
Predictive Models for Min-Entropy Estimation

John Kelsey†, Kerry A. McKay†, and Meltem Sönmez Turan † ‡

† National Institute of Standards and Technology, Gaithersburg, MD
‡ Dakota Consulting Inc., Silver Spring, MD

Abstract. Random numbers are essential for cryptography. In most
real-world systems, these values come from a cryptographic pseudoran-
dom number generator (PRNG), which in turn is seeded by an entropy
source. The security of the entire cryptographic system then relies on the
accuracy of the claimed amount of entropy provided by the source. If the
entropy source provides less unpredictability than is expected, the secu-
rity of the cryptographic mechanisms is undermined, as in[10, 5, 7]. For
this reason, correctly estimating the amount of entropy available from a
source is critical.
In this paper, we develop a set of tools for estimating entropy, based
on mechansims that attempt to predict the next sample in a sequence
based on all previous samples. These mechanisms are called predictors.
We develop a framework for using predictors to estimate entropy, and
test them experimentally against both simulated and real noise sources.
For comparison, we subject the entropy estimates defined in the August
2012 draft of NIST Special Publication 800-90B[4] to the same tests, and
compare their performance.

Keywords: Entropy estimation, Min-entropy, Random number generation

1 Introduction

Random numbers are essential for generating cryptographic information, such as
secret keys, nonces, random paddings, salts etc. Typically, these values are gen-
erated by a cryptographic pseudorandom number generator (PRNG). A good
cryptographic PRNG is capable of generating outputs which can stand in for
truly random numbers for cryptographic applications. However, PRNGs are de-
terministic algorithms; their security ultimately depends on a truly unpredictable
seed.

The seed comes from an entropy source. To be useful, the entropy source’s
unpredictability must also be quantified – we need to know how many bits need
to be drawn from the entropy source to produce a good seed. The unpredictabil-
ity of the outputs of an entropy source is measured in terms of entropy. There
are a number of different measures of entropy, such as Shannon entropy, Rényi
entropy, and min-entropy. For seeding a cryptographic PRNG, the relevant mea-
sure is min-entropy, which corresponds to the difficulty of guessing or predicting
the most-likely output of the entropy source. Correctly determining how much

entropy is present in a sequence of outputs is critical–researchers have shown
examples of deployed systems whose PRNG seeds were not sufficiently unpre-
dictable, and as a result, cryptographic keys were compromised[10, 5, 7]. Esti-
mating the amount of entropy that an entropy source provides is necessary to
ensure that randomly generated numbers are sufficiently difficult to guess. How-
ever, entropy estimation is a very challenging problem when the distribution of
the outputs is unknown and common assumptions (e.g. outputs are independent
and identically distributed (i.i.d.)) cannot be made.

There are various approaches to entropy estimation. Plug-in estimators, also
called maximum-likelihood estimators, apply the entropy function on empirical
distributions (e.g., see [2, 15]). Methods based on compression algorithms (e.g.,
see [11, 20]) use match length or frequency counting to approximate entropy.
Hagerty and Draper provided a set of entropic statistics and bounds on the
entropy in [9]. Lauradoux et al. [12] provided an entropy estimator for non-
binary sources with an unknown probability distribution that converges towards
Shannon entropy.

Draft NIST Special Publication (SP) 800-90B [4] discusses procedures for
evaluating how much entropy per sample can be obtained from an entropy source.
It also provides a suite of five entropy estimators for sequences that do not satisfy
the i.i.d. assumption. Each estimator takes a sequence of minimally-processed
samples from the underlying unpredictable process in the entropy source, and
uses them to derive an entropy estimate. The entropy assessment of the source is
the minimum of the estimates obtained from the five estimators. This estimate is
intended to be used for entropy sources that undergo validation testing in order
to comply with Federal Information Processing Standard 140-2 [14].

It is important to note that good entropy estimation requires knowledge
of the underlying nondeterministic process being used by the entropy source;
statistical tests such as those referenced above and in this paper can only serve
as a sanity check on that kind of estimate. Indeed, many of the experiments
described in the remainder of this paper are based on using a non-cryptographic
PRNG with a short seed to convincingly simulate an entropy source with some
set of properties, in order to test the entropy estimators.

1.1 Entropy and Predictability

Shannon first investigated the relationship between the entropy and predictabil-
ity of a sequence in 1951 [18], using the ability of humans to predict the next
character in the text to estimate the entropy per character. In fact, predictability
is exactly what we are interested in when considering the performance of an en-
tropy source. An inadequate source of entropy allows the attacker to predict the
PRNG’s seed, and thus to predict all future pseduorandom numbers produced
by the PRNG. More recently, in [1], there is a discussion of a method called a
predictor, but details on how it works is missing.

