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Abstract. Differential uniformity and nonlinearity are two basic properties of S-boxes, which
measure the resistance of S-boxes to differential and linear attack respectively. Besides these two
properties, the hardware cost of S-boxes is also an important property which should be considered
primarily in a limited resource environment. By use of Feistel structure, we investigate the problem
of constructing S-boxes with excellent cryptographic properties and low hardware implementation
cost in the present paper. Feistel structure is a widely used structure in the design of block ciphers,
and it can be implemented easily in hardware. Three-round Feistel structure has been used to
construct S-boxes in symmetric algorithms, such as CS-Ciper, CRYPTON and ZUC. In the present
paper, we investigate the bounds on differential uniformity and nonlinearity of S-boxes constructed
with three-round Feistel structure. By choosing suitable round functions, we show that for odd k,
differential 4-uniform S-boxes over F2

2k with the best known nonlinearity can be constructed via
three-round Feistel structure. Some experiment results are also given which show that optimal 4-bit
S-boxes can be constructed with 4 or 5 round unbalanced Feistel structure.

Keywords: lightweight cryptography, S-boxes, Feistel structure, differential uniformity, nonlin-
earity

1 Introduction

S-box is an important component of symmetric cryptography algorithms since it provides “con-
fusion” for algorithms and in most cases is the only nonlinear part of round functions. S-boxes
used in cryptography should posses good properties to resist various attacks. As a nonlinear
part, an S-box usually takes a relative high cost in hardware implementation. Thus the cost of
hardware implementation of an S-box is also of significant importance in lightweight cryptogra-
phy algorithms, which are aiming to provide security in a limited resource environment. With
the rapid development of lightweight cryptography, it is of particular interest to investigate the
problem of constructing S-boxes with excellent cryptographic properties and low cost hardware
implementation.

Feistel structure is a well-known and widely used structure in symmetric cryptography. There
are too many block ciphers designed with the scheme, and the most famous one among them is
Data Encryption Standard (DES). Feistel structure is also used for constructing components of
block ciphers. For example, MISTY used three-round Feistel structure to construct its nonlinear
part FI [20]. The S-boxes in CS-Ciper [24], CRYPTON [18] and ZUC [25] are also constructed
with three-round Feistel structure.

In general, the cost of hardware implementation of nonlinear functions is in direct proportion
to its input and output size. For example, the 8-bit S-box of AES cost around 200 gates [5],
and optimal 4-bit S-boxes cost less than 40 gates [17]. Thus, implementing functions on F2k

often cost much less area than implementing functions on F22k . An advantage of constructing
S-boxes over F2

2k
with Feistel structure is that it only need to implement round functions on F2k .

Therefore, comparing with 2k-bit S-boxes constructed directly with permutation polynomials



over F22k , S-boxes over F2
2k

constructed via Feistel structure with round functions on F2k cost
much less area in hardware implementation.

However, the best cryptographic performance of S-boxes constructed with Feistel structure
is not known clearly. Differential uniformity and nonlinearity are two basic properties of S-
boxes, which measure the resistance of S-boxes to differential and linear attack respectively.
S-boxes with lower differential uniformity and higher nonlinearity posses better resistance to
differential and linear attack. Then it is interesting to investigate the lower bound and upper
bound of differential uniformity and nonlinearity of S-boxes constructed with Feistel structure
respectively.

There are already some work on the provable security of Feistel structure, such as [19,21].
Based on the assumption that round keys are independent and uniformly random, it is proven
that the average differential uniformity of all permutations constructed via r-round (r ≥ 3)
Feistel structure with round permutation f and all possible round keys is less than or equal to
∆(f)2 [21]. Note that the bound is an average bound over all round keys, then for some fixed
round keys, the differential uniformity of the corresponding permutation may larger than the
above bound. This has been verified with experiment results in [1].

In the present paper, we mainly investigate the problem of constructing S-boxes with low
differential uniformity, high nonlinearity and easy hardware implementation by use of Feistel
structure. Without any statistical assumptions, we investigate the lower bound and upper bound
of S-boxes constructed with three-round Feistel structure. We show that differential 4-uniform
permutations with the best known nonlinearity can be constructed with three-round Feistel
structure. It is also shown that optimal 4-bit S-boxes can be constructed with 4 and 5 round
unbalanced Feistel structure.

