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Abstract. After being introduced in 2009, the first fully homomorphic
encryption (FHE) scheme has created significant excitement in academia
and industry. Despite rapid advances in the last 6 years, FHE schemes
are still not ready for deployment due to an efficiency bottleneck. Here we
introduce a custom hardware accelerator optimized for a class of recon-
figurable logic to bring LTV based somewhat homomorphic encryption
(SWHE) schemes one step closer to deployment in real-life applications.
The accelerator we present is connected via a fast PCIe interface to a
CPU platform to provide homomorphic evaluation services to any ap-
plication that needs to support blinded computations. Specifically we
introduce a number theoretical transform based multiplier architecture
capable of efficiently handling very large polynomials. When synthesized
for the Xilinx Virtex 7 family the presented architecture can compute
the product of large polynomials in under 6.25 msec making it the fastest
multiplier design of its kind currently available in the literature and is
more than 102 times faster than a software implementation. Using this
multiplier we can compute a relinearization operation in 526 msec. When
used as an accelerator, for instance, to evaluate the AES block cipher, we
estimate a per block homomorphic evaluation performance of 442 msec
yielding performance gains of 28.5 and 17 times over similar CPU and
GPU implementations, respectively.
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1 Introduction

Fully homomorphic encryption (FHE) is a promising new technology that en-
ables efficient blinded computations on semi-trusted servers. The introduction
of the first plausible FHE construction by Gentry in 2009 [19, 20], fueled the
race to develop more efficient schemes. More specifically, lattice-based [22, 21,
32], integer-based [15, 10, 11] and learning-with-errors (LWE) or (ring) learning
with errors ((R)LWE) based encryption [6, 23, 24] schemes were introduced in



just a few years. Despite the rapid progression of new FHE optimization tech-
niques such as ones developed to render expensive bootstrapping evaluations
obsolete [5] and ones for more effective parallel processing through batching of
multiple data bits into a ciphertext [33, 4, 9], FHE is still far from being ready
for use in real-life applications. For instance, an implementation by Gentry et
al. [25] homomorphically evaluates the AES circuit in about 36 hours result-
ing in an amortized per block evaluation time of 5 minutes. Another NTRU
based proposal by Doröz et al. [16] manages to evaluate AES roughly an order
of magnitude faster than [25]. Still it does not come close to what is accept-
able in practice. The main difficulty in developing efficient FHE schemes is to
overcome the massive parameter sizes necessary to retain security while allowing
evaluation of deep circuits.

Clearly the gap between what is currently achievable on a CPU and what
is practical is too far to consider software only solutions. This led researchers
to investigate the use of alternative platforms such as graphic processing units
(GPUs), reconfigurable logic such as FPGAs, and even further domain specific
ASIC designs to accelerate homomorphic evaluations. Using Nvidia GPUs, for
instance, Wang et al. [35] managed to accelerate the earlier implementation of the
recryption primitive of Gentry and Halevi [23] by roughly an order of magnitude.
The GPU library is capable to evaluate AES under 8 seconds. On the hardware
side, Cousins et al. report the first reconfigurable logic implementations in [12,
13], in which Matlab Simulink was used to design the FHE primitives. This
was followed by further investigation in this direction [29, 7, 37, 36]. Specifically,
in [36], Wang et al. present an optimized version of their result [37], which
achieves speed–up factors of 174, 7.6 and 13.5 for encryption, decryption and the
recryption operations on an NVIDIA GTX 690, respectively, when compared to
results of the implementation of Gentry and Halevi’s FHE scheme [22] that runs
on an Intel Core i7 3770K machine. Cao et al. [7] proposed a number theoretical
transform (NTT)-based large integer multiplier combined with Barrett reduction
to alleviate the multiplication and modular reduction bottlenecks required in
many FHE schemes. The encryption step in the proposed integer based FHE
schemes by Coron et al. [10, 11] were designed and implemented on a Xilinx
Virtex-7 FPGA. The synthesis results show speed up factors of over 40 over
existing software implementations of this encryption step [7]. A more recent work
by Dai et al. [14] reports GPU acceleration for NTRU based FHE evaluating
Prince and AES block ciphers, with 2.57 times and 7.6 times speedup values,
respectively, over an Intel Xeon software implementation. Finally, in [17] and
later in [18] Doröz et al. present an architecture for ASIC that implements a full
set of FHE primitives including bootstrapping.

In Table 1, we present an overview of previous FHE implementations on
various platforms. Clearly, since the platforms vary greatly according to available
memory, clock speed, area/price of the hardware a side-by-side comparison is not
possible and therefore this information is only meant to give an idea of what is
achievable on various platforms. As evident from Table 1, significant gains are
possible by developing custom tailored designs for FPGA and ASIC platforms.



Table 1. Overview of specialized FHE Implementations. GH-FHE: Gentry & Halevi’s
FHE scheme; CMNT-FHE: Coron et al.’s FHE schemes [10, 11] [22]; NTRU based FHE,
e.g. [27, 34]

Design Scheme Platform Performance

CPU
AES [25] BGV-FHE 2.0 GHz Intel Xeon 5 min / AES block
AES [16] NTRU-FHE 2.9 GHz Intel Xeon 55 sec / AES block
Full FHE [31] NTRU-FHE 2.1 GHz Intel Xeon 275 sec / per bootst.

GPU
NTT mul / reduction [35] GH-FHE NVIDIA C250 GPU 0.765 ms
NTT mul [35] GH-FHE NVIDIA GTX 690 0.583 ms
AES [14] NTRU-FHE NVIDIA GTX 690 7 sec / AES block

FPGA
NTT transform [37] GH-FHE Stratix V FPGA 0.125 ms
NTT modmul / enc. [7] CMNT-FHE Xilinx Virtex7 FPGA 13 msec / enc.