1.2 Our Contributions

In this paper, we develop an alternative approach to estimating min-entropy,
based on the ability of any of several models to successfully predict a source’s
outputs. These models are called predictors. Each predictor is an algorithm that
attempts to predict each element in a sequence of samples, and updates its
internal state based on the samples seen so far. A predictor that successfully
predicts 1

2 of the samples from a source demonstrates that the sequence elements
can be predicted with probability at least 1

2–at worst, an attacker could use the
same algorithm to predict the sequence as is used by the predictor, but he might
manage to find a better algorithm. That translates to a min-entropy of the source
of at most 1 bit/sample, because − log2(1

2) = 1.
Our contributions include:

1. We introduce the use of predictors to estimate min-entropy of a noise source.
2. We describe a framework for using predictors for entropy estimation, includ-

ing:
(a) Entropy estimates from both global and local performance.
(b) The use of ensemble predictors to combine similar predictors together.
(c) The strategy of taking the minimum of all predictors’ estimates.

3. We define a starting set of predictors which perform well in experiments,
and which may be used directly for entropy estimation.

4. We describe a set of experiments to compare the performance of our pre-
dictors against that of the non-i.i.d. entropy estimators in the draft SP 800-
90B[4], on two different kinds of data:
(a) Data from simulated sources, whose correct entropy/sample is known.
(b) Data from real-world hardware RNGs, whose correct entropy/sample is

not known.
5. In both cases, our predictors performed very well, giving more accurate esti-

mates than the 90B estimates where the correct entropy/sample was known,
and comparable or lower estimates for the real-world sources.

1.3 Guide to the Rest of the Paper

The remainder of the paper is organized as follows. Section 2 provides fundamen-
tal definitions about entropy. Section 3 describes the entropy estimation using
predictors, and Section 4 gives descriptions of several simple predictors. Section
5 provides experimental results, and the last section concludes the study with
some future directions.

2 Preliminaries

Entropy sources, as defined in [4], are composed of three components; noise
sources that extract randomness from physical phenomena, health tests that aim
to ensure that entropy sources operate as expected, and (optional) conditioning
functions that improve the statistical quality of the noise source outputs. The

conditioning function is deterministic, hence does not increase the entropy of the
outputs of the noise source. In this study, we are concerned only with the noise
source outputs, and estimating the entropy/sample present in them. Also, in this
study, we assume that the samples obtained from a noise source consist of fixed-
length bitstrings, which can be considered either as symbols in an alphabet, or
as integers.

Let X be a discrete random variable taking values from the finite set A =
{x1, x2, . . . , xk}, with pi = Pr(X = xi),∀x ∈ A. The min-entropy of X is defined
as − log2(max{p1, . . . , pk}).

If X has min-entropy h, then the probability of observing any particular
value is no greater than 2−h. The maximum possible value for min-entropy of
an i.i.d random variable with k distinct values is log2(k), which is attained when
the random variable has a uniform probability distribution, i.e., p1 = p2 = . . . =
pk = 1

k .
A stochastic process {Xn}n∈N that takes values from a finite set A is called

a first-order Markov chain, if

Pr(Xn+1 = in+1|Xn = in, Xn−1 = in−1, . . . , X0 = i0) = Pr(Xn+1 = in+1|Xn = in),

for all n ∈ N and all i0, i1, . . . , in, in+1 ∈ A. The initial probabilities of the chain
are pi = Pr(X0 = i), whereas the transition probabilities pij are Pr(Xn+1 =
j|Xn = i). In a d-th order Markov Model, the transition probabilities satisfy

Pr(Xn+1 = in+1|Xn = in, . . . , X1 = i1) = Pr(Xn+1 = in+1|Xn = in, . . . , X1 = in−d).

The min-entropy of a Markov chain of length L is defined as

H = − log2(max
i1,...,iL

pi1

L∏
j=1

pijij+1).

The entropy per sample can be approximated by dividing H by L.

3 Entropy Estimation Using Predictors

A predictor contains a model that is updated as samples are processed sequen-
tially. For each sample, the model offers a prediction, obtains the sample, and
then updates its internal state, based on the observed sample value in order to
improve its future predictions. The general strategy of the predictors is summa-
rized in Fig. 1. It is important to note that predictors do not follow “traditional”
supervised learning methods of training and evaluation. In particular, traditional
methodologies contain disjoint training and testing sets. The training set is used
to construct the model, possibly performing many passes over the data, and the
testing data is used to evaluate the model but not update it. Predictors, on the
other hand, use all observations to update the model. In other words, all ob-
servations are part of the training set. This allows the predictor to continually
update its model, and remain in the training phase indefinitely. All observations
are also part of the testing set, because a predictor is evaluated based on all
predictions that were made since its initialization.

Initialize the predictor model

Predict the next output

Observe the next output

Compare the prediction
to the observed value

Update the predictor model

Fig. 1: General strategy of predictors

3.1 Predictor Performance and Entropy Bounds

There are two ways to broadly measure the performance of a predictor. The first
one, which we call global predictability, considers the number of accurate predic-
tions over a long period, whereas the second measure, called local predictability,
considers the length of the longest run of correct predictions.

A predictive model that can predict each sample value with probability
greater than a random guess, on average, will give the attacker a better than
expected chance to guess a PRNG seed each time one is generated. A predictive
model that usually gives a much lower probability of success, but which occa-
sionally gives a lengthy run of correct predictions in a row, gives the attacker a
chance at guessing a specific PRNG seed very cheaply.