The paper is organized as follows. In Sect. 2, some preliminaries are given. In Sect. 3,
the bound on differential uniformity and nonlinearity of S-boxes constructed with three-round
Feistel structure is characterized. In Sect. 4, a class of differential 4-uniform permutations with
the best known nonlinearity over F22k for odd k is constructed via three-round Feistel structure.
In Sect. 5, it is shown that optimal 4-bit S-boxes can be constructed with unbalanced Feistel
structure. A conclusion is given in Sect. 6.

2 Preliminaries

An S-box with n-bit input and output can be represented by a polynomial on the finite field F2n .
First, we introduce the definitions of differential uniformity, nonlinearity and algebraic degree.

Definition 1. [22] Let F (x) ∈ F2n [x]. The differential uniformity of F (x) is defined as

∆(F ) = max{|RF (a, b)| : a ∈ F∗2n , b ∈ F2n},
where RF (a, b) means the set of solutions of equation F (x) + F (x+ a) = b in F2n.

F (x) is called differential δ-uniform when ∆(F ) = δ. It is easy to see that the lower bound on
differential uniformity of F (x) ∈ F2n [x] is 2. Differential 2-uniform functions are called almost
perfect nonlinear (APN). The differential spectrum is the set {|RF (a, b)| : a ∈ F∗2n , b ∈ F2n}.
Definition 2. Let F (x) ∈ F2n [x]. The minimum distance of the components of F (x) and all
affine Boolean functions on n variables is called the nonlinearity of F (x). It is denoted by NL(F )
and can be computed as follows

NL(F ) = 2n−1 − 1

2
Λ(F ),

where Λ(F ) = max{|λF (a, b)| : a ∈ F2n , b ∈ F∗2n} and λF (a, b) =
∑

x∈F2n

(−1)Tr(bF (x)+ax).
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Fig. 1. An S-box constructed with three-round Feistel structure

For odd n and F (x) ∈ F2n [x], it holds that NL(F ) ≤ 2n−1 − 2
n−1
2 [10]. For even n and

F (x) ∈ F2n [x], the upper bound on the nonlinearity of F (x) is still open, and the best known
nonlinearity is 2n−1 − 2

n
2 [11].

Definition 3. The algebraic degree of G(x) =
2n−1∑
j=0

cjx
j ∈ F2n [x], which is denoted by d◦(G),

equals the maximum hamming weight of binary expansion of j with cj 6= 0. In other words,
d◦(G) = maxj,cj 6=0{ω2(j)}, where ω2(j) means the number of nonzero terms in the binary ex-
pansion of j.

For other cryptographic properties of Boolean functions and vectorial Boolean functions,
one can see [8,9] for more details.

3 On properties of S-boxes constructed with three-round Feistel structure

Throughout this section, we consider S-boxes constructed with three-round Feistel structure as
in Figure 1. Let Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3. Then an S-box over F2

2k
constructed as in Figure 1

can be characterized as

F (x, y) = (x+ P1(y) + P3(y + P2(x+ P1(y))), y + P2(x+ P1(y))).

We also write F (x, y) as FP1,P2,P3(x, y) when the sequence of round transformations P1, P2 and
P3 is emphasized. It is easy to see that F (x, y) is a permutation over F2

2k
and

FP1,P2,P3(x, y)−1 = FP3,P2,P1(x, y),

where FP1,P2,P3(x, y)−1 means the compositional inverse of FP1,P2,P3(x, y).

This construction has been used in CS-Ciper [24], CRYPTON [18] and ZUC [25]. In this
section, we mainly investigate the bound on differential uniformity and nonlinearity of F (x, y).

First, it needs the following result. Remember that for F (x) ∈ F2n [x], a ∈ F∗2n and b ∈ F2n ,
RF (a, b) means {y ∈ F2n | F (y) + F (y + a) = b}.

Lemma 1. [6,1] Suppose Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3, and F (x, y) be the S-box constructed as in
Figure 1. Then the following statements hold.
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(1) Let a, b, c ∈ F2k and (a, b) 6= (0, 0). Then the equation F (x, y) + F (x+ a, y + b) = (c, 0) has
|RP1(b, c+ a)| · |RP2(c, b)| roots in F2

2k
. Furthermore, these roots are (zi + P1(yj), yj), where

yj ∈ RP1(b, c+ a) and zi ∈ RP2(c, b).
(2) Let a, b ∈ F2k and c ∈ F∗

2k
. Then λF ((a, b), (0, c)) = λP1(c+ b, a)λP2(a, c).

