul-
tiplication implemented on the ATMega328p.

6.1 ATMega328p Leakage Behaviour

Since we are in software on an 8-bit implementation, we simulate a 128-bit leakage by
summing the intermediate leakage on 8-bit parts of the result 10. We randomly gener-
ated 100, 000 vectors a ∈ GF(2)128 and, for a fixed key k, we measured the leakage
during the processing of z = a · k as specified in AES-GCM (see (1)). Each measure-
ment was composed of 4, 992 points among which we detected 16 points of interest by
following a T-test approach as e.g. described in [GJJR11]. We afterwards verified that
these points corresponded to the manipulation of the byte-coordinates z[i] of z after the
multiplication processing.

For each i ∈ [1..16], we denote by gId,i the function z 7→ E (L(z[i]) | z[i] = z) and
by gHW,i the function y 7→ E (L(z[i]) | HW(z[i]) = y) (the first function corresponds
to the mean of the leakage L(z[i]) knowing z[i] = z ∈ GF(2)8 and the second function
corresponds to the mean of the leakage L(z[i]) knowing HW(z[i]) = y ∈ [0..8]). In the
top of Figure 1, we plot for each i ∈ [1..16] the distribution of our estimations of the
values of gId,i() (left-hand figure) and the distribution of the values of gHW,i(). First,

10 Our purpose was to test the practical soundness of our theoretical analyses; we hence chose to
artificially build a 128-bit leakage. The application of our attack to 8-bit chunks is the purpose
of Section 6.3 where it is shown that this situation is much more favourable to the attacker.

it may be observed that all the byte-coordinates, except the first one, leak quite simi-
larly. The average mean and standard deviation of the functions gID,i are -0.0301 and
0.0051 respectively. They are -0.0291 and 0.0092 for the functions gHW,i. While the
left-hand figure shows that the distributions of values differ from normal distributions,
the right-hand figure exhibits a strong dependency between them and the distribution of
the Hamming weight values of z[i]. This shows that our implementation is a good target
for our attack which requires that the deterministic part of the leakage monotonously
depends on the Hamming weight of the manipulated data. Eventually, we plot in the
bottom-left figure an estimate (with kernel methods) of the distribution of the values
E (L(z)) | HW(z) = y) when y ranges in [0..128] and L(z) .

=
∑16
i=1 L(z[i]). Once

again, the distribution is a not a perfect binomial one, but the figure shows that the de-
terministic part of the leakage monotonously depends on the Hamming weight of the
manipulated data. The mean and the standard deviation of the plotted distribution are
-0.1781 and 0, 2392 respectively. For completeness, we also plot in the bottom-right of
Figure 1 the distribution of the leakage values (after combining the 16 point of interest):
the distribution looks very close to a Gaussian one.

Fig. 1. Behaviour of the leakage w.r.t. the manipulated data Z

6.2 Attacks on AES-GCM with Known Inputs

The aforementioned attack of AES-GCM with known inputs was almost completely
performed for 96-bit keys (simulations for more leakage traces) and partially performed
for 128-bit keys (the error probabilities were confirmed in practice).

Experiments on Filtering

ATMega328p (128-bit). In this context, the leakage L(z) is built by summing the six-
teen leakages L(z[i]), with i ∈ [1..16]. Theoretically, summing the sixteen intermediate

Hamming weight values gives us exactly the Hamming weight value of the multiplica-
tion result. And summing the sixteen noise of standard deviation σ8 results in a Gaus-
sian noise of standard deviation σ128 = 4 · σ8. In practice, we get an SNR of 8.21 on
the 128-bit simulated leakage. In Table 4 we provide the experimental bounds λexp and
error probabilities pexp corresponding to few levels of filtering. We also indicate the
theoretical estimates λthe and pthe obtained by applying Formulas (3.2) and (3.2) to the
template we obtained using the same set of traces. As it can be observed, the theoret-
ical estimates are very close to the ones obtained experimentally (which validates our
theoretical analysis, even for non Hamming weight model)11.

Table 4. Experimental and theoretical parameters corresponding to filtering proportion F (λ) on
the ATmega for 128-bit AES-GCM.

SNR = 8.21, σ = 0.0206

log2(1/F (λ)) 14 12 10 8 6 4 2

λexp 4.37 3.96 3.49 3.05 2.54 1.97 1.22
pexp 0.383 0.386 0.393 0.407 0.420 0.434 0.452

λthe 4.27 3.90 3.51 3.08 2.59 2.00 1.24
pthe 0.381 0.390 0.399 0.409 0.421 0.435 0.453

Virtex 5 (128-bit). We additionally performed filtering on the traces from [BFG14] ob-
tained from an FPGA implementation of GCM. Hereafter we provide theoretical (pthe)
and experimental (pexp) error probabilities for different values of the filtering parameter
λ (Table 5). It must be noticed that experimental results correspond to expectations. The
largest deviation (for λ = 3.847) is due to the fact that only 20 traces were kept after
filtering12.

Table 5. Error probabilities obtained from real traces.