A predictor’s performance can be expressed as a probability, and it provides
a lower bound on the best performance an attacker could get predicting the
source’s outputs–an attacker will never do worse than the predictor (he could
just reuse it directly), but he may do better. That lower bound on the probability
of making a correct prediction gives an upper bound on the entropy/sample of the
source–the more predictable a source is, the less entropy it has. This relationship
is easy to see in the formula for min-entropy: If p∗ is the probability of predicting
the next sample using the best possible predictor, then H = − log2(p∗) is the
min-entropy of the next sample. As p∗ gets closer to one, H gets closer to 0; as
p∗ gets closer to 0, H gets bigger.

Our predictors estimate entropy by first estimating the probability of suc-
cessful prediction (both globally and locally) with a 95% upper bound, and
then computing the min-entropy that would correspond to that success proba-
bility. The 95% upper bound ensures somewhat conservative estimates, and also
matches the way entropy estimates are calculated by the estimators in 90B.

3.2 Global Predictability

A predictor’s global accuracy pacc is the probability that the predictor will cor-
rectly predict a given sample from a noise source over a long sequence of samples.
Accuracy is simply the percentage of predictions that were correct. Let c denote
the count of correct predictions, and n be the number of predictions made. For
a given predictor, a straightforward estimate of its accuracy is

p̂acc =
c

n
. (1)

Our predictors compute a confidence interval on p̂acc, making the assumption
that the success probability of each prediction is independent of the correctness
of other predictions. The upper bound of the (1 − α)% confidence interval on
p̂acc, denoted as p̃acc is calculated as;.

p̃acc =

1−

(
α
2

) 1
n , if p̂acc = 0,

1, if p̂acc = 1,

p̂acc + tα

√
p̂acc(1−p̂acc)

n−1 , otherwise,

(2)

where tα refers to the upper α/2 tail of Student’s t-distribution with n-1 degrees
of freedom1. Note that if p̂acc is 1 or 0, computing a confidence interval using
the Student’s t-distribution is not valid. In these cases, confidence intervals are
calculated using the binomial distribution.

The global min-entropy estimate for this predictor, Ĥacc, is derived from p̃acc
using

Ĥglobal = − log2(p̃acc). (3)

3.3 Local Predictability

A second method to measure the performance of a predictor uses the length of
the longest run of correct predictions. This estimate is valuable mainly when the
source falls into a state of very predictable outputs for a short time. Should this
happen, the estimated min-entropy per sample will be lower.

This entropy estimate can be obtained using statistical tools used to analyze
recurrent events. Let r be one greater than the longest run of correct predictions
(e.g., if the longest run has length 3, then r = 4). Then the probability that
there is no run of length r, is calculated as

α =
1− px

(r + 1− rx)q
· 1

xn+1
, (4)

where q = 1− p, n is the number of predictions and x is the real positive root of
the polynomial 1−x+qprxr+1 = 0 [6]. The root x can be efficiently approximated

1 tα can be approximated by the 1− 1
2
α percentile of a standard normal distribution,

when n ≥ 30.

using the recurrence relation xi+1 = 1 + qprxr+1
i , as it converges on the root. In

our experiments, ten iterations appear to be sufficient to converge on the right
answer. Note that there may be two real positive roots, one of which is 1

p . This
root is generally considered extraneous, and the recurrence relation will converge
on it if and only if it is the only positive root. To find the min-entropy estimate,
denoted as Ĥlocal, using local predictability, first perform a binary search to solve
for p, then the apply following equation

Ĥlocal = − log2 p. (5)

3.4 Deriving a Final Estimate

The final entropy estimate for a predictor is the minimum of the global and the
local entropy estimates, i.e.,

Ĥ = min(Ĥglobal, Ĥlocal). (6)

Entropy Estimation Using Multiple Predictors In order to estimate the
entropy of a given entropy source, we first select a set of predictors where each
predictor is designed to successfully predict samples from sources with a certain
kind of behavior. Then, we generate a long output sequence from the source,
and evaluate the accuracy of each predictor, which provides an entropy estimate.
After obtaining the estimates from the predictors, the final entropy estimate of
the source is taken as the minimum of all the estimates.

If there is some predictable kind of behavior in the source, but no predictor
is applied that can detect that behavior, then the entropy estimate will be overly
generous. Because of this, it is important that a set of predictors that use different
approaches be applied, and the lowest entropy estimate is taken as the final
entropy estimate. By taking the minimum of all the predictors’ estimates, we can
guarantee that the predictor that was most effective at predicting the source’s
outputs determines the entropy estimate.

3.5 Underestimates and Overestimates

Predictors work in four steps:

1. Assume a probability model for the source.
2. Estimate the model’s parameters from the input sequence on the fly.
3. Use these parameters to try to predict the still-unseen values in the input

sequence.
4. Estimate the min-entropy of the source from the performance of these pre-

dictions.

This last step means that models that are a bad fit for the source can give big
overestimates, but not big underestimates in entropy. A model that’s a bad fit for
the source will lead to inaccurate predictions (by definition), and thus will lead

to a too-high estimate of the source’s entropy. This distinguishes predictors from
other entropy estimation mechanisms, such as those of [4], which give consistent,
large underestimates for some source distributions.

