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Abstract. Two lightweight block cipher families, Simon and Speck,
have been proposed by researchers from the NSA recently. In this paper,
we introduce Simeck, a new family of lightweight block ciphers that com-
bines the good design components from both Simon and Speck, in order
to devise even more compact and e�cient block ciphers. For Simeck32/64,
we can achieve 505 GEs (before the Place and Route phase) and 549 GEs
(after the Place and Route phase), with the power consumption of 0.417
µW in CMOS 130nm ASIC, and 454 GEs (before the Place and Route
phase) and 488 GEs (after the Place and Route phase), with the pow-
er consumption of 1.292 µW in CMOS 65nm ASIC. Furthermore, all of
the instances of Simeck are smaller than the ones of hardware-optimized
cipher Simon in terms of area and power consumption in both CMOS
130nm and CMOS 65nm techniques. In addition, we also give the secu-
rity evaluation of Simeck with respect to many traditional cryptanalysis
methods, including di�erential attacks, linear attacks, impossible di�er-
ential attacks, meet-in-the-middle attacks, and slide attacks. Overall, all
of the instances of Simeck can satisfy the area, power, and throughput
requirements in passive RFID tags.
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1 Introduction

In recent years, low-end embedded devices have been deployed in an increasing
number and used in various applications, such as Radio Frequency Identi�cation
(RFID) tags and wireless sensor networks (WSNs). Providing security solutions
to these widely used devices has attracted a lot of attention from cryptogra-
phy researchers. These kinds of devices have very limited power consumption,
constrained memory and computing capability, and thus applying traditional
security solutions, such as TLS and IPsec, in these contexts is often impractical.
Hence, lightweight cryptography has been developed in order to provide compact
algorithms and protocols that �t in resource-constrained environments.

Numerous lightweight ciphers have appeared. Among them are a large num-
ber of block ciphers such as TEA [31], XTEA [26], PRESENT [9], KATAN and
KTANTAN [11], LED [16], EPCBC [33], KLEIN [15], LBlock [32], Piccolo [29],
Twine [30], and the more recent Simon and Speck [3]. There exist also some



lightweight stream ciphers such as Trivium [12], Grain [17] and WG [25], which
provide suitable security and small implementations for resource-constrained de-
vices.

The recently proposed lightweight block ciphers, Simon and Speck [3], have
led to papers concerning their security [7,1,10]. This is partially due to the fact
that these ciphers are recognized to be the smallest block ciphers in each of
the block/key size categories when used in resource-constrained environments.
Simon is optimized for hardware implementation, while Speck is optimized
for software. Inspired by the designs of Simon and Speck, we combine their
good components in order to get a new design of block cipher family, called
Simeck. We use a slightly modi�ed version of Simon's round function, and reuse
it in the key schedule like Speck does. Moreover, we take the bene�ts of using
Linear Feedback Shift Register (LFSR) based constants in the key schedule in
order to further reduce hardware implementation footprints. The new family of
lightweight block ciphers Simeck aims to have comparable security levels but
more e�cient hardware implementations.

Based on the aforementioned motivations, we have the detailed design goals
as follows.

Hardware. First, we want to minimize the area and power consumption of the
Application Speci�c Integrated Circuit (ASIC) implementations. We also
want to allow a range of options in the area, throughput, and power con-
sumption. Finally, we want to keep the maximum operating frequency as
high as possible.

Applications. Take the application of passive RFID tags for example, Simeck
should satisfy the following requirements in order to be used in practice:
1) The area of Simeck should be less than 2000 GEs [18,2]. 2) The power
consumption of Simeck should be very small. 3) The typical passive RFID
tag's operating frequency is 2 MHz and the data rate is 64 Kbps [14,34], and
thus the throughput is 64K/2M ≈ 1/32. Therefore, if the tag's operating
frequency is 100 KHz (for benchmarking purpose), the throughput of Simeck
should at least be 100 K · 1/32 bps ≈ 3.1 Kbps.

Security. Although Simon and Speck were designed with small, simple round
functions, they are iterated a su�cient number of times in order to resist
traditional attacks. We follow the same strategy with Simeck, and due to its
similarity with Simon, we bene�t from its analysis carried so far.

In this paper, we o�er a wide range of options between area, throughput, and
power consumption for the implementations of Simeck. All the Simeck's family
members can meet our security, hardware, and applications design goals. We
compare our results to the previous constructions with comparable block sizes
and key sizes as given in Table 1. Table 1 gives our smallest area results for all the
instances of Simeck from before and after the Place and Route (P&R) in CMOS
130nm and CMOS 65nm ASICs. In addition, the corresponding throughput and
power consumption after the Place and Route are also provided. In particular,
Table 1 presents our hardware implementation results of Simon which cost less
area than the original results in [3]. Moreover, the hardware implementations



Table 1. Comparison of Hardware Implementations of Lightweight Block Ciphers

Size Algorithm

Area Throughput Power

SourceTech Before P&R After P&R @100KHz @100KHz
(nm) (GEs) (GEs) (Kbps) (µW )

32/64

Simon

130

523 - 5.6 - [3]
Speck 580 - 4.2 - [3]
Simon 517 562 5.6 0.421 here

Simeck 505 549 5.6 0.417 here

Simon
65

466 501 5.6 1.311 here

Simeck 454 488 5.6 1.292 here

48/96

Simon

130

739 - 5.0 - [3]
Speck 794 - 4.0 - [3]
Simon 733 796 5.0 0.579 here

Simeck 715 778 5.0 0.576 here

Simon
65

661 711 5.0 1.812 here

Simeck 645 693 5.0 1.805 here

EPCBC 180 1008 - 12.1 - [33]

64/128

Simon

130

958 - 4.2 - [3]
Speck 966 - 3.4 - [3]
Simon 944 1026 4.2 0.762 here

Simeck 924 1005 4.2 0.754 here

Simon
65

845 908 4.2 2.336 here

Simeck 828 891 4.2 2.304 here

LED
180

1265 - 3.4 - [16]
PRESENT 1339 - 12.1 - [33]

of our Simeck block cipher family are even smaller than our implementations of
Simon in terms of area and power consumption.