λ 0.906 1.270 1.645 2.022 2.409 2.794 3.165 3.847
pthe 0.442 0.431 0.419 0.407 0.395 0.382 0.369 0.357
pexp 0.441 0.430 0.418 0.405 0.392 0.379 0.370 0.361

11 It must be noticed that a SNR equal to 8.21 in our experiments (with a noise standard devi-
ation 0.0206) corresponds to a noise with standard deviation σ =

√
32/8.21 = 1.97 in the

theoretical Hamming weight model over 128-bit data.
12 It must be noticed that, surprisingly, we also obtained an SNR equal to 8.21 in FPGA experi-

ments but corresponding to a noise standard deviation of 7.11.

ATMega328p (96-bit). As in the 128-bit case, the 96-bit leakage is simulated by sum-
ming the twelve intermediate 8-bit leakage of the multiplication result. Table 6 gives
the bounds q and the error probabilities p corresponding to some levels of filtering13.

Table 6. Experimental and theoretical parameters corresponding to filtering proportion F (λ) on
the ATmega for 96-bit AES-GCM

SNR = 8.7073, σ = 0.0173

log2(1/F (λ)) 12 10 8 6 4 2

λexp 4.27 3.80 3.29 2.76 2.14 1.31
pexp 0.377 0.387 0.402 0.414 0.429 0.449

LPN Experiments

Attack on Simulated Traces (96-bit). We successfully performed our new attack on
AES-GCM for a block-size reduced to 96 bits. We generated a 96-bit key k, then gener-
ated 220 uniform random ai. We simulated a leakage corresponding to the one obtained
on the ATMega328p (i.e., with the same statistics) and chose λ equal to 3.80 (filtering
with probability 2−10, error probability 0.387). This kept 916 relations, the less noisy
one having weight 25 (error rate 0.260). We used this relation for secret/error switch.
All in all, we got 87840 ≈ 216,42 LPN equations. After 6 hours of parallelized general-
ized birthday computation (32 cores, 200 GB of RAM), we got≈ 239 equations reduced
down to 36 bits. After a 36-bit Walsh transform (≈ 2000 seconds, same machine), we
recovered the 36 least significant bits of the error that we converted in 36 bits of the
secret. This heavy computation corresponds to the most complex part of the attack and
validates its success. We can afterwards find the remaining bits by iterating the attack
with the knowledge of the recovered bits. This is a matter of minutes: it corresponds to
an attack on a 60-bit key, which is much less expensive than the 96-bit case.

Expected Attack Complexities (128-bit). We provide here theoretical complexities for
the key-recovery attack on 128-bit secret key. Experiments have been performed on 96-
bit secrets and presented in the previous paragraph which confirm the accuracy of our
theoretical estimates. We can see in Figure 2 the evolution of the time complexity as a
function of the memory available for the attack. Plots are provided for three different
data complexities. We notice that the time/memory trade-off is only exploitable up to
one point. This is due to the fact that when lots of memory is available, one may perform
a larger Walsh-Hadamard transform to obtain more reduced equations. At some point,
the time complexity of this transform will be predominant compared to the birthday
paradox step and thus there will be no gain in increasing the Walsh size. A relevant
time/memory trade-off for 220 acquisitions is a time complexity of 251.68 for 236 bytes
in memory (servers with such amount of memory can be bought easily).
13 An SNR equal to 8.7073 in our experiments (with a noise standard deviation 0.0173) corre-

sponds to a noise with standard deviation
√

24/8.7073 = 1.66 in the theoretical Hamming
weight model over 96-bit data.

50

55

60

65

28 30 32 34 36 38 40 42 44 46

Ti
m

e
co

m
pl

ex
ity

(l
o
g
2
)

Available memory (log2)

218 traces
220 traces
222 traces

Fig. 2. Estimated complexities of the 128-bit attack (SNR = 8.21).

6.3 Attack on Fresh Re-keying

We detail here the attack that aims at recovering the master key from the leakages
corresponding to the first round of the AES when the secret key is generated by the
fresh re-keying primitive described in Section 5. We present the known-input version
of the attack, the chosen-input attack is described in [BCF+15].

Leakage Acquisition. We randomly generated 15,000 vectors a ∈ GF(2)128 and
15,000 vectors b ∈ GF(2)8. We then measured the 8-bit leakage during the processing
of Sbox(z[0]⊕ b) with z[0] the first byte of the multiplication between a and k.

Filtering. We filtered the extreme consumption measurements in order to exhibit the
extreme Hamming weight values. Table 7 gives the empirical error probabilities accord-
ing to the proportion of filtering on the 15,000 observations. As explained in Section 5,
the error probabilities are naturally much lower than for a 128-bit leakage.