Predictors can still give underestimates for the source’s entropy, but these
are based on successful predictions of the samples from the source. For exam-
ple, a predictor which should be able to predict 1

2 of the samples on average
can have a run of unusually successful performance by chance, leading to an
underestimate of entropy. Also, our predictors estimate a 95% upper bound on
the success probability of the predictor from its performance, which also leads
to underestimates on average. However, both of these effects are easy to bound,
and for reasonable numbers of samples, they are small; by contrast, several of
the 90B estimators are subject to huge systematic underestimates of entropy.

This means that the strategy of applying a large set of very different predic-
tors to the sequence of noise source samples, and taking the minimum estimate,
is workable. If five predictors whose underlying models are very bad fits for the
noise source are used alongside one predictor whose underlying model fits the
source’s behavior well, the predictor that fits well will determine the entropy
estimate–predictors that are a bad fit will never give large systematic under-
estimates. Further, this means that it’s reasonable to include many different
predictors–adding one more predictor seldom does any harm, and occasionally
will make the entropy estimate much more accurate.

4 A Concrete Set of Predictors for Entropy Estimation

In this section, we present a set of predictors for categorical and numerical data
that are designed to characterize the behaviors of the noise sources. Entropy
sources, defined in SP 800-90B[4], produce discrete values from a fixed alphabet,
represented as bitstrings. Therefore, we consider predictors as a solution to a
classification problem, rather than a regression problem. However, we can still
build predictors for numerical data (samples whose integer values are meaningful
as integers), as well.

Predictors can be constructed using existing methods from online and stream
classification, but do not need to be complex. Classifiers are often designed to
be domain specific. However, for noise sources where few assumptions about the
underlying probability distribution can be made, it may be difficult to construct
sophisticated learners.

4.1 Ensemble Predictors

Many of the predictors described below are ensemble predictors. An ensemble
predictor is constructed using two or more subpredictors. At each point in the
sequence of samples being processed, the ensemble predictor keeps track of which
subpredictor has made the most correct predictions so far–that subpredictor’s
current prediction is used as the ensemble predictor’s current prediction. Note
that the ensemble predictor’s final entropy estimate is based on the success of its

own predictions. It is possible in principle for one of the subpredictors to have a
higher final probability of successful prediction than the ensemble predictor.

Our ensemble predictors combine many similar subpredictors with slightly
different model parameters–they allow us to construct a single predictor that in
effect has many different choices for those model parameters at once, and which
will choose the best set of parameters based on the data. A major benefit of
using an ensemble predictor is that, for many sources, a collection of very simi-
lar predictors differing only in a few parameter choices would give very similar
predictions. If we simply applied all these closely-related predictors directly and
then took the minimum, we would introduce a systematic underestimate when
all the closely-related predictors got similar results. By combining the similar
predictors into a single ensemble predictor, we avoid this issue–adding more pre-
dictors with different parameters to the ensemble predictor will not introduce a
bias toward underestimates.

4.2 Categorical Data Predictors

Here, we describe several predictors that assume that the samples represent
categorical data, i.e., all samples have no numerical meaning or ordering, and
serve as labels only.

Most Common in Window (MCW) maintains a sliding window of the most
recently observed w samples, where w is a parameter which can be varied in
different instances of the predictor. Its prediction is the most common value
that has occurred in that window. If there is a tie for most common value in
the window the window, the value that has occurred most recently is used. We
expect the MCW predictor to perform well in cases where there is a clear most-
common value, but that value varies over time. For example, a source whose most
common value slowly changes due to environmental changes, such as operating
temperature, might be approximated well by this predictor. In our experiments,
this predictor is used inside the ensemble predictor MultiMCW.

Single Lag Predictor remembers the most recent N values seen, and predicts
the one that appeared N samples back in the sequence, where N is a parameter
to the predictor. We expect the single lag predictor to perform well on sources
with strong periodic behavior, if N is close to the period. In our experiments,
this predictor is used inside the Lag ensemble predictor.

Markov Model with Counting (MMC) remembers every N -sample string that has
been seen so far, and keeps counts for each value that followed each N -sample
string. N is a parameter for this predictor. We expect the MMC predictor to
perform well on data from any process that can be accurately modeled by an
Nth-order Markov model. In our experiments, this predictor is used inside the
MultiMMC ensemble predictor.

LZ78Y keeps track of all observed strings of samples up to a maximum length of
32 until its dictionary reaches maximum size. For each such string, it keeps track
of the most common value that immediately followed the string. (Note that even
after the dictionary reaches maximum size, the counts continue to be updated.)
Whenever the most recently seen samples match an entry in its dictionary, the
predictor finds the longest such match, and predicts that the next sample will be
the value that most often has followed this string so far. This predictor is based
loosely on the LZ78 family of compression algorithms[17]. We expect the LZ78Y
predictor to perform well the sort of data that would be efficiently compressed
by LZ78-like compression algorithms. The LZ78Y predictor is used directly in
our experiments.