Theorem 1. Suppose Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3, and F (x, y) be the S-box constructed as in
Figure 1. Then the following statements hold.

(1) If P2(x) is not a permutation over F2k , then ∆(F ) ≥ 2k+1.
(2) If P2(x) is a permutation over F2k , then ∆(F ) ≥ 2∆(P2).

Proof. (1). Since P2(x) is not a permutation over F2k , then there exists a ∈ F∗
2k

such that

P2(x) + P2(x+ a) = 0

has at least 2 roots in F2k , which means |RP2(a, 0)| ≥ 2. Notice that RP1(0, 0) = F2k , Then
according to (1) of Lemma 1, F (x, y) + F (x+ a, y) = (a, 0) has at least

|RP1(0, 0)| · |RP2(a, 0)| = 2k+1

roots in F2
2k

, which implies ∆(F ) ≥ 2k+1.
(2). Firstly, we choose b, c ∈ F∗

2k
, such that |RP2(c, b)| = ∆(P2). Then we choose a ∈ F2k ,

such that RP1(b, c+ a) is nonempty. This means |RP1(b, c+ a)| ≥ 2. Therefore, according to (1)
of Lemma 1,

F (x, y) + F (x+ a, y + b) = (c, 0)

has 2∆(P2) roots in F2k . Hence ∆(F ) ≥ 2∆(P2). ut

Let

λk =

{
2

k+1
2 k odd,

2
k
2
+1 k even.

For F (x) ∈ F2k [x], we assume it holds

Λ(F ) ≥ λk,

which is a bound accepted widely for F (x) ∈ F2n [x] with n even, although it is not proven yet.
Then we have the following result concerning the nonlinearity of F (x, y).

Theorem 2. Suppose Pi(x) ∈ F2k [x], 1 ≤ i ≤ 3, and F (x, y) be the S-box constructed as in
Figure 1. If for any a ∈ F∗

2k
, there exists b ∈ F∗

2k
such that |λP2(a, b)| ≥ λk, then NL(F (x, y)) ≤

22k−1 − λ2k
2 .

Proof. We only need to prove Λ(F (x, y)) ≥ λ2k. Choose a ∈ F∗
2k
, c ∈ F2k such that

|λP1(c, a)| = Λ(P1).

According to the condition of P2, there exists b ∈ F∗
2k

such that |λP2(a, b)| ≥ λk. Then according
to (2) of Lemma 1, it holds

λF ((a, b+ c), (0, b)) = λP1(c, a)λP2(a, b).

Note that

Λ(F (x, y)) = max{|λF ((u1, u2), (v1, v2))| : (u1, u2), (v1, v2) ∈ F2
2k , (v1, v2) 6= (0, 0)},
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Algorithm/S-box Differential uniformity Nonlinearity Algebraic degree

CS-Ciper/P 16 96 5

CRYPTON/S0, S1 8 96 5

ZUC/S0 8 96 5

Table 1. Properties of known 8-bit S-boxes constructed with three-round Feistel structure

then it holds

Λ(F (x, y)) ≥ |λF ((a, b+ c), (0, b))|
= |λP1(c, a)| × |λP2(a, b)|
≥ Λ(P1)λk

≥ λ2k,

and we complete the proof. ut

As for 8-bit S-boxes, which are the most often usage size in real applications, we have the
following result.

Theorem 3. Suppose FP1,P2,P3(x, y) is an S-box over F2
24 constructed by three-round Feistel

structure with round functions Pi(x) ∈ F24 [x], 1 ≤ i ≤ 3. Then the following statements hold.

(1) ∆(FP1,P2,P3) ≥ 8.
(2) If ∆(FP1,P2,P3) = 8, then NL(FP1,P2,P3) ≤ 96.

Proof. Notice that there are no APN permutations over F24 [16], then the differential uniformity
of any permutation over F2

24 constructed with three-round Feistel structure is larger than or
equal to 8.

If ∆(FP1,P2,P3) = 8, then P2(x) is a differential 4-uniform permutation over F24 according
to Theorem 1. By an exhaustive search, it can be checked that the condition of Theorem 2 is
satisfied by all differential 4-uniform permutations over F24 . Then according to Theorem 2, we
have NL(FP1,P2,P3) ≤ 96. ut

The permutation P in CS-Ciper, S-boxes S0, S1 in CRYPTON and an S-box S0 in ZUC
are constructed by three-round Feistel structure. The properties of these 8-bit S-boxes are listed
in Table 1.