Table 7. Error probability p according to the proportion of filtered acquisitions F (λ) on the
ATMega328p for the fresh re-keying with known inputs

log2(1/F (λ)) 9 8 7 6 5 4 3 2 1

SNR = 8.6921, σ = 0.0165

λ 0.555 0.514 0.473 0.432 0.391 0.349 0.288 0.226 0.123
p 0.0 0.013 0.056 0.089 0.11 0.15 0.18 0.22 0.29

Key Recovery. With a sufficient (but still reasonable) filtering, we can directly recover
the key by inverting the linear system of equations. For instance, in our experiments,
filtering one observation over 29 gives 33 × 8 = 264 linear equations on the bits of k
without a single error. Thus, inverting the system directly gives us the correct key.

References

ACPS09. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 595–618. Springer, Au-
gust 2009.

AG11. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I, volume
6755 of LNCS, pages 403–415. Springer, July 2011.

BCF+15. Sonia Belaı̈d, Jean-Sébastien Coron, Pierre-Alain Fouque, Benoı̂t Gérard, Jean-
Gabriel Kammerer, and Emmanuel Prouff. Improved side-channel analysis of finite-
field multiplication. Cryptology ePrint Archive, Report 2015/542, 2015. http:
//eprint.iacr.org/.

BFG14. Sonia Belaı̈d, Pierre-Alain Fouque, and Benoı̂t Gérard. Side-channel analysis of mul-
tiplications in GF(2128) - application to AES-GCM. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 306–325. Springer,
December 2014.

BKW00. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. In 32nd ACM STOC, pages 435–440. ACM
Press, May 2000.

BTV15. Sonia Bogos, Florian Tramer, and Serge Vaudenay. On solving LPN using BKW and
variants. Cryptology ePrint Archive, Report 2015/049, 2015. http://eprint.
iacr.org/2015/049.

CGP+12. Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu
Rivain. Higher-order masking schemes for S-boxes. In Anne Canteaut, editor,
FSE 2012, volume 7549 of LNCS, pages 366–384. Springer, March 2012.

CJRT05. Chandra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors. Ap-
proximation, Randomization and Combinatorial Optimization, Algorithms and Tech-
niques, 8th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2005 and 9th InternationalWorkshop on Random-
ization and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005,
Proceedings, volume 3624 of Lecture Notes in Computer Science. Springer, 2005.

DDP13. Guillaume Dabosville, Julien Doget, and Emmanuel Prouff. A new second-order side
channel attack based on linear regression. IEEE Trans. Computers, 62(8):1629–1640,
2013.

GJJR11. Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing method-
ology for side-channel resistance validation. Workshop NIAT 2011, 2011.

GJL14. Qian Guo, Thomas Johansson, and Carl Löndahl. Solving LPN using covering codes.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of
LNCS, pages 1–20. Springer, December 2014.

HGJ10. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knap-
sacks. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
235–256. Springer, May 2010.

ISW03. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 463–481. Springer, August 2003.

Kir11. Paul Kirchner. Improved generalized birthday attack. Cryptology ePrint Archive,
Report 2011/377, 2011. http://eprint.iacr.org/2011/377.

LF06. Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In Roberto De
Prisco and Moti Yung, editors, SCN 06, volume 4116 of LNCS, pages 348–359.
Springer, September 2006.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2015/049
http://eprint.iacr.org/2015/049
http://eprint.iacr.org/2011/377

Lyu05. Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In Chekuri et al. [CJRT05], pages 378–389.

MSGR10. Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco
Regazzoni. Fresh re-keying: Security against side-channel and fault attacks for low-
cost devices. In Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT 10,
volume 6055 of LNCS, pages 279–296. Springer, May 2010.

MSJ12. Marcel Medwed, François-Xavier Standaert, and Antoine Joux. Towards super-
exponential side-channel security with efficient leakage-resilient PRFs. In Emmanuel
Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages
193–212. Springer, September 2012.

OC14. Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-source plat-
form for hardware embedded security research. Cryptology ePrint Archive, Report
2014/204, 2014. http://eprint.iacr.org/.

Pie12. Krzysztof Pietrzak. Cryptography from learning parity with noise. In Mária
Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser, and György
Turán, editors, SOFSEM 2012: Theory and Practice of Computer Science, volume
7147 of Lecture Notes in Computer Science, pages 99–114. Springer Berlin Heidel-
berg, 2012.

RKSF11. Mathieu Renauld, Dina Kamel, François-Xavier Standaert, and Denis Flandre. In-
formation theoretic and security analysis of a 65-nanometer DDSLL AES S-box. In
Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume 6917 of LNCS, pages
223–239. Springer, September / October 2011.

SLP05. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for dif-
ferential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar, editors,
CHES 2005, volume 3659 of LNCS, pages 30–46. Springer, August / September 2005.

SS79. Richard Schroeppel and Adi Shamir. A T sˆ2 = o(2ˆn) time/space tradeoff for certain
np-complete problems. In 20th Annual Symposium on Foundations of Computer Sci-
ence, San Juan, Puerto Rico, 29-31 October 1979, pages 328–336. IEEE Computer
Society, 1979.

Wag02. David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 288–303. Springer, August 2002.

http://eprint.iacr.org/

	Improved Side-Channel Analysis of Finite-Field Multiplication