ASIC
NTT modmul [17] GH-FHE 90nm TSMC 2.09 sec
Full FHE [18] GH-FHE 90nm TSMC 3.1 sec / recrypt

Much of the development so far has focused on the Gentry-Halevi FHE [22],
which intrinsically works with very large integers (million bit range). Therefore,
a good number of works focused on developing FFT/NTT based large integer
multipliers [17, 35, 35, 18]. Currently, the only full-fledged (with bootstrapping)
FHE hardware implementation is the one reported by Doröz et al. [18], which
also implements the Gentry-Halevi FHE. At this time, there is a lack of hardware
implementations of the more recently proposed FHE schemes, i.e. Coron et al.’s
FHE schemes [10, 11], BGV-style FHE schemes [5], [22] and NTRU based FHE,
e.g. [27, 34]. We, therefore, focus on providing hardware acceleration support for
one particular family of FHE’s: NTRU-based FHE schemes, where arithmetic
with very large polynomials (both in degree and coefficient size) is crucial for
performance.

Our Contribution. In this work, we present an FPGA architecture to acceler-
ate NTRU based FHE schemes. Our architecture may be considered as a proof-
of-concept implementation of an external FHE accelerator that will speed up
homomorphic evaluations taking place on a CPU. Specifically, the architecture
we present manages to evaluate a full large degree, e.g. 215, polynomial mul-
tiplication efficiently by utilizing a number theoretical transform (NTT) based
approach. Using this FPGA core we can evaluate polynomial multiplication 28
times faster than on a similar CPU and 17 times faster than a similar GPU imple-
mentations. Furthermore, by facilitating efficient exchange using a PCI Express
connection, we evaluate the overhead incurred in a sustained homomorphic com-
putations of deep circuits. For instance, also taking into account the cycles lost
in data transfer our hardware can evaluate a full 10 round AES circuit in under
440 msec per block.



2 Background

In this section we briefly outline the primitives of the LTV-based fully homo-
morphic encryption scheme, and later discuss the arithmetic operations that will
be necessary in its hardware realization.

2.1 LTV-Based Fully Homomorphic Encryption

While the arithmetic and homomorphic properties of NTRU have been long
known by the research community, a full-fledged fully homomorphic version was
proposed only very recently in 2012 by López-Alt, Tromer and Vaikuntanathan
(LTV) [27]. The LTV scheme is based on a variant of NTRU introduced earlier
by Stehlé and Steinfeld [34]. The LTV scheme uses a new operation called re-
linearization as well as existing techniques such as modulus switching for noise
control. While the LTV scheme can support homomorphic evaluation in a multi-
key setting where each participant is issued their own keys, here we focus only
on the single user case for brevity.

The primitives of the LTV scheme operate on polynomials in Rq = Zq[x]/〈xN+
1〉, i.e. with degree N , where the coefficients are processed using a prime modulus
q. In the scheme an error distribution function χ – a truncated discrete Gaus-
sian distribution – is used to sample random, small B-bounded polynomials. The
scheme consists of four primitive functions:

KeyGen. We select decreasing sequence of primes q0 > q1 > · · · > qd for each
level. We sample g(i) and u(i) from χ, compute secret keys f (i) = 2u(i) + 1 and
public keys h(i) = 2g(i)(f (i))−1 for each level. Later we create evaluation keys

for each level: ζ
(i)
τ (x) = h(i)s

(i)
τ + 2e

(i)
τ + 2τ (f (i−1))2, where {s(i)τ , e

(i)
τ } ∈ χ and

τ = [0, blog qic].

Encrypt. To encrypt a bit b for the ith level we compute: c(i) = h(i)s + 2e + b
where {s, e} ∈ χ.

Decrypt. In order to compute the decryption of a value for specific level i we
compute: m = c(i)f (i) (mod 2).

Evaluate. The multiplication and addition of ciphertexts correspond to XOR
and AND operations, respectively. The multiplication operation creates a signif-
icant noise, which is handled with using relinearization and modulus switching.

The relinearization computes c̃(i)(x) =
∑
τ ζ

(i)
τ (x)c̃

(i−1)
τ (x), where c̃

(i−1)
τ (x) are

1-bounded polynomials that are equal to c̃(i−1)(x) =
∑
τ 2τ c̃

(i−1)
τ (x). In case of

modulus switching, we do the computation c̃(i)(x) = b qi
qi−1

c̃(i)(x)e2 to cut the

noise level by log (qi/qi−1) bits. The operation b·e2 is matching the parity bits.

2.2 Arithmetic Operations

To implement the costly large polynomial multiplication and relinearization op-
erations we follow the strategy of Dai et al. [14]. For instance, in the case of



polynomial multiplication we first convert the input polynomials using the Chi-
nese Remainder Theorem (CRT) into a series of polynomials of the same de-
gree, but with much smaller word-sized coefficients. Then, pairwise product of
these polynomials is computed efficiently using Number Theoretical Transform
(NTT)-based multiplier as explained in subsequent sections. Finally, the result-
ing polynomial is recovered from the partial products by the application of the
inverse CRT (ICRT) operation. For relinearization we follow a similar route;
however, we do not compute the ICRT until the final relinearization result is
obtained in the residue space.