The permutation P in CS-Ciper is an involution over F2
24 , which means P (P (x, y)) = (x, y)

for (x, y) ∈ F2
24 . The differential uniformity of the permutation P in CS-Ciper does not achieve

the bound in Theorem 3. In Example 1, we give an involution over F2
24 , which achieves the

bound in Theorem 3 and has a better algebraic degree.
According to Theorem 3, the differential uniformity and nonlinearity of S-boxes in CRYP-

TON and ZUC can not be improved by choosing different round transformations. However,
the following example shows that the algebraic degree of S-boxes constructed with three-round
Feistel structure can be improved to 6.

Example 1. Let P1(x) = x3, P2(x) = x + g6x10 + g3x13, where g is a root of x4 + x + 1 = 0,

and P3(x) = x3 + (x2 + x + 1)Tr(x3) =
14∑
i=4

xi. P1(x) is a case of Gold function [12,22], which

is an APN polynomial. P2(x) is a differential 4-uniform permutation over F24 got by computer
searching. P3(x) is an APN polynomial which is CCZ-equivalent and EA-inequivalent to P1(x)
[3].
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It is easy to check that FP1,P2,P3 and FP3,P2,P3 are S-boxes over F2
24 with differential uni-

formity 8, nonlinearity 96 and algebraic degree 6. Furthermore, FP3,P2,P3 is an involution over
F2
24 .

4 Optimal S-boxes constructed with three round Feistel structure

When k is odd, the upper bound on nonlinearity of F (x, y) in Theorem 2 is 22k−1 − 2k, which
is the best known nonlinearity of functions on F2

2k
. Furthermore, there exist APN permutations

over F2k with k odd. Thus, it is possible to get differential 4-uniform permutations over F2
2k

with the best known nonlinearity.

Suppose k is an odd integer, gcd(i, k) = 1. Then x2
i+1 is an APN permutation over F2k and

denote its compositional inverse by x
1

2i+1 . Let F (x, y) be the S-box over F2
2k

constructed by

three-round Feistel structure with round functions P1(x) = P3(x) = x2
i+1 and P2(x) = x

1

2i+1 .
Then

F (x, y) = (x+ y2
i+1 + (y + (x+ y2

i+1)
1

2i+1 )2
i+1, y + (x+ y2

i+1)
1

2i+1 )

= (y2
i+1 + y2

i
(x+ y2

i+1)
1

2i+1 + y(x+ y2
i+1)

2i

2i+1 , y + (x+ y2
i+1)

1

2i+1 ).

In this section, we show that F (x, y) constructed as above is a differential 4-uniform permu-
tation over F2

2k
with the best known nonlinearity.

In order to characterize the differential uniformity and nonlinearity of F (x, y), we need the
following lemmas firstly.

Lemma 2. Suppose k is an odd integer and gcd(i, k) = 1. Then for any (b, d) ∈ F2
2k

with
(b, d) 6= (0, 0), the following system of equations{

dy2
i

+ d2
i
y + b2

i
z + bz2

i
= 0,

by2
i

+ b2
i
y + (b+ d)z2

i
+ (b+ d)2

i
z = 0

has exactly 4 roots in F2
2k

. Furthermore, the following statements hold.

(1) If bd(b + d) = 0, then the 4 roots are (0, 0), (0, β), (β, 0) and (β, β), where β ∈ {b, d} with
β 6= 0.

(2) If bd(b+ d) 6= 0, then the 4 roots are (0, 0), (d, b), (b, b+ d) and (b+ d, d).

Proof. To solve the following system of equations{
dy2

i
+ d2

i
y + b2

i
z + bz2

i
= 0, (1)

by2
i

+ b2
i
y + (b+ d)2

i
z + (b+ d)z2

i
= 0, (2)

we have the following cases.

First, if b = 0, then d 6= 0 and the above system of equations becomes{
dy2

i
+ d2

i
y = 0,

dz2
i

+ d2
i
z = 0.

It is easy to see that the above systems of equations has exactly 4 roots in F2
2k

, which are

(0, 0), (0, d), (d, 0), (d, d).
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This is because αx2
i
+α2ix is a linear mapping on F2k with kernel {0, α} for any α ∈ F∗

2k
, since

gcd(i, k) = 1.
The case of d = 0, b 6= 0, and b = d ∈ F∗

2k
can be proved similarly.