More speci�cally in Table 1, we can achieve a small area of 505 GEs be-
fore the Place and Route with a throughput of 5.6 Kbps and 0.417 µW power
consumption for Simeck32/64 in CMOS 130nm ASIC. With a fair comparison
(before the Place and Route) in CMOS 130nm, Simeck32/64 can achieve 2.3%
smaller than our implementations of Simon32/64, and 3.4% smaller than the
original implementations of Simon32/64. Correspondingly, we can get an even
smaller area of 454 GEs before the Place and Route and 1.292 µW power con-
sumption in CMOS 65nm ASIC. In this case, Simeck32/64 is 2.6% smaller than
our implementations of Simon32/64.

Similarly, Simeck48/96, 64/128 are 2.5%, 2.1%, respectively, smaller than our
implementations of Simon48/96, 64/128, and they are 3.3%, 3.5%, respective-
ly, smaller than the original implementations of Simon48/96, 64/128 in CMOS
130nm. Correspondingly in CMOS 65nm, Simeck48/96, 64/128 are 2.4%, 2.0%,
respectively, smaller than our implementations of Simon48/96, 64/128. More-
over, with only a little extra area (GEs) and power consumption, we can increase
Simeck's throughput a lot.



This paper is organized as follows. In Section 2, we describe the speci�cations
and design rationales of the Simeck family. Section 3 �rst presents our metrics
and design �ow in CMOS 130nm and CMOS 65nm ASICs. Then, we give two
di�erent hardware architectures of Simeck in order to make a trade-o� between
area, throughput, and power consumption. Later, the hardware evaluations in
CMOS 130nm and CMOS 65nm are given with a thorough analysis. In Section 4,
we compare our results of Simeck and Simon with the results in [3]. Before
concluding this paper, we provide a security analysis of our new block ciphers
in Section 5.

2 Design Speci�cations and Rationales

In this section, we give the speci�cations, as well as design rationales, of our
block cipher family Simeck. We use the following notations throughout the rest
of the paper.

x≪ c denotes the cyclic shift of x to the left by c bits.
x� y is the bitwise AND of x and y.
x⊕ y is the exclusive-or (XOR) of x and y.

2.1 Speci�cations of Simeck

Our lightweight block cipher family Simeck is denoted Simeck2n/mn, where n is
the word size and n is required to be 16, 24 or 32; while 2n is the block size and
mn is the key size. More speci�cally, our Simeck family includes Simeck32/64,
Simeck48/96, and Simeck64/128. For example, Simeck32/64 refers to perform en-
cryptions or decryptions on 32-bit message blocks using a 64-bit key. These three
size choices of the ciphers aim to �t di�erent applications of embedded systems
including RFID systems, and these sizes are also contained in the speci�cations
of Simon and Speck families of block ciphers.

Simeck is designed to be extremely small in hardware footprints and to be
compact in software implementations as well. The round function and the key
schedule algorithm follow the Feistel structure. A plaintext to be encrypted is
�rst divided into two words l0 and r0, where l0 contains the most signi�cant
n bits, and r0 consists of the least signi�cant n bits. Then these two words are
processed by the Simeck round function for certain number of rounds, and �nally
the two output words lT and rT are concatenated to form a complete ciphertext,
where T denotes the total number of rounds.

Round Function. We de�ne the round function (of the i-th round) as the
following function,

Rki(li, ri) = (ri ⊕ f(li)⊕ ki, li),

where li and ri are the two words for the internal state of Simeck, ki is the round
key, and the function f is de�ned as

f(x) = (x� (x≪ 5))⊕ (x≪ 1).

Figure 1 illustrates the operations of the round function Rki
.
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Fig. 1. The Round Function of Simeck

Key Schedule/Expansion. To generate the round key ki from a given master
key K, the master key K is �rst segmented into four words and loaded as the
initial states (t2, t1, t0, k0) of the feedback shift registers shown in Figure 2. The
least signi�cant n bits of K are loaded into k0; while the most signi�cant n bits
are put into t2. To update the registers and generate round keys, we reuse the
round function with a round constant C ⊕ (zj)i acting as the round key, i.e.
RC⊕(zj)i . The updating operation can be expressed as

{
ki+1 = ti,
ti+3 = ki ⊕ f(ti)⊕ C ⊕ (zj)i,

ti+2 ti+1 ti ki

RC⊕(zj)i

Fig. 2. The Key Expansion of Simeck, where RC⊕(zj)i is the Simeck Round Function
with C ⊕ (zj)i Acting as the Round Key



where 0 ≤ i ≤ T − 1. The value ki is used as the round key of the i-th round.
The value of the constant C is de�ned by C = 2n − 4, where n is the word

size. (zj)i denotes the i-th bit of the sequence zj . Simeck32/64 and Simeck48/96
use the same sequence z0, i.e. j = 0, which is an m-sequence with period 31
and can be generated by the primitive polynomial X5 +X2 + 1 with the initial
state (1, 1, 1, 1, 1). When the rounds number is larger than 31, the sequence
repeats itself. Simeck64/128 uses another m-sequence z1 with period 63, which
is generated by the primitive polynomial X6 + X + 1 with the initial state
(1, 1, 1, 1, 1, 1).