Ensemble Predictors for Categorical Data We make use of three ensemble
predictors based on categorical data. Each of the three predictors contains many
very similar subpredictors, keeps track of which subpredictor has performed the
best on the sequence so far, and uses that as the source of its predictions. This
minimizes the error in estimates introduced by having many distinct predictors
with very similar performance – the ensemble predictor’s performance is mea-
sured on its predictions, not on the performance of the predictions of any one of
its subpredictors.

Multi Most Common in Window Predictor (MultiMCW) contains several MCW
subpredictors, each of which maintains a window of the most recently observed w
samples, and predicts the value that has appeared most often in that w-sample
window. This ensemble predictor is parameterized by the window sizes of its
subpredictors w, where w ∈ {63, 255, 1023, 4095} for our experiments. We expect
MultiMCW to perform well in cases where the most common value changes over
time, but not too quickly. The wide range of window sizes is intended to give
the predictor a good chance of tracking well with many different rates of change
of the most common value.

Lag Predictor contains d subpredictors, one for each lag i ∈ {1, . . . , d}, for a
maximum depth d. This ensemble predictor is parameterized by d. We expect
Lag to perform well on sources that exhibit periodic behavior, where the period
is somewhere between 1 and d.

Multi Markov Model with Counting Predictor (MultiMMC) contains multiple
MMC predictors. D is a parameter to the ensemble predictor, and specifies the
number of MMC subpredictors, where each MMC sub predictor is parameterized
by N ∈ {1, . . . , D}. We expect MultiMMC to perform well on sources which can
be modeled reasonably well by a Markov model of depth {1, . . . , D}.

4.3 Numerical Predictors

We now describe predictors that assume that the samples are numerical–that is,
that the integer values of the samples have some numerical meaning. Numeri-
cal models generally represent continuous data, whereas outputs of the entropy

sources are discrete. This raises an issue that did not exist for categorical predic-
tors: the outputs from a numerical model may not exist in the output alphabet
of the source. Because of this discrepancy in data types, the numerical predictors
are constructed from two parts:

1. A numerical model and numerical prediction function, and
2. A grid that remembers all values seen so far and rounds all predictions to

the nearest value that has been seen so far.

Moving Average (MA) Predictors compute the average of the last w values
seen, where w is a parameter to the predictor. Note that the MA predictor
always rounds its prediction to the nearest integer value it has seen so far in the
sequence–on a binary sequence, an average of 0.7 leads to a prediction of a 1.
We expect MA to be most successful when there is some periodic component to
the source’s behavior with period close to w. In our experiments, MA is used
inside the MultiMA ensemble predictor.

First Difference (D1) Equation Predictor constructs a difference equation on
the two most recent sample values, and uses it to predict the next value. For
example, if the difference between the previous value xt−1 and the one before
that xt−2 was δ, then the predictor computes xt−1 +δ, and then uses the output
value seen so far that is closest to that value as the prediction. We expect D1
to be most successful when the source’s behavior can be well-described by a
first-order difference equation.

Ensemble Methods for Numerical Data Our single ensemble predictor for
numerical data works in the same way as the ensemble predictors for categori-
cal data work–it keeps track of which subpredictor has made the most correct
predictions, and uses that one to make the next prediction of its own. Once
again, the entropy estimate that results is based on the success of the ensemble
predictor’s predictions, not necessarily that of its most successful subpredictor.

MultiMA Predictor contains multiple MA predictors, and is parameterized by
the window sizes w ∈ {16, 32, 64, 128, 256, 512, 1024} in our experiments.

5 Results

To determine whether simple predictive models were effective for the purpose
of min-entropy estimation, we have applied the predictors presented above to
simulated and real-world2 data. We have also compared our results to the en-
tropy estimators presented in SP 800-90B[4]. Our predictors in these experiments

2 Any mention of commercial products or organizations is for informational purposes
only; it is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology nor is it intended to imply that the products
identified are necessarily the best available for the purpose.

compute an α = 0.05 upper-bound on the estimated probability from which a
min-entropy estimate is computed. This matches the approach and value of α
used in the 90B estimates.

5.1 NIST Entropy Estimation Suite

Draft NIST SP 800-90B [4] includes five estimators, which were originally spec-
ified in [9, 8]. These estimators are suitable for sources that do not necessarily
satisfy the i.i.d. assumption.

– Collision test computes entropy based on the mean time for a repeated
sample value.

– Partial collection test computes entropy based on the number of distinct
sample values observed in segments of the outputs.

– Markov test estimates entropy by modeling the noise source outputs as a
first-order Markov model.

– Compression test computes entropy based on how much the noise source
outputs can be compressed.

– Frequency test computes entropy based on the number of occurrences of the
most-likely value.

We refer to the estimators as the 90B estimators.

5.2 Simulated Data

Datasets of simulated sequences were produced using the following distribution
families:

– Discrete uniform distribution: This is an i.i.d. source in which the samples
are equally-likely.

– Discrete near-uniform distribution: This is an i.i.d source where all samples
but one are equally-likely; the remaining sample has a higher probability
than the rest.

– Normal distribution rounded to integers: This is an i.i.d. source where sam-
ples are drawn from a normal distribution and rounded to integer values.

– Time-varying normal distribution rounded to integers: This is a non-i.i.d.
source where samples are drawn from a normal distribution and rounded to
integer values, but the mean of the distribution moves along a sine curve to
simulate a time-varying signal.