Next, we prove the case of bd(b+ d) 6= 0, which is equivalent to b, d ∈ F∗
2k

and b 6= d. Let

A = b2 + bd+ d2,

and
B = b2

i
d+ bd2

i
.

Notice that k is odd, gcd(i, k) = 1, b, d ∈ F∗
2k

and b 6= d, then A 6= 0 and B 6= 0. We add

equation (1) multiplied by b + d to equation (2) multiplied by b, from which we eliminate z2
i

and get

z =
1

B
(Ay2

i
+ (b2

i+1 + bd2
i

+ d2
i+1)y).

Substitute the above equality to equation (1) and multiply both sides by B2i+1, then we have

0 = dB2i+1y2
i

+ d2
i
B2i+1y + (bB)2

i
(Ay2

i
+ (b2

i+1 + bd2
i

+ d2
i+1)y)

+bB(Ay2
i

+ (b2
i+1 + bd2

i
+ d2

i+1)y)2
i

= bBA2iy2
2i

+ (dB2i+1 + (bB)2
i
A+ bB(b2

i+1 + bd2
i

+ d2
i+1)2

i
)y2

i

+(d2
i
B2i+1 + (bB)2

i
(b2

i+1 + bd2
i

+ d2
i+1))y

= bBA2iy2
2i

+ bA2i(b2
2i
d+ bd2

2i
)y2

i
+ bA2iB2iy, (3)

where the coefficients of y2
i

and y is computed as follows. First, we have

dB2i+1 = d(b2
i
d+ bd2

i
)2

i+1

= b2
2i+2id2

i+2 + b2
2i+1d2

i+1+1 + b2
i+1
d2

2i+2 + b2
i+1d2

2i+2i+1,

(bB)2
i
A = (b2

2i+2id2
i

+ b2
i+1
d2

2i
)(b2 + bd+ d2)

= b2
2i+2i+2d2

i
+ b2

2i+2i+1d2
i+1 + b2

2i+2id2
i+2

+b2
i+1+2d2

2i
+ b2

i+1+1d2
2i+1 + b2

i+1
d2

2i+2,

and
bB(b2

i+1 + bd2
i

+ d2
i+1)2

i
= (b2

i+1d+ b2d2
i
)(b2

2i+2i + b2
i
d2

2i
+ d2

2i+2i)

= b2
2i+2i+1+1d+ b2

i+1+1d2
2i+1 + b2

i+1d2
2i+2i+1

+b2
2i+2i+2d2

i
+ b2

i+2d2
2i+2i + b2d2

2i+2i+1
,

then it holds

dB2i+1 + (bB)2
i
A+ bB(b2

i+1 + bd2
i

+ d2
i+1)2

i

= b2
2i+1d2

i+1+1 + b2
2i+2i+1d2

i+1 + b2
i+1+2d2

2i

+b2
2i+2i+1+1d+ b2

i+2d2
2i+2i + b2d2

2i+2i+1

= b(b2
2i
d(d2

i+1
+ b2

i
d2

i
+ b2

i+1
) + bd2

2i
(b2

i+1
+ b2

i
d2

i
+ d2

i+1
))

= bA2i(b2
2i
d+ bd2

2i
).

The computation of the coefficient of y is easy.

d2
i
B2i+1 + (bB)2

i
(b2

i+1 + bd2
i

+ d2
i+1)

= B2i(d2
i
(b2

i
d+ bd2

i
) + b2

i
(b2

i+1 + bd2
i

+ d2
i+1))

= B2i(bd2
i+1

+ b2
i+1+1 + b2

i+1d2
i
)

= bA2iB2i .
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Note that b 6= 0 and A 6= 0, then equation (3) is equivalent to

0 = (b2
i
d+ bd2

i
)y2

2i
+ (b2

2i
d+ bd2

2i
)y2

i
+ (b2

2i
d2

i
+ b2

i
d2

2i
)y.

Divid both sides by d2
2i+2i+1, then we have

0 = (
b

d
+ (

b

d
)2

i
)(
y

d
)2

2i
+ (

b

d
+ (

b

d
)2

2i
)(
y

d
)2

i
+ ((

b

d
)2

i
+ (

b

d
)2

2i
)
y

d

= (
b

d
+ (

b

d
)2

i
)((
y

d
)2

i
+ (

y

d
))2

i
+ ((

b

d
) + (

b

d
)2

i
)2

i
((
y

d
)2

i
+
y

d
).