CRT Conversion As an initial optimization we convert all operand polyno-
mials with large coefficients into many polynomials with small coefficients by a
direct application of the Chinese Remainder Theorem (CRT) on the coefficients
of the polynomials: CRT : Aj −→ {Aj mod p0,Aj mod p1, · · · ,Aj mod pl−1},
where pi’s are selected small primes, l is the number of these small primes,
and Aj is a coefficient of the original polynomial. Through CRT conversion we
obtain a set of polynomials {A(0)(x), A(1)(x), · · · , A(l−1)(x)} where A(i)(x) ∈
Rpi = Zpi [x]/Φ(x). These small coefficient polynomials provide us with the ad-
vantage of performing arithmetic operations on polynomials in a faster and effi-
cient manner. Any arithmetic operation is performed between the reduced poly-
nomials with the same superscripts, e.g. the product of A(x) · B(x) is going to
be {A(0)(x) ·B(0)(x), A(1)(x) ·B(1)(x), · · · , A(l−1)(x) ·B(l−1)}. A side benefit of
using the CRT is that it allows us to accommodate the change in the coefficient
size during the levels of evaluation, thereby yielding more flexibility. When the
circuit evaluation level increases, since qi gets smaller, we can simply decrease
the number of primes l. Therefore, both multiplication and relinearization be-
come faster as we proceed through the levels of evaluation. After the operations
are completed, a coefficient of the resulting polynomial, C(x) is computed by the
Inverse CRT (ICRT):

ICRT(Cj) =

l−1∑
i=0

(
q

pi

)
·

((
q

pi

)−1

· C(i)
j mod pi

)
mod q,

where q =
∏i=l−1
i=0 pi. Note that we will drop the superscript notation used for

the reduced polynomials by the CRT for clarity of writing since we will deal with
mostly the reduced polynomials henceforth in this paper.

Polynomial Multiplication The fundamental operation in the LTV scheme,
during which the majority of execution time is spent, is the multiplication of
two polynomials of very large degrees. More specifically, we need to multiply two
polynomials, A(x) and B(x) over the ring of polynomials Zp[x]/(Φ(x)), where
p is an odd integer and degree of Φ(x) is N = 2n. Namely, we have A(x) =∑N−1
i=0 Aix

i and B(x) =
∑N−1
i=0 Bix

i. The classical multiplication techniques
such as the schoolbook algorithm have quadratic complexity in the asymptotic



case, namelyO(N2). In general, the polynomial multiplication requires about N2

multiplications and additions and subtractions of similar numbers in Zp. Other
classical techniques such as Karatsuba algorithm [26] can be utilized to reduce
the complexity of the polynomial multiplication to O(N log2 3). Nevertheless, the
classical polynomial multiplication techniques do not yield feasible solutions for
SWHE implementations, where we would need to perform billions of arithmetic
operations in Zp since N is a large number. The number theoretic transform
(NTT)-based multiplication achieves a quasi-linear complexity for polynomial
multiplication, which is especially beneficial for large values of N .

The NTT can essentially be considered as a Discrete Fourier Transform de-
fined over the ring of polynomials Zp[x]/(Φ(x)). Simply speaking, the forward
NTT takes a polynomial A(x) of degree N − 1 over Zp[x]/(Φ(x)) and yields

another polynomial of the form A(x) =
∑N−1
i=0 Aixi. The coefficients Ai ∈ Zp

are defined as Ai =
∑N−1
j=0 Aj · wij mod p, where w ∈ Zp is referred as the

twiddle factor. For the twiddle factor we have wN = mod p and ∀i < N
wi 6= 1 mod p. The inverse transform can be computed in a similar manner
Ai = N−1 ·

∑N−1
j=0 Aj · w−ij mod p. Once the NTT is applied to two polynomi-

als, A(x) and B(x), their multiplication can be performed using coefficient-wise
multiplication over Ai and Bi in Zp; namely we compute Ai × Bi mod p for
i = 0, 1, . . . N − 1. Then, the inverse NTT (INTT) is used to retrieve the result-
ing polynomial C(x) = INTT (NTT (A(x) � NTT (B(x)), where the symbol �
denotes the coefficient-wise multiplication of A(x) and B(x) in Zp. Note that the
polynomial multiplication yields a polynomial C(x) of degree 2N −1. Therefore,
before applying the forward NTT, A(x) and B(x) should be padded with N
zeros to have exactly 2N coefficients. Consequently, for the twiddle factor we
should have w2N = 1 mod p and ∀i < 2N wi 6= 1 mod p.

Cooley–Tukey algorithm [8], described in Algorithm 1, is a very efficient
method of computing forward and inverse NTT. The permutation in Step 2 of
Algorithm 1 is implemented by simply reversing the indexes of the coefficients
of Ai. The new position of the coefficient Ai where i = (in, in−1, . . . , i1, i0) is
determined by reversing the bits of i, namely (i0, i1, . . . , in−1, in). For example,
the new position of A12 when N = 16 is 3. The inverse NTT can also be
computed with Algorithm 1, using the inverse of the twiddle factor, i.e. w−1 mod
p. Therefore, we can use the same circuit for both forward and inverse NTT. Note
that the NTT-based multiplication technique returns a polynomial of degree
2N −1, which should be reduced to a polynomial of degree N −1 by diving it by
Φ(x) and keeping the remainder of the division operation. When the reduction
polynomial Φ(x) is of a special form such as xN +1, the NTT is known as Fermat
Theoretic Transform (FTT) [1] and the polynomial reduction can be performed
easily as described in [30] and [2]. However, for efficient SWHE implementation,
we need to use reduction polynomials of general form.