Number of Rounds. The number of rounds T for Simeck32/64, Simeck48/96,
and Simeck64/128 are 32, 36, and 44, respectively.

2.2 Design Rationales

In Simeck, we use a slightly simpli�ed version of the round function of Simon.
The round function of Simon can be expressed as

R′ki
(li, ri) = (((li ≪ 1)� (li ≪ 8))⊕ (li ≪ 2)⊕ ri ⊕ ki, li),

where li and ri are the input words, and ki is the round key. The operations of the
round function only contain bitwise AND, XOR and cyclic shifts, and they are
very e�cient for hardware implementations. In particular, for Simeck, we change
these shift numbers from (1, 8, 2) to (0, 5, 1). We choose our shift numbers in order
to realize an acceptable trade-o� between hardware performance and security.
These modi�cations will improve the e�ciency of hardware implementations, but
will have comparable security strengths against certain attacks. More discussions
will be given in the following sections.

For the key expansion/schedule algorithm of Simeck, we learn the idea of
re-using the round function to update the round-key registers from the design
of Speck.

Concerning the number of rounds for Simeck, we choose the same numbers as
the corresponding block ciphers in the Simon family, in order to have comparable
security levels and fair hardware implementation evaluations.

To defeat certain self-similarity attacks such as slide attacks and rotational
attacks, we add the round constants C and (zj)i into the key expansion process.
The constant C = 2n − 4 is also used in the key expansion of Simon. The
polynomials for the two m-sequences z0 and z1 are chosen to have minimum
numbers of components, such that their hardware implementations will have
small footprints.

3 Hardware Implementations

We discuss the hardware implementations of the Simeck family of block ciphers
in this section.



3.1 Metrics and Design Flow

We use the Synopsys Design Compiler Version D-2010.03-SP4 to synthesize the
RTL of the designs into netlist based on the STMicroelectronics CMOS 65n-
m CORE65LPLVT_1.20V and IBM CMOS 130nm CMR8SF-LPVT Process
SAGE v2.0 standard cell libraries with both having a typical 1.2V voltage, and
25◦C temperature. Cadence SoC Encounter v09.12-s159_1 is used to �nish the
Place and Route phase in order to generate the layout of the designs. We use
Mentor Graphics ModelSim SE 10.1a to conduct functional simulation of the
designs and perform timing simulation by using the timing delay information
generated from SoC Encounter as well. The areas of the designs after the logic
synthesis are provided for comparisons with previous ciphers, and a more ac-
curate area after the Place and Route is also provided for using the ciphers in
practical cases. The densities used for the Place and Route phase for CMOS
130nm and 65nm are 0.92 and 0.93 respectively, in order to make a trade-o�
between area and maximum operating frequency when the densities are high
enough. As usual, the area is measured in gate equivalents (GEs), and one GE
is equivalent to the physical area required for the two-input one-output NAND
gate with the lowest driving strength of the corresponding technology.

We use SoC Encounter v09.12-s159_1 to generate the accurate power con-
sumption based on the activity information generated from the timing simulation
with a frequency of 100 KHz, and a duration time of 0.1s. We do so because the
100 KHz clock frequency is widely used for benchmarking purpose in resource-
constrained applications and 0.1s is long enough to provide an accurate activity
information for all the signals.

Moreover, the critical path is obtained after the Place and Route phase, which
would be more accurate than the estimated value obtained from logic synthesis.
Hence, the maximum clock frequency which can be operated for a speci�c design
is obtained.

Table 2. The Areas of Basic Gates in the Libraries

IBM130nm-8RF (NSA [3]) IBM130nm-CMR8SF-LPLVT ST CMOS65nm
NAND 1 1 1
AND 1.25 1.25 1.25
OR 1.25 1.25 1.5
NOT 0.75 0.75 0.75
XOR 2 2 2.25
XNOR 2 2 2.25
2-1 MUX 2.25 2.25 2
DFF 4.25 4.25 3.75

1-bit full adder 5.75 5.75 4.5
Scan FF 6.25 5.5 4.75

In fact, during the analysis of the previous results [3,11,24,27,28], the ASIC
results for various implementations di�er not only in the basic gate technology



but also in the types of �ip-�ops used. In order to be fair to compare our results
with the previous ones, we provide the areas of some basic gates in our speci�c
libraries and the library used in [3] by the researchers from the NSA for Simon
in Table 2. In addition, all the areas of basic gates provided here are the smallest
ones in the library. We observe that our IBM 130nm library is almost the same
as the IBM 130nm library used by the researchers from the NSA [3] except the
scan �ip-�ops in terms of the areas of the basic gates.

3.2 Two Di�erent Hardware Architectures for Simeck

In this section, we target low-area implementations of Simeck and make a trade-
o� between area and throughput. Meanwhile, we still keep a very high operating
frequency. We give two architectures for the implementations: one is parallel ar-
chitecture, and another one is fully serialized architecture. Moreover, we provide
a block diagram of the top-level I/O interface between the cipher and the outside
environment in order to provide a benchmark for the future implementations and
comparisons with other ciphers.