Notice that gcd(i, k) = 1, then αx2
i
+ α2ix is a linear polynomial on F2k with kernel {0, α} for

any α ∈ F∗
2k

. Note that b
d + ( bd)2

i 6= 0, since b, d ∈ F∗
2k

and b 6= d. Therefore, it holds

(
y

d
)2

i
+
y

d
= 0

or

(
y

d
)2

i
+
y

d
=
b

d
+ (

b

d
)2

i
,

form which we get the roots of equation (3) are y = 0, y = d and y = b, b+ d respectively.
Substitute the values of y into equation (1) and equation (2), then one can solve and check

that the roots of system of equation (1) and equation (2) are

(0, 0), (d, b), (b, b+ d), (b+ d, d).

Then we complete the proof. ut

Let a ∈ F∗
2k

, denote La(x) = ax2
i

+ a2
i
x and take α · β = Tr(αβ) for inner product in F2k ,

where Tr(x) is the trace function from F2k to F2. The adjoint linear mapping of La(x), which
is denoted by L∗a(x), is a linear mapping such that

Tr(βLa(α)) = Tr(L∗a(β)α)

for all α, β ∈ F2k . It is easy to see that

L∗a(x) = a2
i
x+ (ax)2

n−i
.

Lemma 2 means that
L(y, z) = (Ld(y) + Lb(z), Lb(y) + Lb+d(z))

is a linear mapping on F2
2k

with kernel dimension equals 2. Take (α, β) · (y, z) = Tr(αy + βz)
for inner product in F2

2k
, then we have

(α, β) · L(y, z) = (α, β) · (Ld(y) + Lb(z), Lb(y) + Lb+d(z))

= Tr(αLd(y) + αLb(z) + βLb(y) + βLb+d(z))

= Tr(L∗d(α)y + L∗b(β)y + L∗b(α)z + L∗b+d(β)z)

= (L∗d(α) + L∗b(β), L∗b(α) + L∗b+d(β)) · (y, z).

Hence it holds
L∗(y, z) = (L∗d(y) + L∗b(z), L

∗
b(y) + L∗b+d(z)),

where L∗ is the adjoint mapping of L. By an elementary knowledge of linear algebra, we have

dim(ker(L∗)) = dim(ker(L)) = 2.

Then the following result holds.
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Lemma 3. Suppose k is an odd integer and gcd(i, k) = 1. Then for any (b, d) ∈ F2
2k

with
(b, d) 6= (0, 0), the following system of equations{

d2
i
y + (dy)2

n−i
+ b2

i
z + (bz)2

n−i
= 0,

b2
i
y + (by)2

n−i
+ (b+ d)2

i
z + ((b+ d)z)2

n−i
= 0

has exactly 4 roots in F2
2k

.

Theorem 4. Suppose k is odd and gcd(i, k) = 1. Let F (x, y) be the S-box over F2
2k

constructed

by three-round Feistel structure with round functions P1(x) = P3(x) = x2
i+1 and P2(x) = x

1

2i+1 .
Then the differential uniformity of F (x, y) equals 4. Furthermore, the differential spectrum of
F (x, y) is {0, 4}.

Proof. Let a, b, c, d ∈ F2k and (a, b) 6= (0, 0). Then we need to prove that

F (x, y) + F (x+ a, y + b) = (c, d)

has 0 or 4 roots in F2
2k

.

First, it is easy to see that the above equation is equivalent to the following system of
equations {

by2
i

+ b2
i
y + F

′
(x, y) + F

′
(x+ a, y + b) = b2

i+1 + c, (4)

(x+ y2
i+1)

1

2i+1 + (x+ a+ (y + b)2
i+1)

1

2i+1 = b+ d, (5)

where

F
′
(x) = y2

i
(x+ y2

i+1)
1

2i+1 + y(x+ y2
i+1)

2i

2i+1 .

Let

z = (x+ y2
i+1)

1

2i+1 .

Then according to equation (5), we have

(x+ a+ (y + b)2
i+1)

1

2i+1 = (x+ y2
i+1)

1

2i+1 + b+ d = z + b+ d. (6)

Raise both sides to the (2i + 1)th power, then we have

by2
i

+ b2
i
y + (b+ d)2

i
z + (b+ d)z2

i
= a+ b2

i+1 + (b+ d)2
i+1.