Relinearization Relinearization takes a ciphertext and set of evaluation keys
(EKi,j) as inputs, where i ∈ [0, l− 1] and j ∈ [0, dlog(q)/re− 1], l is the number
of small prime numbers and r is the level index. Algorithm 2 describes relin-



ALGORITHM 1: Iterative Version of Number Theoretic Transformation

input : A(x) = A0 +A1x+ . . .+AN−1x
N−1, N = 2n, and w

output: A(x) = A0 +A1x+ . . .+AN−1x
N−1

1 for i = N to 2N − 1 do
Ai = 0 ;

end
2 (A0,A1, . . . ,A2N−1)← Permutation(A0, A1, . . . , A2N−1);
3 for M = 2 to 2N do
4 for j = 0 to 2N − 1 do

5 for i = 0 to
M

2
− 1 do

6 x← i× 2N

M
;

7 I ← j + i ;

8 J ← j + i+
M

2
;

9 A[I]← A[I] + wx mod 2N ×A[J ] mod p ;

10 A[J ]← A[I]− wx mod 2N ×A[J ] mod p ;

i← i+ 1;

end
j ← j +M ;

end
M ←M × 2;

end

earization as implemented in this work. We pre-compute the CRT and NTT of
the evaluations keys (since they are fixed) and in the computations we perform
the multiplications and additions in the NTT domain. The result is evaluated by
taking l INTT and one ICRT at the end. An r-bit windowed relinearization in-
volves dlog(q)/re polynomial multiplications and additions, which are performed
again in the NTT domain. Since operand coefficients are kept in residue form,
before relinearization we need to compute the inverse CRT of c̃τ .

3 Architecture Overview

3.1 Software/Hardware Interface

The performance of the NTRU based FHE scheme heavily depends on the speed
of the large degree polynomial multiplication and relinearization operations.
Since the relinearization operation is reduced to the computation of many poly-
nomial multiplications, a fast large degree polynomial multiplication is the key to
achieve a high performance in the NTRU-FHE scheme. The complexity of NTT-
based polynomial multiplication operation is quasi-linear O(N logN log logN),
and the security levels require the degree of the polynomials to be N = 215 for



ALGORITHM 2: Relinearization with r bit windows

input : Polynomial c with (n, log(q))
output: Polynomial d with (2n, log(nqlog(q)))

1 {C̃τ} = NTT({c̃τ}) ;
for i = 0 to l − 1 do

2 load EKi,0, EKi,1, · · · , EKi,dlog(q)/re−1 ;

3 {Di} = {
∑dlog(q)/re−1
τ=0 C̃τ · EKi,τ} ;

end
4 {di} = INTT({Di}) ;
5 d = ICRT({di}) ;

applications such as LTV-AES in [16]. Having a large degree N increases the
computation requirements significantly, therefore a standalone software imple-
mentation on a general-purpose computing platform fails to provide a sufficient
performance level for polynomial multiplications. The NTT-based polynomial
multiplication algorithm is highly suitable for parallelization, which can lead
to performance boost when implemented in hardware. On the other hand, the
overall scheme is a complex design demanding prohibitively huge memory re-
quirements (e.g., in LTV-AES [16] key requirements exceed 64-GB of memory).
Therefore, a standalone architecture for SWHE fully implemented in hardware
is not feasible to meet the requirements of the scheme.

In order to cope with the performance issues we designed the core NTT-based
polynomial multiplication in hardware, where the polynomials have relatively
small coefficients (i.e., 32-bit integers) to use it in more complicated polyno-
mial multiplications and relinearization evaluations. The designed hardware is
implemented in an FPGA device, which is connected to a PC with a high speed
interface, e.g. PCI Express (PCIe). The PC handles simple and non-costly com-
putations such as memory transactions, polynomial additions and etc. In case
of a large polynomial multiplication or NTT conversion (in case of relineariza-
tion), the PC using the CRT technique, computes an array of polynomials whose
coefficients are 32-bit integers from the input polynomials of much larger coeffi-
cients. The array of polynomials with small coefficients are sent in chucks to the
FPGA via the high-speed PCIe bus. The FPGA computes the desired opera-
tion: polynomial multiplications or only NTT conversion. Later, the PC receives
the resulting polynomials from the FPGA and if necessary, i.e. before modulus
switching or relinearization, evaluates the inverse-CRT to compute the result.

3.2 PCIe Interface

The PCIe is a serial bus standard used for high speed communication between de-
vices which in our case are PC and the FPGA board. As the target FPGA board,
we use Virtex-7 FPGA VC709 Connectivity Kit and can operate at 8 GT/s, per
lane, per direction with each board having 8 lanes. The system is capable of
sending the data packets in bursts. This allows us to achieve real time data



transaction rate close to the given theoretical transaction rate as the packet
sizes become larger.

3.3 Arithmetic Core Units

In order to achieve multiplication of two polynomials of degree 215, we first de-
signed hardware implementations for basic arithmetic building blocks to perform
operations on the polynomial coefficients such as modular addition, modular sub-
traction and modular multiplication. We base our design on an architecture to
perform modular arithmetic operations for 32-bit numbers.

32-bit Modular Addition/Subtraction The modular addition circuit, takes
one clock cycle to perform one modular addition operation where operands A, B
and the modulus p are all 32-bit integers and A,B < p. Since the largest value
of A + B can be at most 2p − 2, at most one final subtraction of the modulus
p from A+B will be sufficient to achieve full modular reduction after addition
operation. Similarly the subtraction unit is optimized to take one clock cycle to
finish one modular subtraction operation on a target device.