Parallel Architecture
The parallel architecture processes one round of the message in one clock cycle,
and one round of the key schedule at the same clock cycle, as shown in Figure 3.
This architecture provides a very high throughput while keeping a compact de-
sign. The round function in Fig. 3(a) includes three parts: 2n �ip-�ops, a n-bit
width 2-to-1 multiplexer, a combinational circuit (dashed box) to compute the
feedback data for the multiplexer. Inside the 2n �ip-�ops, n �ip-�ops are for the
message b, and the other n ones are for the message a. The multiplexer is used
to select the initial plaintext or the feedback data from the combinational circuit
for the message b. The combinational circuit includes one n-bit AND gate, three
n-bit XOR gates, and two shift modules (cyclic shift to the left by 5 bits and
1 bit). The shift modules cost no extra hardware resources, because they can
be done by rewiring the corresponding signals. When the cipher runs, the n-bit
data from the message block b shifts to message block a, and simultaneously,
the message block b loads a new n-bit data from the multiplexer until the cipher
stops. The round key ki in the combinational circuit for every round comes from
the key schedule function, which generates a key for every rounds until the cipher
outputs the ciphertext.

Di�erent from the round function architecture, the key schedule in Fig-
ure 3(b) has four n-bit key blocks and one input to the combinational circuit
(dashed box) is di�erent. This n-bit input to the key schedule is a combination
of an (n− 1)-bit constant and a 1-bit signal generated from the control circuit.

All the �ip-�ops in the round function and key schedule are standard �ip-
�ops without chip-enable in our architecture. In addition, there are only two
n-bit width 2-to-1 multiplexers in total in our architecture to select the initial
data or feedback data, where one is for the round function, and the other is for
the key schedule. Moreover, the latency for generating a ciphertext using our
parallel architecture is T + 4, where T is the total number of rounds.
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Fig. 3. Parallel Architecture for Simeck

Partially Serialized Architecture
In order to make a trade-o� between area, throughput, and power consump-
tion, we provide a partially serialized architecture. This architecture processes
only several bits in the round function and the key schedule during one clock
cycle. The speci�c partially serialized size (par_sz) of Simeck are summarized
as follows:

Simeck32/64 : 1, 2, 4, 8,

Simeck48/96 : 1, 2, 3, 4, 6, 8, 12,

Simeck64/128 : 1, 2, 4, 8, 16.

Besides the round counter (i in Figures 3 and 4) in the control circuit, there is
another counter to control the rounds of the speci�c serialized size in the partially
serialized architecture. The range of this serialized counter (l in Figure 4) is
between 0 and n/par_sz− 1. In total, the latency for generating a ciphertext is
(n/par_sz) · (T + 4), where T is the total number of rounds.
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Fig. 4. Fully Serialized Architecture for Simeck

A fully serialized architecture is shown in Figure 4. In this architecture, the
multiplexer (MUX), and combinational circuit (dashed box) are all 1-bit width,
which save a lot of area. Compared to the parallel architecture, there are two
more multiplexers. They are used to select the cyclic shift inputs. The MUX1 is
used for the left shift by 1 bit, and MUX5 is used for left shift by 5 bits. The
MUX1 selects bn−1 as input when the serialized counter equals 0, and chooses
an−1 when the serialized counter is larger than 0. Similarly, the MUX5 selects
bn−5 when the serialized counter is smaller than or equal to 4, and chooses an−5
when the serialized counter is larger than 4.

The partially serialized architecture with par_sz larger than 1 is similar to the
fully serialized architecture, where the multiplexer and combinational circuit are
par_sz-bit width and the selection signals for the multiplexers (MUXes selection
circuitry) are di�erent for various values of par_sz.

The Top-level I/O Interface for Di�erent Architectures
As discussed in Section 3.1, the area of the chip depends on not only the area
of the basic gates, but also the adopted types of �ip-�ops. We provide a top-
level I/O interface between the cipher and the outside environment as shown in
Figure 5. We do not have a Finite State Machine (FSM) to control the circuit
with the purpose of reducing the entire area as much as possible. In our top-



Key Scheduling

Round Function

Control

DatapathClk

i mode

Key[par sz-1:0]

Plaintext[par sz-1:0]

Ciphertext[n-1:0]
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level architecture, the cipher is always running and it is controlled by the outside
signal i_mode. Therefore, we only have two modes in our architecture: loading
phase and running phase. The cipher goes into loading phase when i_mode equals
0, and it loads the initial data from the inputs Key and Plaintext. Later on,
the cipher begins running phase when i_mode equals 1. The user obtains the
Ciphertext at the end of the running phase. Then, i_mode returns back to
0, another Plaintext encryption begins. As our architecture never stops, all
the �ip-�ops in the datapath are standard �ip-�ops without chip-enable signals.
This property makes our design ever smaller in terms of area. This architecture
presents a benchmark ASIC implementation of Simeck and can be used to fairly
compare with the hardware results of other ciphers.

It is worth mentioning that the parallel architecture can be viewed as a
special case of the partially serialized case when par_sz equals n. However, the
two cases have di�erent architectures as depicted in Figure 3 and Figure 4.

Our top-level architecture includes two parts: the control circuit and the
datapath. The control circuit for the parallel architecture is used to provide
the key constant from the LFSR as described in Section 2. However, an extra
serialized counter in the control circuit is needed for the partially serialized
architecture. The datapath includes round function and key scheduling, and
they are described as above for the parallel architecture and partially serialized
architecture.