– Markov Model: This is a non-i.i.d. source where samples are generated using
a kth-order Markov model.

Eighty simulated sources were created in each of the classes listed above.
A sequence of 100 000 samples was generated from each simulated source, and
estimates for min-entropy were obtained from the predictors and 90B estimators
for each sequence. For each source, the correct min-entropy was derived from
the known probability distribution.

Fig. 2: Comparison of the lowest predictor entropy estimate, the lowest 90B entropy
estimate, and the true entropy from 80 simulated sources with near-uniform distribu-
tions.

Figure 2 shows the results of the lowest estimate given by the 90B estimators3

and the lowest estimate given by the predictors presented in this work, applied
to simulated sources with near-uniform distributions. Near-uniform distributions
are particularly interesting because the majority of the 90B estimators try to fit
the data to a distribution in that family. Thus, one would expect the 90B estima-
tors to work quite well. However, the plot shows that this is not always the case
– there are several points where the 90B methods give massive underestimates.

Figure 3 shows results for the simulated sources with normal distributions.
For this class of simulated source, the 90B estimators are prone to large un-
derestimates. In most cases, the minimum estimate is the result of the partial
collection estimator, although the compression and collision estimates are quite
low as well. The results of the partial collection and collision estimates are highly
dependent on the segment size, and it is unclear whether the current strategy for
selecting the segment size is optimal. The compression estimator, based on Mau-
rer’s universal statistic[13], does not contain the corrective factor c(L,K) that
is used to reduce the standard deviation to account for dependencies between
variables, and this is likely a factor in the low estimates.

Figure 4 shows that none of the 90B or predictor estimates were overestimates
for the uniform sources, which is to be expected. Overall, underestimates given
by the predictors were smaller than those given by the 90B estimators.

Figures 5 and 6 show that predictors did give a number of overestimates when
applied to the Markov and time-varying normal sources, particularly as the true
min-entropy increases. This suggests that the predictors, with the parameters
used in these experiments, were unable to accurately model these sources. The
90B estimators gave both significant overestimates and underestimates for the

3 The implementation of the SP 800-90B estimators is slightly modified by removing
the restriction that the output space is [0, ..., 2b−1], where b is the maximum number
of bits required to represent output values.

Fig. 3: Comparison of the lowest predictor entropy estimate, the lowest 90B entropy
estimate, and the true entropy from 80 simulated sources with normal distributions.

Fig. 4: Comparison of lowest predictor entropy estimate, lowest 90B entropy estimate,
and the true entropy from 80 simulated sources with uniform distributions.

Fig. 5: Comparison of lowest predictor entropy estimate, lowest 90B entropy estimate,
and the true entropy from 80 simulated sources with Markov distributions.

Fig. 6: Comparison of lowest predictor entropy estimate, lowest 90B entropy estimate,
and the true entropy from 80 simulated sources with time-varying normal distributions.

Table 1: Error measures for the lowest 90B and predictor estimates by simulated source
class.

Simulated data class 90B MSE Predictor MSE 90B MPE Predictor MPE

Uniform 2.4196 0.5031 37.9762 17.4796

Near-uniform 1.4136 0.1544 26.6566 6.4899

Normal 4.9680 0.4686 62.6330 14.1492

Time-varying normal 3.0706 0.2564 54.1453 3.1706

Markov 0.9973 0.8294 6.4339 -11.7939

Markov sources, and tended towards large underestimates for the time-varying
normal sources.

While it can be useful to look at the trends, it is often more informative to
compare the errors. Table 1 shows the mean squared error (MSE) of the lowest
90B estimate and the lowest predictor estimate over 80 sequences from each class
of simulated sources. For all five classes, the MSE was lower for the predictors
than it was for the 90B estimators. This suggests that the predictors are better
estimators; however, the MSE does not tell the entire story. Because of the nature
of the problem, underestimates are preferred to overestimates, and MSE does
not capture the sign of the error. To capture this, the mean percentage error
(MPE) is provided in Table 1 as well.

The MPE values show that the average errors from the 90B and predictor
estimates have the same sign, except in the case of the Markov sources.

5.3 Real-World Data

Results were also obtained using random number generators deployed in the real
world. The true entropy per sample for these sources is unknown, so no error can
be computed for the estimators. However, the estimates from the predictors pre-
sented here can still be compared to the 90B estimates, based on the knowledge

that underestimates from predictors have theoretical bounds. The estimates of
the real world sources are presented in Table 2.

RDTSC Three sequences were generated using the the last bit returned by
calls to RDTSC, which returns the number of clock cycles since system startup.
RDTSC1 has an output alphabet of {0, 1}, RDTSC4 has an output alphabet
of {0, . . . , 15}, and RDTSC8 has an output alphabet of {0, . . . , 255}. These se-
quences are processed. In particular, Von Neumann unbiasing was applied to the
raw sequence generated by the repeated calls to RDTSC.