Integer Multiplication The target FPGA device features many DSP units
that are capable of performing very fast multiply and accumulate operations.
Since these DSP units are highly optimized, it is particularly beneficial to utilize
them in our core modular multiplier design. A DSP unit takes three inputs A,
B and C, which are 18 bits, 25 bits and 48 bits, respectively. A and B are mul-
tiplicand inputs, and C is the accumulate input. The output is a 48–bit integer,
which can be defined as D = A × B + C. Therefore, we can accumulate the
results of many 18×25–bit multiplications without overflow. Since our operands
are 32 bits in length, first we need to perform a full multiplication operation of
32–bit numbers. The operand lengths of the DSP units dictate that we need to
perform four 16× 16–bit multiplication operations to achieve a 32–bit multipli-
cation operation. Utilizing four separate DSP slices, we could perform a 32–bit
multiplication with 1 clock cycle throughput. However, this brings additional
complexity to the hardware and because of the overall structure of the polyno-
mial multiplication algorithm, 1–cycle throughput is not crucial for our design.
Therefore, we decided to utilize a single DSP unit and perform the four required
16 × 16–bit multiplication operations to achieve a 32–bit multiplication opera-
tion on the same DSP unit. This results in a 4–cycle throughput. In our design,
we use Barrett’s algorithm [3] for modular reduction, which requires 33× 33–bit
multiplication operations. Therefore, we use DSP slices to perform 17 × 17–bit
integer multiplications at a time, instead of 16 × 16–bit multiplications, where
both operations have exactly the same complexity. To minimize critical path
delays, we utilize the optional registers for the multiplicand inputs and the ac-
cumulate output ports of the DSP unit.These registers increase the latency of
a single 33 × 33-bit multiplication to 6 clock cycles. On the other hand, the
throughput is still four clock cycles, which allows the multiplier unit to start a
new multiplication every four clock cycles.



32-bit Modular Multiplication We use Barrett’s modular reduction algo-
rithm [3] to perform modular multiplication operations. The Montgomery re-
duction algorithm [28], which is a plausible alternative to the Barrett reduction,
can also be used for modular multiplication of 32-bit integers. Indeed, integer
multiplications during the Montgomery reduction are slightly less complicated
and can result in area efficiency. On the other hand, using the Montgomery re-
duction would not change the throughput, which is four clock cycles for a single
modular multiplication in our design. Furthermore, the Montgomery arithmetic
requires transformations to and from the residue domain, which can lead to com-
plications in the design. Therefore, we prefer using the Barrett’s algorithm in
our implementation to alleviate the mentioned complications in the design.

4 215 × 215 Polynomial Multiplier

We implemented a 215 × 215 polynomial multiplier, with 32–bit coefficients.
Throughout the paper, we will use the term 32K to denote the 215 × 215 poly-
nomial multiplier. We do not utilize any special modulus, to achieve a generic
and robust polynomial multiplier as we use Barrett’s reduction algorithm for
coefficient arithmetic. Instead of the classical schoolbook method for polynomial
multiplication, we utilized the NTT–based multiplication algorithm, as explained
in Section 2.2 and described in Algorithm 3. It should be noted that step 5 of
Algorithm 3 is implemented by coefficient–wise 32–bit modular multiplications.

ALGORITHM 3: NTT–based 32K polynomial multiplication

input : A(x) = A0 +A1x+ · · ·+A32767x
32767,

B(x) = B0 +B1x+ · · ·+B32767x
32767, p

output: C(x) = A(x)×B(x)

1 NTTA(x)← NTT of polynomial A(x);
2 NTTB(x)← NTT of polynomial B(x);
3 NTTC(x)← Inner products of polynomials NTTA(x) and NTTB(x);
4 T (x)← Inverse NTT of polynomial NTTC(x);
5 C(x)← T (x)× (32768−1 mod p);

4.1 NTT Operation

NTT Algorithm We apply the NTT operation on a polynomial A(x) of degree
32K−1 over Zp[x]/(Φ(x)). Since the result of the NTT–based multiplication will
be of degree 64 K, we need to zero–pad the polynomial A(x) to make it also a

polynomial of degree 64 K as follows A(x) =
∑32K−1
j=0 Aj · xj +

∑64K−1
j=32K 0 · xj .

When we apply the NTT transform on A(x), the resulting polynomial is A(x) =



∑64K−1
i=0 Ai · xi, where the coefficients Ai ∈ Zp are defined as Ai =

∑64K−1
j=0 Aj ·

wij mod p, and w ∈ Zp is referred as the twiddle factor. Since the size of the
NTT operation is actually 64 K, we need to choose a twiddle factor w which
satisfies the property w64K ≡ 1 mod p and ∀i < 64K wi 6= 1 mod p. As we are
utilizing generic modular multipliers, no special form of w is required to achieve
more efficient multiplications.

To achieve fast NTT operations, we utilize the Cooley–Tukey approach, as
explained in Section 2.2. Cooley–Tukey approach works by splitting up the NTT–
transform into two parts, performing the NTT operation on the smaller parts,
and performing a final reconstruction to combine the results of the two half–size
NTT transform results into a full–sized NTT operation. For the coefficients of
NTT, we have Ai =

∑32K−1
j=0 A2j ·wi(2j) mod p+wi

∑32K−1
j=0 A2j+1 ·wi(2j) mod p

and denote this expression as Ai = Ei + wiOi, where Ei and Oi represent the
ith coefficients of the 32 K NTT operation on the even and odd coefficients of
the polynomial A(x), respectively. It is important to note that if the twiddle
factor of the 64 K NTT operation is w, the twiddle factor of the smaller 32 K
operation will be w2. Because of the periodicity of the NTT operation, we know
that Ei+32K = Ei and Oi+32K = Oi. Therefore, we have Ai = Ei + wiOi for
0 ≤ i < 32K and Ai = Ei−32K +wiOi−32K for 32K ≤ i < 64K. For the twiddle
factor, it holds that wi+32K = wi · w32K = −wi. Consequently, we can achieve
a full 64K NTT operation with two small 32 K NTT operations utilizing the
following reconstruction operation

Ai = Ei + wiOi,

Ai+32K = Ei − wiOi. (1)

The reconstruction operation is performed iteratively over very large number of
coefficients. An 8× 8 NTT circuit is illustrated in Figure 1. Note that, in a full
64 K NTT circuit, the twiddle factor w16484 is used in 8× 8 NTT circuits.