Recently, LFSR or NLFSR based counters are used to replace binary counter
in the control circuit in hardware implementations [20], because they only contain
�ip-�ops and some combinational feedback logics without using a full-adder.
Hence, it can reduce the area to some extent if the LFSR or NLFSR counter
does not incur extra area in the datapath. However, the serialized counter in
our partially serialized architecture is used in two aspects: one is used to count
the serialized rounds in the control circuit and another one is used to select the
two multiplexers (MUX1 and MUX5) in the datapath. After a theoretical and
practical analysis of the e�ects of the LFSR or NLFSR counter in our partially
serialized architecture, we discovered that the total area using binary serialized
counter is the smallest one because the LFSR or NLFSR counter results in
more additional area in the datapath (i.e., the area of the multiplexers selection
circuitry) than the area saved by replacing the binary counter with LFSR or
NLFSR counter in the control circuit. Therefore, the binary serialized counter
is used for our partially serialized architecture.



3.3 Hardware Evaluations of Simeck

We use three di�erent compilation techniques in the Design Compiler to perform
hardware optimizations: simple compile, compile ultra and compile ultra with
clock gating. The simple compile option can provide us the hierarchical archi-
tectures of the design, and the areas of speci�c sub-modules. The compile ultra
option can make deeper optimizations in a way of optimizing the entire module
together, thereby reducing the area and power consumption signi�cantly [11,20].
The clock gating technique can further reduce the area and power consumption
[11]. However, we use all standard �ip-�ops without chip-enable signals for the
parallel architecture. Only the LFSR generating the key constant in the control
circuit uses the �ip-�ops with chip-enable signals, which costs 5, 6, and 6 �ip-
�ops for Simeck32/64, Simeck48/96, and Simeck64/128 respectively. Therefore,
the clock gating optimization a�ects only a little of our results in terms of area
and power consumption. The ASIC implementation results of Simeck and Si-
mon in CMOS 130nm are shown in Table 3 and Table 4, and the corresponding
results of Simeck and Simon in CMOS 65nm are shown in Table 7 and Table 8.
It is worth noting that these results are obtained without using scan registers.

We provide the best area results before and after the Place and Route phase
using compile ultra or compile ultra plus clock gating. These results can be
used for comparing with other ciphers or for practical purpose. The maximum

Table 3. Our Implementation Results of Simeck32/64, 48/96, 64/128 in 130nm

Simeck
Partial

CMOS 130nm
Area (GEs) Max Throughput Total Power

serial Before P&R After P&R
Frequency @100 KHz @100 KHz
(MHz) (Kbps) (µW)

Simeck32/64

1-bit 505∗ 549∗ 292 5.6 0.417
2-bit 510† 555† 288 11.1 0.431
4-bit 533† 579† 312 22.2 0.463
8-bit 591† 642† 289 44.4 0.523
16-bit 695∗ 756∗ 526 88.9 0.606

Simeck48/96

1-bit 715† 778† 299 5.0 0.576
2-bit 722† 785† 294 10.0 0.593
3-bit 731† 794† 268 15.0 0.611
4-bit 748† 813† 284 20.0 0.628
6-bit 770† 837† 287 30.0 0.651
8-bit 801† 871† 284 40.0 0.688
12-bit 858† 933† 283 60.0 0.742
24-bit 1027∗ 1117∗ 512 120.0 0.875

Simeck64/128

1-bit 924∗ 1005∗ 288 4.2 0.754
2-bit 933† 1015† 303 8.3 0.778
4-bit 958† 1041† 271 16.7 0.803
8-bit 1013† 1101† 280 33.3 0.834
16-bit 1132† 1231† 301 66.7 0.977
32-bit 1365∗ 1484∗ 512 133.3 1.162

* Area obtained by using compile ultra only.
† Area obtained by using compile ultra and clock gating.



Table 4. Our Implementation Results of Simon32/64, 48/96, 64/128 in 130nm

Simon
Partial

CMOS 130nm
Area (GEs) Max Throughput Total Power

serial Before P&R After P&R
NSA Frequency @100 KHz @100 KHz

Before P&R (MHz) (Kbps) (µW)

Simon32/64

1-bit 517† 562† 523 331 5.6 0.421
2-bit 532∗ 578∗ 535 306 11.1 0.439
4-bit 563† 612† 566 283 22.2 0.479
8-bit 623∗ 677∗ 627 367 44.4 0.540
16-bit 715∗ 778∗ 722 456 88.9 0.645

Simon48/96

1-bit 733† 796† 739 258 5.0 0.579
2-bit 745† 810† 750 289 10.0 0.601
3-bit 756† 822† 763 291 15.0 0.615
4-bit 778† 846† 781 287 20.0 0.642
6-bit 800† 869† 804 289 30.0 0.670
8-bit 833† 905† 839 238 40.0 0.706
12-bit 895† 973† 898 307 60.0 0.777
24-bit 1055∗ 1147∗ 1062 467 120.0 0.929

Simon64/128

1-bit 944† 1026† 958 225 4.2 0.762
2-bit 955† 1038† 968 244 8.3 0.780
4-bit 988† 1074† 1000 290 16.7 0.818
8-bit 1043† 1134† 1057 296 33.3 0.866
16-bit 1174† 1276† 1185 293 66.7 1.024
32-bit 1403∗ 1524∗ 1417 465 133.3 1.239

* Area obtained by using compile ultra only.
† Area obtained by using compile ultra and clock gating.

frequency corresponding with the best optimization technique is given and it is
calculated by using the critical path. The calculated throughput is based on the
latency in our architectures and it is the same as Simon. The di�erence of the
total power consumption among the three di�erent optimizations is marginal.
Therefore, we only provide a total power consumption using compile ultra at 100
KHz, which is typical for benchmarking purpose. Since the operating frequency is
too small, the static power consumption dominates the total power consumption.
However, the static power consumption is larger in CMOS 65nm than in CMOS
130nm, which is the reason why the total power consumption is larger in CMOS
65nm as shown in Table 7 and Table 8.