The lag predictor gives the lowest estimate for RDTSC1, the MultiMMC
predictor gives the lowest estimate for RDTSC4, and the compression estimate
gives the lowest estimate for RDTSC8. In RDTSC1, the lag predictor provides
an estimate 0.205 below that of the 90B collision estimate, suggesting that there
was periodicity that the 90B estimators were unable to detect. The predictors did
not achieve significant gains over uninformed guessing when applied to RDTSC8,
with the LZ78Y estimator performing particularly poorly on this sequence.

RANDOM.ORG [16] is a service that provides random numbers based on
atmospheric noise. It allows the user to specify the minimum and maximum
values that are output. The sequence used here consisted of bytes.

The predictors did not achieve significant gains over uninformed guessing
when applied to this sequence, with the LZ78Y estimator performing partic-
ularly poorly on this sequence. One would expect that this is because of the
cryptographic processing; the entropy estimates should be close to eight bits of
entropy per sample. However, the 90B estimates are between 5.1830 and 5.6662.
Although we cannot prove it, we suspect that this discrepancy comes from the
inaccuracy of the estimators, rather than a weakness of the source.

Ubld.it The final two real-world sequences in this paper come from a TrueRNG
device by Ubld.it [19]. The Ubld.it1 sequence contained bits, and the Ubld.it8 is
the byte interpretation of the Ubld.it1 bit sequence.

The difference between the lowest 90B and predictor estimates for the Ubld.it1
sequence was only 0.0071, which is not a significant difference. The results for
Ubld.it8 are similar to those of the RANDOM.ORG and RDTSC8 datasets –
the predictors did not achieve significant gains over uninformed guessing, and
the LZ78Y estimator gave an impossibly high result.

Across Datasets It is also informative to look at results across the real-world
datasets, particularly when looking at bytes. For byte sequences, the 90B esti-
mates are between five and six bits of entropy per sample, with the collision and
compression estimators providing the lowest estimates. The LZ78Y predictor,
on the other hand, provided impossible results of over 11 bits of entropy per
sample. This indicates that the models constructed by the LZ78Y predictor are
not good fits for these bytes sequences.

Table 2: Entropy estimates for real world sources. The lowest entropy estimate for each
source is shown in bold font.

Estimator RDTSC1 RDTSC4 RDTSC8 RANDOM.ORG Ubld.it1 Ubld.it8

Collision 0.9125 3.8052 5.3240 5.1830 0.9447 5.2771

Compression 0.9178 3.6601 5.3134 5.1926 0.9285 5.5081

Frequency 0.9952 3.9577 5.8666 5.6662 0.8068 5.8660

Markov 0.9983 3.9582 5.7858 5.3829 0.8291 5.7229

Partial Collection 0.9258 3.7505 5.3574 5.5250 0.9407 5.8238

D1 0.9616 3.9986 7.9619 7.9126 0.8734 7.9489

Lag 0.7075 3.9883 7.9546 7.9237 0.7997 7.9862

LZ78Y 0.9079 3.9989 11.9615 11.5924 0.7997 11.8375

MultiMA 0.9079 3.6458 7.9594 7.8508 0.8073 7.9441

MultiMCW 0.9079 3.9888 7.9381 7.9744 0.8072 7.9544

MultiMMC 0.9079 3.6457 7.9663 7.9237 0.8072 7.9880

5.4 General Discussion

It is interesting that in both the simulated and real-world datasets, the 90B
estimators seem prone to greater underestimation as the sequence sample size
goes from bits to bytes. There are two limiting factors as sample sizes increase.
First, the near-uniform distribution only contains two probability levels (p and
q, where p > q), and any source distribution with more than two levels seems
to cause p to increase, and therefore, the entropy decreases. Second, the Markov
estimate “maps down” the sequence so that only six bits are used to construct
the first-order model. Therefore, estimates from the set of 90B estimators are
capped at six bits of entropy per sample.

6 Conclusions

In this work, we attempted to estimate the min-entropy of entropy sources using
predictive models, and show that even simplistic learners are capable of esti-
mating entropy. We have also compared results from our simplistic learners with
those of the entropy estimation suite provided in [4].

Barak and Halevi [3] criticize the approach of estimating the entropy from
the point of an attacker, by just testing the outputs. We agree that the entropy
estimation of a noise source should be done by analyzing the physical properties
of the source, constructing a model of its behavior, and using that to determine
how much unpredictability is expected from the source. However, there are still
a number of places where external tests of entropy estimates are very useful:

For the designer: The best efforts of the designer to understand the behav-
ior of his noise source may not be fully successful. An independent test of the
unpredictability of the source can help the designer recognize these errors.

For an evaluator: A testing lab or independent evaluator trying to decide how
much entropy per sample a source provides will have limited time and expertise

to understand and verify the designer’s analysis of his design. Entropy tests are
very useful as a way for the evaluator to double-check the claims of the designer.

For the user: A developer making use of one or more noise sources can sen-
sibly use an entropy estimation tool to verify any assumptions made by the
designer.

Predictors are well-suited to providing a sanity-check on the entropy estima-
tion done by the designer of a source based on some kind of deeper analysis,
because they give an upper-bound estimate, which is very unlikely to be much
below the correct entropy per sample. If the designer’s model indicates that a
source gives h bits of entropy per sample, and a predictor consistently estimates
that it has much less than h bits/sample, this is strong evidence that the de-
signer’s estimate is wrong. Additionally, a designer who has a good model for
his noise source can turn it into a predictor, and get an entropy estimate based
on that model in a straightforward way. He can then evaluate the entropy of his
source based on the minimum of these simple, general-purpose predictors and
his own more carefully tailored one.