Furthermore, according to equality (6), it also holds

F
′
(x, y) + F

′
(x+ a, y + b) = y2

i
z + yz2

i
+ (y + b)2

i
(z + b+ d) + (y + b)(z + b+ d)2

i

= (b+ d)y2
i

+ (b+ d)2
i
y + b2

i
z + bz2

i
+ b2

i
d+ bd2

i
.

Thus equation (4) implies

dy2
i

+ d2
i
y + bz2

i
+ b2

i
z = b2

i+1 + b2
i
d+ bd2

i
+ c.

Therefore, (x0, y0) is a root of equation

F (x, y) + F (x+ a, y + b) = (c, d)

9



if and only if (y0, z0), where z0 = (x0 + y2
i+1

0 )
1

2i+1 , is a root of the following system of equations{
dy2

i
+ d2

i
y + bz2

i
+ b2

i
z = b2

i+1 + b2
i
d+ bd2

i
+ c,

by2
i

+ b2
i
y + (b+ d)2

i
z + (b+ d)z2

i
= a+ b2

i+1 + (b+ d)2
i+1.

Notice that (a, b) 6= (0, 0), then a 6= 0 when b = 0. Note that x
1

2i+1 is a permutation over F2k ,
then (5) does not has solutions on F2

2k
when (b, d) = (0, 0). Therefore, we have (b, d) 6= (0, 0)

when the system of equation (4) and equation (5) has solutions in F2
2k

.
Hence according to Lemma 2, the above system of equations has 0 or 4 root in F2

2k
. Then

we complete the proof. ut
Theorem 5. Suppose k is odd and gcd(i, k) = 1. Let F (x, y) be the S-box over F2

2k
constructed

by three-round Feistel structure with round functions P1(x) = P3(x) = x2
i+1 and P2(x) = x

1

2i+1 .
Then the nonlinearity of F (x, y) equals 22k−1 − 2k, which is the best known nonlinearity over
F2
2k

. Furthermore, the Walsh spectrum of F (x, y) is {0,±2k+1}.
Proof. Let a, b, c, d ∈ F2k , and (c, d) 6= (0, 0). Then we have

λF ((a, b), (c, d))

=
∑

x,y∈F
2k

(−1)Tr(c(y
2i+1+y2

i
(x+y2

i+1)
1

2i+1+y(x+y2
i+1)

2i

2i+1 )+d(y+(x+y2
i+1)

1
2i+1 )+ax+by).

Let z = (x + y2
i+1)

1

2i+1 . Then x = y2
i+1 + z2

i+1 and z runs over F2k when x runs over F2k .
Therefore, we have

λF ((a, b), (c, d)) =
∑

y,z∈F
2k

(−1)Tr(c(y
2i+1+y2

i
z+yz2

i
)+d(y+z)+a(y2

i+1+z2
i+1)+by)

=
∑

y,z∈F
2k

(−1)f(y,z),

where
f(y, z) = Tr((a+ c)y2

i+1 + az2
i+1 + c(y2

i
z + yz2

i
) + (b+ d)y + dz).

Firstly, if a = c = 0, then d 6= 0 since (c, d) 6= (0, 0). Hence it holds

λF ((0, b), (0, d)) =
∑

y,z∈F
2k

(−1)Tr((b+d)y+dz)

=
∑
y∈F

2k

(−1)Tr((b+d)y)
∑
z∈F

2k

(−1)Tr(dz)

= 0.

Next, we suppose (a, c) 6= (0, 0). Note that

f(y, z) + f(y + u, z + v)

= Tr((a+ c)(y2
i+1 + (y + u)2

i+1) + a(z2
i+1 + (z + v)2

i+1))

+Tr(c(y2
i
z + yz2

i
+ (y + u)2

i
(z + v) + (y + u)(z + v)2

i
) + (b+ d)u+ dv)

= Tr((a+ c)(u2
i
y + uy2

i
+ u2

i+1) + a(v2
i
z + vz2

i
+ v2

i+1))

+Tr(c(y2
i
v + u2

i
z + u2

i
v + yv2

i
+ uz2

i
+ uv2

i
) + (b+ d)u+ dv)

= Tr(((a+ c)u2
i

+ (au+ cu)2
n−i

+ cv2
i

+ (cv)2
n−i

)y)

+Tr((av2
i

+ (av)2
n−i

+ cu2
i

+ (cu)2
n−i

)z) + f(u, v),
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then it holds that