Besides having a very small area, our another observation is that most part of
the area for all the architectures are built of the sequential logics, especially for
the fully serialized architecture. Take Simeck32/64 for example. 86%, 85%, 82%,
76%, and 70% of the entire area are sequential logics for the cases that par_sz
equals 1, 2, 4, 8, and 16 respectively. From the data provided, we can obtain that
the fully serialized architecture is built of about 90% sequential logics. Similar
conclusions can be obtained for Simeck48/96 and Simeck64/128.

We provide a range of options between the area, throughput, and power con-
sumption in our ASIC implementations. Taking Simeck32/64 in CMOS 130nm
for illustration, we can achieve a throughput of 5.6 Kbps at the area cost of 505
GEs (before the Place and Route) and 549 GEs (after the Place and Route)
with the power consumption of 0.417 µW. However, a two-fold throughput (11.1



Kbps) can be obtained with only 5 and 6 extra GEs (before and after the Place
and Route respectively), and 0.014 µW extra power consumption. With more
extra area and power consumption, we can get even higher throughput.

4 Result Comparisons between Simeck and Simon

We compare our area results before the Place and Route of Simeck and Simon in
CMOS 130nm with the Simon results of the NSA researchers [3]. This is because
the NSA researchers only provide the area results before the Place and Route.
The comparison is shown in Figure 6. We can observe that our Simon results are
all smaller than that of NSA's results, and our Simeck results are even smaller
than Simon for all the cases shown in Figure 6.
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Fig. 6. Comparisons of Areas (before the Place and Route) between the Implementa-
tion Results of the NSA Researchers' and Ours in CMOS 130nm

From the theoretical point of view, Simeck is designed to have a smaller area
due to the following considerations: the simpli�ed key schedule, the simpli�ed
LFSR to generate the key constant, and the decreased shift numbers in the



round function. It is worth noting that the decreased shift numbers do not a�ect
any area in the parallel architecture, and it only a�ect the area in the partially
serialized architecture.

The construction of the combinational circuit in the key schedule of Si-
mon32/64, 48/96, 64/128 and Simeck32/64, 48/96, 64/128 in the parallel ar-
chitecture are shown as follows:

Simon (2n+ 1) XOR + (n− 1) XNOR
Simeck (n+ 1) XOR + (n− 1) XNOR + n AND

In general, one XOR gate is larger than one AND gate. Therefore, the key
schedule of Simon is larger than that of Simeck. The LFSRs used to generate
the key constants for Simon32/64 and Simon48/96 are de�ned by the primitive
polynomial X5 +X4 +X2 +X + 1, and the LFSR for Simon64/128 is de�ned
by X5 + X3 + X2 + X + 1. They are all 2 XOR gates (4 GEs) bigger than
the ones used in corresponding Simeck, as described in Section 2. The decreased
shift numbers of the round function and key schedule reduce 1 MUX for the
inputs to the combinational circuits of the round function and the key schedule
respectively (2 MUXes in total, 2 · 2.25 GEs/MUX = 4.5 GEs), and also some
logics to select the MUXes.

Table 5. Breakdown of the Implementation Results before the Place and Route in
CMOS 130nm

Simeck32/64 (130nm) Simon32/64 (130nm)
Parallel Fully Serialized Parallel Fully Serialized

Components (GEs) (GEs) (GEs) (GEs)
Control 31 71 35 75

Datapath
Round_combinational Circuit 112 7 112 7
Key_combinational Circuit 80 5 96 8
Sequential + MUXes 474 434 474 443

Totals
Compile simple 697 517 717 533
Compile ultra 695 505 717 520
Compile ultra + clock gating 695 506 715 517

From the practical point of view, we break down the area results before the
Place and Route in CMOS 130nm for Simeck32/64, and Simon32/64 in our im-
plementations, as shown in Table 5. For parallel architectures, the di�erences of
the control circuits and the key combinational circuits between Simeck32/64 and
Simon32/64 are 4 GEs (key constant) and 16 GEs respectively. The results are
almost the same as the theoretical analysis. For the fully serialized architecture,
the control circuit is reduced by 4 GEs (key constant), the key combinational
circuit (dashed box in Figure 4) is reduced by 3 GEs, and the 2 MUXes plus the
MUXes selection circuitry are reduced by 9 GEs for Simeck32/64 (i.e., a total
saving of 16 GEs), compared to that of Simon32/64. Therefore, the practical
results match the theoretical analysis. Simeck is smaller than Simon for both
parallel architecture and partially serialized architecture.