Coefficient Multiplication and Accumulation Since our target FPGA has
multiple number of DSP units and Block RAMs, we are able to parallelize the
multiplication and accumulation operations at each level of the iterative NTT
operation. We can utilize 3·K DSP units to achieve K modular multiplications in
parallel, with a 4–cycle throughput, where K is a design parameter that depends
on the number of available DSP units in the target architecture. In our design,
K is chosen as a power of 2.

To be able to feed the DSP units with correct polynomial coefficients during
multiplication cycles, we utilize K separate Block RAMs (BRAM)) to store the
polynomial coefficients. The algorithm used to access the polynomial coefficients
in parallel is described in Algorithm 4. The algorithm takes the BRAM content
(i.e., the coefficients of A(x)), the degree N = 2n, the current level m, and the
number of modular multipliers K = 2κ as input, and generates the indexes in a
parallel manner. Every four clock cycles, we try to feed modular multipliers the
number of coefficients which is as close to K as possible. Ideally, it is desirable
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Fig. 1. Construction of the 8× 8 NTT circuit iteratively.

to perform exactly K modular multiplications in parallel, which is not possible
due to the access pattern to the powers of w. Algorithm 4, on the other hand,
achieves a good utilization of modular multiplication units.

For level m, we use the 2m × 2m NTT circuit. The coefficients are arranged
in 2m × 2m blocks. For example when K = 256, for the first level of the NTT
operation, where m = 2, we need to multiply every 4th coefficient of the polyno-
mial with w2 = w16384. Since the coefficients are perfectly dispersed, we can read
256 coefficients to feed the 256 multipliers in four clock cycles. This is perfect as
the throughput of our multipliers are also four cycles. When the multiplication
operations are complete, with an offset of 19 cycles (four clock cycles are for the
warm up of the pipeline whereas 15 clock cycles are the tail cycles necessary in a
pipelined design to finish the last operation), the results are written back to the
same address of the RAM block as the one the coefficients are read from. Since
we are utilizing dual port RAM structures, and we guarantee different read and
write addresses on each block, collisions never occur with this organization.

We provide formulae for the number of multiplications in each level and
an estimate of the number of clock cycles needed for their computation in our
architecture. Suppose N = 2n and K = 2κ (n > κ) are the number of coefficients
in our polynomial and the number of modulo multipliers in our target device,
respectively. The coefficients are stored in block RAMS (BRAMs), with a word
size of 32 bits and an address length of 10 bits (1024 coefficients per BRAM).
For ideal case, the number of modular multipliers should be 4 times the number
of BRAMS required to store a single polynomial. The formula for the number
of multiplications for the level m > 1 can be given as M = 2n+1−m · (2m−1 −
1). Also, using K = 2κ multipliers, the number of clock cycles to compute all



ALGORITHM 4: Parallel access to polynomial coefficients

input : A(x) = A0 +A1x+ . . .+A2N−1x
2N−1, n, m, and κ < n

output: Bi[j]

1 mCnt← 2m−1 − 1 ; /* number of multiplications in a block */

2 bSize← 2m ; /* size of a block */

3 BRAMCnt← 2κ−2 ; /* number of BRAMs */

4 if bSize ≤ 2κ−2 then
for t = 0 to 1024 do

for i = 0 to BRAMCnt do in parallel
for j = i+ bSize−mCnt to i+ bSize do

for k = 0 to 3 do
5 Access BRAMj [t+ 2k] ;
6 Access BRAMj [t+ 2k + 1] ;

k ← k + 1;

end
j ← j + 1;

end
i← i+ bSize;

end
t← t+ 8;

end

end
7 else

for i = 0 to BRAMCnt do in parallel
for j = 0 to 1024 do

for k = 2m−κ+1 to 2m−κ+2 do
8 Access BRAMi[k + j] ;

k ← k + 1;

end
j ← j + 2m−κ+2;

end
i← i+ 1;

end

end



multiplications in a given level 1 < m ≤ n+ 1 can be formulated as

CCm =


4 + 4 ·

⌊
M

α · bK/αc

⌋
+ 15 κ ≥ m

4 + 4 · ( βK + 1) · 2n+1−m + 15 κ < m,

where α = 2κ−m · (2m−1 − 1) and β = 2m−1 − 2κ. In the formula, the first (4)
and the last terms (15) account for the warm up and the tail cycles.

As mentioned before, the modulo multipliers are not always fully utilized
during the NTT computation. For example when K = 28 and N = 215, for
m = 2, we have to read every 4th coefficient from the BRAMs. Because the
coefficients are perfectly dispersed throughout the 64 BRAMS, we can only read
16 · 2 = 32 coefficients every clock cycle, which yields a number of 128 concur-
rent multiplications every four clock cycles. Consequently, we can finish all the
modular multiplications in the first level in 4 + 128 · 4 + 15 = 531 clock cycles.
Since we can use half the modular multipliers, we achieve half utilization in the
first level. However, when m = 3, we have to read every 6th, 7th and 8th out of
every 8 coefficients. We can read 24 · 2 = 48 coefficients every clock cycle from
the BRAMs. This means we can only utilize 192 out of 25 modular multipliers
since the irregularity of the access to the polynomial coefficients. This, naturally,
results in a slightly low utilization. However, since we can read 2 coefficients from
each BRAM every clock cycle, we are at almost perfect utilization, resulting in
4 + 128 · 4 + 15 = 531 clock cycles for this and the rest of the stages.