6.1 Future Work

This work shows the usefulness of a number of simple, generic predictors for
entropy estimation. The predictor framework is very closely related to the clas-
sification problem in machine learning. While the predictors presented in this
work are simple, more sophisticated learning techniques may be used to construct
more complex predictors. In future work, we will adapt mainstream classifica-
tion algorithms and data stream mining algorithms to fit the predictor frame-
work, and examine their effectiveness as generic predictors. Also, in future work,
we hope to adapt the predictor framework for real-time health testing of noise
sources.

Our hope is that this work inspires additional research in two different direc-
tions:

1. We hope that experts on the physical properties of specific noise sources will
use the predictor framework to design better predictors that capture the
behavior of those sources more precisely than our generic predictors.

2. We hope that experts from the machine learning community will bring more
sophisticated machine-learning tools to bear on the practical problem of the
entropy estimation of noise sources.

7 Acknowledgments

We would like to thank Stefan Lucks for his suggestion to a performance metric
that considered runs of correct predictions. We would also like to thank Tim
Hall for his implementations of the entropy estimates in [9], and John Deneker,
Tim Hall, and Sonu Sankur for providing samples from real-world noise sources
for testing.

References

1. Cryptography Research Inc., Evaluation of VIA C3 Nehemiah Random Num-
ber Generator. Tech. rep. (Revision Dated: February 27,2003), http://www.

cryptography.com/public/pdf/VIA_rng.pdf

2. Antos, A., Kontoyiannis, I.: Convergence properties of functional estimates for
discrete distributions. Random Struct. Algorithms 19(3-4), 163–193 (Oct 2001),
http://dx.doi.org/10.1002/rsa.10019

3. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation
with applications to /dev/random. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security. pp. 203–212. CCS ’05, ACM, New
York, NY, USA (2005), http://doi.acm.org/10.1145/1102120.1102148

4. Barker, E., Kelsey, J.: NIST Draft Special Publication 800-90 B: Recommenda-
tion for the Entropy Sources Used for Random Bit Generation (August 2012),
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

5. Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the random number
generator of the windows operating system. ACM Trans. Inf. Syst. Secur. 13(1),
10:1–10:32 (Nov 2009)

6. Feller, W.: An Introduction to Probability Theory and its Applications, vol. One,
chap. 13. John Wiliey and Sons, Inc. (1950)

7. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the linux random number
generator. In: Proceedings of the 2006 IEEE Symposium on Security and Privacy.
pp. 371–385. SP ’06, IEEE Computer Society, Washington, DC, USA (2006), http:
//dx.doi.org/10.1109/SP.2006.5

8. Hagerty, P.: Presentation of non-iid tests. In: NIST Random Bit Generation Work-
shop (2012), http://csrc.nist.gov/groups/ST/rbg workshop 2012/hagerty.pdf

9. Hagerty, P., Draper, T.: Entropy bounds and statistical
tests. In: NIST Random Bit Generation Workshop (2012),
http://csrc.nist.gov/groups/ST/rbg workshop 2012/hagerty entropy paper.pdf

10. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: Detection of widespread weak keys in network devices. In: Proceedings of the
21st USENIX Security Symposium (Aug 2012)

11. Kontoyiannis, I., Algoet, P., Suhov, Y.M., Wyner, A.: Nonparametric entropy es-
timation for stationary processes and random fields, with applications to English
text. IEEE Trans. Inform. Theory 44, 1319–1327 (1998)

12. Lauradoux, C., Ponge, J., Roeck, A.: Online Entropy Estimation for Non-Binary
Sources and Applications on iPhone. Research Report RR-7663, INRIA (Jun 2011),
https://hal.inria.fr/inria-00604857

13. Maurer, U.M.: A universal statistical test for random bit generators. J. Cryptology
5(2), 89–105 (1992), http://dx.doi.org/10.1007/BF00193563

14. FIPS PUB 140-2, Security Requirements for Cryptographic Modules (2002), U.S.
Department of Commerce/National Institute of Standards and Technology

15. Paninski, L.: Estimation of entropy and mutual information. Neural Comput. 15(6),
1191–1253 (Jun 2003), http://dx.doi.org/10.1162/089976603321780272

16. RANDOM.ORG: https://www.random.org/
17. Sayood, K.: Introduction to Data Compression, chap. 5. Morgan Kaufmann, third

edn. (2006)
18. Shannon, C.: Prediction and entropy of printed english. Bell System Technical

Journal 30, 50–64 (January 1951), https://archive.org/details/bstj30-1-50
19. ubld.it: TrueRNG, http://ubld.it/products/truerng-hardware-random-number-generator/

20. Wyner, A.D., Ziv, J.: Some asymptotic properties of the entropy of a stationary
ergodic data source with applications to data compression. IEEE Transactions on
Information Theory 35(6), 1250–1258 (1989)