The main area cost for Simon comes from the registers storing the message
block and the key. In order to design a smaller cipher than Simon, we can reduce
the areas of only the round function, key schedule, key constant, and multiplex-
ers. For fully serialized architecture of Simon32/64 (see Table 5), the combined
area of these blocks is 34.5 GEs (7 + 8 + 6 + 6 · 2.25/MUX), which accounts
for only about 6.4% (34.5/533) of the total area. Simeck32/64 reduces this by
16 GEs, a saving of more than 46%. This reduction leads to 2.3% smaller total
area in comparison to our implementations of Simon32/64 in CMOS 130nm,
and 3.4% smaller in comparison to the original Simon32/64 results (see Table
1). Similarly, the fully serialized architectures of Simeck48/96, 64/128 are 2.5%,
2.1%, respectively, smaller than our implementations of Simon48/96, 64/128
and they are 3.3% and 3.5%, respectively, smaller than the original implemen-
tation results of Simon48/96, 64/128 in CMOS 130nm (see Table 1). For the
parallel architectures of Simon, these blocks consume a larger fraction (about
29%) of the total area (see Table 5). Simeck32/64, 48/96, 64/128 achieve the
saving of 3.7%, 3.3%, and 3.7% respectively, compared to the original results of
Simon32/64, 48/96, 64/128 (see Tables 3 and 4). The choice of the values of
the shift numbers plays a signi�cant role in the area reduction of the partially
serialized architecture. Because the parallel architecture does not contain the
MUXes for the inputs to the combinational circuit (dashed box), the total area
reduction is only slightly greater than the fully serialized architecture.

From Tables 3 and 4, we can also observe that the power consumption of
Simeck is smaller than Simon for all the cases in CMOS 130nm using the same
optimizations. This is easy to understand because the area of Simeck is smaller
than Simon. This conclusion also holds for CMOS 65nm in Tables 7 and 8.

In summary, Simeck is smaller than Simon in terms of area and power con-
sumption in both CMOS 130nm and CMOS 65nm techniques.

5 Security Analysis

In this section, we give the security analysis of the Simeck family of block ci-
phers. Due to its similitude with Simon and Speck, most of the next analysis
follow from the best known attacks against the Simon and Speck families of
block ciphers. As we show in the following, the security level of Simeck is com-
parable to those of Simon, which is reasonable to be used in practice. Indeed,
the number of rounds chosen for Simeck is su�ciently high with respect to the
best known attacks on reduced versions. Moreover, it is worth noticing that the
ARX (Addition-Rotation-XOR) design of Simeck borrowed from Speck, using
the round function as key-schedule, did not lead to a weakness so far. In a recent
paper [22], Kölbl et al. study the in�uence of the shifts in Simon-like ciphers.
They provide some set of parameters that are optimal with respect to di�er-
ential and linear properties, and di�usion. Our parameters seem comparable to
theirs because we take also into account hardware e�ciency and other types of
cryptanalysis (e.g., impossible di�erential cryptanalysis).



Di�erential/Linear Attacks [6,23]. Since the di�erential and linear be-
haviors of Simon and Simeck are very closely related, it makes sense to use the
best known di�erential and linear attacks of Simon to evaluate the security of
Simeck against these attacks. This is why we have essentially followed the proce-
dure of [7] to evaluate the security of Simeck against di�erential cryptanalysis.
It is then possible to perform an attack on 19 rounds of Simeck32/64 with the
time and data complexity 234 and 231.5 respectively. It is also possible to attack
20 rounds out of 36 of Simeck48/96 with the time and data complexity 275 and
246 as well as an attack of 26 rounds out of 44 of Simeck64/128 with the time
and data complexity 2121 and 263.

For the best cryptanalytic result using linear attacks against Simon, we refer
to [1]. Because of the similar structure of Simeck, we veri�ed that those results are
also conform with respect to Simeck. For Simeck32/64, we can cover 12 rounds
with the data complexity 231. For Simeck48/96, we can cover 15 rounds with
the data complexity 243. Finally, it is possible to perform a linear cryptanalysis
of Simeck64/128 up to 19 rounds with 2123 known plaintexts. All these attacks
have a success probability of 0.997.

Since the best known di�erential and linear trails found on Simeck, and Si-
mon, only cover a reduced number of rounds, we believe that the full-round
Simeck (any version) is su�ciently secure against di�erential and linear crypt-
analysis.

Impossible Di�erential Attacks [4]. Impossible di�erential attacks a-
gainst Simeck cover few more rounds (depending on the version) than for Simon
as it can be seen in Table 6. This is due to the fact that the di�usion of one bit
di�erence is one round slower for Simeck than for Simon. Nevertheless, this does
not damage the overall security of the Simeck family, since the full versions have
more rounds.

Table 6. Comparison of Impossible Di�erential Attacks against Simon and Simeck

Algorithm #Rounds Data Time Memory

Simon32/64 [10] 19 232 262.56 244

Simon48/96 [10] 21 248 294.73 270

Simon64/128 [10] 22 264 2126.56 275

Simeck32/64 20 232 262.6 256

Simeck48/96 24 248 294.7 274

Simeck64/128 25 264 2126.6 279

Algebraic Degree [21]. We computed that after 5 rounds, the algebraic
degree of Simeck (any version) is 13, as the one of Simon. It is su�cient to ensure
that after few more rounds, no attack can exploit properties of the algebraic
degree, such as algebraic attack or higher-order di�erential attack.

Meet-in-the-Middle Attacks [13]. Because of the key schedule algorithm
of Simeck, many key bits of the master key are processed quickly in the round



function of Simeck. This should ensure a good resistance of Simeck against Meet-
in-the-Middle (MITM) attacks. Moreover, until now Simon has not shown to be
a good candidate for MITM attacks. As the round function of Simeck is very
similar as the one of Simon, we believe that Simeck will also be resistant against
MITM attacks.

Slide Attacks and Rotational Attacks [8,19]. The round constant addi-
tion and the key schedule design prevent any e�cient slide or rotational attacks.