Since the operands of the both operations are accessed in a regular manner,
the number of clock cycles spent on modular additions and subtractions are

calculated as 2n+1·(n+1)
2τ , when there are 2τ modular adders and 2τ subtractors.

Reconstruction Once we are done with the multiplications, we utilize 64 mod-
ular adders and 64 modular subtractors to realize the addition and subtraction
operations as shown in Equation 1.

4.2 Inner Multiplication

Inner multiplication of two 64 K polynomials is trivial for our hardware design.
We can load 256 coefficients from each polynomial every 4 cycles and feed the
multipliers, without increasing the 4–cycle throughput. For a 64 K polynomial
inner multiplication we spend 1024 + 15 = 1039 clock cycles.

4.3 Inverse NTT

The Inverse NTT operation is identical to the NTT operation, except that in-
stead of the twiddle factor w, we use the twiddle factor wi = w−1 mod p. The
precomputed twiddle factors of the inverse NTT are stored in the same block
RAMs as the forward NTT twiddle factors, with an address offset. Therefore,
the same control block can be utilized with a simple address change for the w
coefficients for the inverse NTT operation.



4.4 Final Scaling

Final scaling is similar to the inner multiplication phase. We load each coefficient
of the resulting polynomial, and multiply them with the precomputed scaling
factor. Similar to the inner multiplication phase, we can load 256 coefficients
from the resulting polynomial in 4 cycles cycle and feed the multipliers, without
increasing the 4–cycle throughput. For a 64 K polynomial final scaling operation,
we spend 1039 clock cycles.

5 Implementation Results

We developed the architecture described in the previous section into Verilog mod-
ules and synthesized it using Xilinx Vivado tool for the Virtex 7 XC7VX690T
FPGA family. The synthesis results are summarized in Table 2. We synthesized
the design and achieved an operating frequency of 250 MHz for multiplication of
polynomials of degree n = 32, 768 with a small word size of log p = 32 bit. The
FPGA multiplier is used to process each component of the CRT representation
of our large coefficient ciphertexts with log q = 1271 bits. In fact we keep all
ciphertexts in CRT representation and only compute the polynomial form when
absolutely necessary, e.g. for parity correction during modulus switching and
before relinearization. We assume any data sent from the PC through the PCIe
interface to the FPGA is stored in onboard BRAM units.

Table 2. Virtex-7 XC7VX690T device utilization of the multiplier

Total Used Used (%)

Slice LUTs 433,200 219,192 50.59
Slice Registers 866,400 90,789 10.47
RAMB36E1 1470 193 13.12
DSP48E1 3600 768 21.33

CRT Computation Cost. To facilitate efficient computation of multiplication
and relinearization operations we use a series of equal sized prime numbers to
construct a CRT conversion. In fact, we chose the primes pis such that q =∏l
i=0 pi. During the levels of homomorphic evaluation, this representation allows

us to easily switch modulus by simply dropping the last pi following by a parity
correction. Also, since we have an RNS representation on the coefficients we no
longer need to reduce by q. This also eliminates the need to consider any overflow
conditions. Thus, l = log(q)/31 = 41. We efficiently compute the CRT residue
in software on the CPU for each polynomial coefficient as follows:

– Precompute and store tk = 264·k (mod pi) where k ∈ [0, dlog(q/64)− 1e].
– Given a coefficient of c, we divide it into 64-bit blocks as c = {. . . , wk, . . . , w0}.
– We compute the CRT result by evaluating

∑
tk · wk (mod pi) iteratively.



The CRT computation cost for 41 primes pi per ciphertext polynomial is in the
order of 89 msec on the CPU. The CRT inverse is similarly computed (with the
addition of a word carry) before each modulus switching operation at essentially
the same cost. Note that this high latency is a significant contributor of our
choice to keep the operands in the CRT representation.

Communication Cost. The PCIe bus is only used for transactions of in-
put/output values, NTT constants and transport of evaluation keys to the FPGA
board. With 8 lanes each capable of supporting 8 Gbit/sec transport speed the
PCIe is capable to transmit a 5 MB ciphertext in about 0.65 msec. Note that the
NTT parameters used during multiplication also need to be transported since we
do not have enough room in the BRAM components to keep them permanently.
We have two cases to consider:

– Multiplication: We transport two polynomials of 5 MB each along with the
NTT parameters of 5 MB and receive a polynomial of 10 MB, which costs
about 3.25 msec per multiplication.

– Relinearization: We need to transport the ciphertext we want to relinearize,
the NTT parameters and a set of log(q)/16 ≈ 80 evaluation keys (cipher-
texts), where a window size of 16-bit is used, resulting in a 52 msec delay.

Multiplication Cost. We compute the product of two polynomials with coef-
ficients of size log(p) = 32 bits using 256 modular multipliers in 12720 cycles,
which translates to 152 µsec. This figure is comprised of two NTT and one in-
verse NTT operations and one inner product computation. The addition of I/O
transactions will increase the timing by 79 µsec. Using the multiplication time,
the latency of large polynomial multiplication may be broken down as follows:

– Cost of small coefficient polynomial multiplications 41·152 µsec = 6.25 msec.
– The PCIe transaction of the two input polynomials, the NTT coefficients

and the double sized output polynomial is 3.25 msec.

Thus, the total latency for large polynomial multiplication in the CRT represen-
tation is computed in 9.51 msec.

Polynomial Modular Reduction. Since all operations are computed in a
polynomial ring with a characteristic polynomial as modulus without any special
structure, we use Barrett’s reduction technique to perform the reductions. Note
that precomputing the constant polynomial x2N/Φ(x) (truncated division) in
the CRT representation we do not need to compute any CRT or inverse CRT
operations during modular reduction. Thus we can compute the reduction using
two product operations in about 19 msec.

Modulus Switching. We realize the modulus switching operation by dropping
the last CRT coefficient followed by parity correction. To compute the parity
of the cut polynomial we need to compute an inverse CRT operation. The fol-
lowing parity matching and correction step takes negligible time. Note that the
parities are single bit and therefore we do not need to compute another CRT



operation. Therefore, modulus switching can be realized using one inverse CRT
computation in 89 msec.

Relinearization Cost. To realinearize a ciphertext polynomial

– We need to convert the ciphertext polynomial coefficients into integer rep-
resentation using one inverse CRT operation, which takes 89 msec.

– The evaluation keys are kept in NTT representation, therefore we only need
to compute two NTT operations for one operand and the result. For l = 41
primes and log(q)/16 ≈ 80 products the NTT operations take 331 msec.

– We need to transport the ciphertext, the NTT parameters and 80 evaluation
keys (ciphertexts) resulting in a 52 msec delay.

– The summation of the partial products takes negligible time compared to
the multiplications and the PCIe communication cost.

Then, the total relinearization operation takes 526 msec. With the current imple-
mentation, the actual NTT computations still dominate over the other sources
of latency such as PCIe communication latency and the CRT computations.
However, if the design is further optimized, e.g. by increasing the number of
processing units on the FPGA or by building custom support for CRT opera-
tions on the FPGA, then the PCIe communication overhead will become more
dominant. The timing results are summarized in Table 3.

Table 3. Primitive operation timings including I/O transactions.

Timings (msec) Timings (msec)

CRT 89 Modulus Switch 89
Multiplication 9.51 Relinearization 526

NTT conversions 6.25 CRT conversions 89
PCIe cost 3.26 NTT conversions 331

Modular Reduction 19 PCIe cost 52

6 Comparison

To understand the improvement gained by adding custom hardware support in
leveled homomorphic evaluation of a deep circuit, we estimate the homomor-
phic evaluation time for the AES circuit and compare it with a similar software
implementation by Doröz et al [16].

Homomorphic AES evaluation. Using the NTRU primitives we implemented
the depth 40 AES circuit following the approach in [16]. The tower field based
AES SBox evaluation is completed using 18 Relinearization operations and thus
2,880 Relinearizations are needed for the full AES. The AES circuit evaluation
requires 5760 modular multiplications. During the evaluation we also compute



6080 modulus switching operations. This results in a total AES evaluation time
of 15 minutes. Note that during the homomorphic evaluation with each new
level the operands shrink linearly with the levels thereby increasing the speed.
We conservatively account for this effect by dividing the evaluation time by half.
With 2048 message slots, the amortized AES evaluation time becomes 439 msec.

We have also modified Doröz et al.’s homomorphic AES evaluation code to
compute relinearization with 16-bits windows (originally single bit). This sim-
ple optimization dramatically reduces the evaluation key size and speeds up the
relinearization. The results are given in Table 4. We also included the GPU op-
timized implementation by Dai et al. [14] on an NVIDIA GeForce GTX 680.
With custom hardware assistance we obtain a significant speedups in both mul-

Table 4. Comparison of multiplication, relinearization times and AES estimate

Mul Speedup Relin Speedup AES Speedup
(msec) (sec) (sec)

CPU [16] 970 1× 103 1× 55 1×
GPU [14] 340 2.8× 8.97 11.5× 7.3 7.5×
CPU (16-bit) 970 1× 6.5 16× 12.6 4.4×
FPGA (ours) 9.5 102× 0.53 195× 0.44 125×

tiplication and relinearization operations. The estimated AES block evaluation
is also improved significantly where some of the efficiency is lost to the PC to
FPGA communication and CRT computation latencies.

7 Conclusions

We presented a custom hardware design to address the performance bottleneck
in leveled SWHE evaluations. Given the large parameters used in such systems
we design a large NTT based multiplier capable of multiplying very large degree
polynomials. With the implementation of a CRT representation on the coef-
ficients we managed to build a custom core capable of supporting polynomial
multiplications with very large degree and very large coefficient polynomials. The
design is highly optimized using numerous techniques to speedup the NTT com-
putations, and to reduce the burden on the PC/FPGA interface. The resulting
architecture dramatically improves the modular multiplication and relineariza-
tion speeds of the LTV SWHE scheme over comparable software implementa-
tions. To demonstrate the effectiveness of the accelerator, we estimated the AES
evaluation performance and determined a speedup of about 28 times.
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30. Pöppelmann, T., Güneysu, T.: Towards efficient arithmetic for lattice-based cryp-
tography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.) LATIN-
CRYPT. Lecture Notes in Computer Science, vol. 7533, pp. 139–158. Springer
(2012)

31. Rohloff, K., Cousins, D.: A scalable implementation of somewhat homomorphic
encryption built on NTRU. In: 2nd Workshop on Applied Homomorphic Cryptog-
raphy (WAHC’14) (2014)

32. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Public Key Cryptography. pp. 420–443 (2010)

33. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. IACR Cryp-
tology ePrint Archive 2011, 133 (2011)
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