Related-key Di�erential Attacks [5]. Although Simon and Speck have
been extensively studied in the past years, no concrete attacks in the related-key
setting have been shown. Like Speck, Simeck reuses its round function in the key
schedule part. It is reasonable to think that Simeck has also good cryptographic
properties in the related key model.

6 Concluding Remarks

In this paper, we have presented Simeck, a new family of lightweight block ci-
phers. Simeck is very suitable for resource-constrained devices, such as passive
RFID tags and wireless sensor networks. We have provided an extensive explo-
ration for di�erent hardware architectures in order to make a balance between
area, throughput, and power consumption for Simon and Simeck in both CMOS
130nm and CMOS 65nm techniques. We have shown that it is possible to design
a smaller cipher than Simon in terms of area and power consumption. Moreover,
we have improved the hardware implementations of Simon given in the origi-
nal paper. In addition, the similarities between Simon/Speck and Simeck allow
us to have an idea of the actual security o�ered by Simeck. Even if the round
function of Simeck is quite simple, this round function is iterated a su�cient
number of time to provide an adequate security against most known attacks. In
conclusion, all of the instances in the Simeck family can meet the area, power
consumption, and throughput requirements in the passive RFID tags and they
are promising candidates for resource-constrained devices.

We have learnt and understood many techniques about designing hardware-
oriented ciphers during the process of completing the design of Simeck. It is
interesting to see if we can devise a block cipher with even smaller hardware
footprints than Simeck. It also interests us whether we can design, from the
theoretical point of view, a smallest block cipher with the minimum number of
components. This should be very useful for cryptography researchers to get deep
insights into designing and analyzing ciphers.
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Appendix A ASIC Implementation Results of Simon

and Simeck in CMOS 65nm

Tables 7 and 8 give our results of Simeck and Simon in CMOS 65nm.

Table 7. Our Implementation Results of Simeck32/64, 48/96, 64/128 in 65nm

Simeck
Partial

CMOS 65nm
Area (GEs) Max Throughput Total Power

Serial Before P&R After P&R
Frequency @100 KHz @100 KHz
(MHz) (Kbps) (µW)

Simeck32/64

1-bit 454∗ 488∗ 1754 5.6 1.292
2-bit 465† 500† 1428 11.1 1.311
4-bit 494† 531† 1388 22.2 1.376
8-bit 550∗ 592∗ 1250 44.4 1.512
16-bit 644∗ 692∗ 1428 88.9 1.716

Simeck48/96

1-bit 645† 693† 1562 5.0 1.805
2-bit 656† 706† 1538 10.0 1.825
3-bit 663† 712† 1282 15.0 1.857
4-bit 686† 738† 1333 20.0 1.886
6-bit 701† 753† 1282 30.0 1.919
8-bit 732† 787† 1388 40.0 2.009
12-bit 794∗ 854∗ 1219 60.0 2.212
24-bit 951∗ 1022∗ 2325 120.0 2.44

Simeck64/128

1-bit 828∗ 891∗ 1369 4.2 2.304
2-bit 838† 901† 1408 8.3 2.325
4-bit 869† 935† 1098 16.7 2.372
8-bit 918† 987† 1190 33.3 2.492
16-bit 1042∗ 1121∗ 1086 66.7 2.869
32-bit 1263∗ 1358∗ 1282 133.3 3.316

* Area obtained by using compile ultra only.
† Area obtained by using compile ultra and clock gating.



Table 8. Our Implementation Results of Simon32/64, 48/96, 64/128 in 65nm

Simon
Partial

CMOS 65nm
Area (GEs) Max Throughput Total Power

Serial Before P&R After P&R
Frequency @100 KHz @100 KHz
(MHz) (Kbps) (µW)

Simon32/64

1-bit 466∗ 501∗ 1428 5.6 1.311
2-bit 476∗ 512∗ 1562 11.1 1.331
4-bit 506∗ 544∗ 1408 22.2 1.381
8-bit 570∗ 613∗ 1075 44.4 1.585
16-bit 666∗ 716∗ 2222 88.9 1.751

Simon48/96

1-bit 661† 711† 1204 5.0 1.812
2-bit 670† 720† 1136 10.0 1.889
3-bit 682† 733† 1086 15.0 1.86
4-bit 699† 752† 1041 20.0 1.915
6-bit 724† 779† 1369 30.0 1.962
8-bit 757† 814† 1282 40.0 2.122
12-bit 819∗ 881∗ 1176 60.0 2.305
24-bit 982∗ 1056∗ 2222 120.0 2.542

Simon64/128

1-bit 845† 908† 1282 4.2 2.336
2-bit 858† 922† 1265 8.3 2.366
4-bit 887† 954† 1250 16.7 2.423
8-bit 944† 1015† 1265 33.3 2.577
16-bit 1076∗ 1156∗ 1176 66.7 3.068
32-bit 1305∗ 1403∗ 1694 133.3 3.398

* Area obtained by using compile ultra only.
† Area obtained by using compile ultra and clock gating.

Appendix B Test Vectors

Here we list some test vectors for the Simeck family of block ciphers, in the same
format as the ones in [3].

Simeck32/64

Key: 1918 1110 0908 0100

Plaintext: 6565 6877

Ciphertext: 770d 2c76

Simeck48/96

Key: 1a1918 121110 0a0908 020100

Plaintext: 726963 20646e

Ciphertext: f3cf25 e33b36

Simeck64/128

Key: 1b1a1918 13121110 0b0a0908 03020100

Plaintext: 656b696c 20646e75

Ciphertext: 45ce6902 5f7ab7ed
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