λF ((a, b), (c, d))2 =
∑

y,z∈F
2k

(−1)f(y,z) ×
∑

u,v∈F
2k

(−1)f(y+u,z+v)

=
∑

y,z,u,v∈F
2k

(−1)f(y,z)+f(y+u,z+v)

=
∑
y∈F

2k

(−1)Tr((cv
2i+(cv)2

n−i
+(a+c)u2

i
+(au+cu)2

n−i
)y)

×
∑
z∈F

2k

(−1)Tr((cu
2i+(cu)2

n−i
+av2

i
+(av)2

n−i
)z)

×
∑

u,v∈F
2k

(−1)f(u,v)

= 22k
∑

u,v∈R(a,c)

(−1)f(u,v),

where R(a, c) is the solution set of the following system of equations with variables u and v{
av2

i
+ (av)2

n−i
+ cu2

i
+ (cu)2

n−i
= 0,

cv2
i

+ (cv)2
n−i

+ (a+ c)u2
i

+ (au+ cu)2
n−i

= 0.

Note that (a, c) 6= (0, 0), then according to Lemma 3, the above system of equations has exactly
4 roots in F2

2k
. Denote

R(a, c) = {(ui, vi) | 0 ≤ i ≤ 3}.
Notice that f(y, z) + f(y+ u, z+ v) = f(u, v) for (u, v) ∈ R(a, c) and (y, z) ∈ F2

2k
, which means

f(u, v) is linear on R(a, c). Therefore, f(u, v) is a balanced function or a constant 0 on R(a, c).
Note that (0, 0) ∈ R(a, c), then it holds

λF ((a, b), (c, d))2 =

{
22k+2 f(ui, vi) = 0 for all 0 ≤ i ≤ 3,
0 otherwise.

Hence
λF ((a, b), (c, d)) ∈ {0,±2k+1},

and we complete the proof. ut

At the end of this section, we investigate the algebraic degree of F (x, y). The following
results are needed.

Lemma 4. [22] Suppose k is odd and gcd(i, k) = 1. Then the compositional inverse of x2
i+1

over F2k is xt, where t =

k−1
2∑
j=0

22ij mod (2k − 1). Its algebraic degree is k+1
2 .

Lemma 5. [4,7] Suppose F (x) ∈ F2n [x]. If λF (a, b) ∈ {0,±2
n+s
2 } for all b ∈ F∗2n and a ∈ F2n,

then d◦(F ) ≤ n−s
2 + 1.

Theorem 6. Suppose k is odd and gcd(i, k) = 1. Let F (x, y) be the S-box over F2
2k

constructed

by three-round Feistel structure with round functions P1(x) = P3(x) = x2
i+1 and P2(x) = x

1

2i+1 .
Then the algebraic degree of F (x, y) equals k.

11



Proof. Firstly, according to Theorem 5 and Lemma 5, we have

d◦(F (x, y)) ≤ 2k − 2

2
+ 1 = k.

Next, let S = {2ij mod k | 0 ≤ j ≤ k−1
2 } and for s ⊆ S, define

2s =

{
0 s = ∅,∑

j∈s
2j mod (2k − 1) s 6= ∅.

Then according to Lemma 4, the compositional inverse of x2
i+1 is x2

S
. Hence we have

(x+ y2
i+1)

1

2i+1 = (x+ y2
i+1)2

S

=
∑
s1⊆S

x2
s1
y(2

i+1)2S\s1

= xy
(2i+1)

k−1
2∑

j=1
22ji mod (2k−1)

+
∑

{0}6=s1⊆S

x2
s1
y(2

i+1)2S\s1

= xyd1 + F
′
(x, y),

where F
′
(x, y) =

∑
{0}6=s1⊆S

x2
s1y(2

i+1)2S\s1 and

d1 = (2i + 1)

k−1
2∑
j=1

22ji mod (2k − 1) =
k∑
j=2

2ji mod (2k − 1).

We claim that ω2(d1) = k − 1. Otherwise there exist 2 ≤ j1 < j2 ≤ k, such that 2ij1 =
2ij2 mod (2k−1). This is equivalent to ij1 = ij2 mod k, since for an integer r ∈ Z, 2r mod (2k−
1) = 2r

′
, where 0 ≤ r

′ ≤ k − 1 and r
′

= r mod k. Thus k|i(j2 − j1). Note that gcd(i, k) = 1,
then j1 = j2, which is a contradiction. Therefore, it holds

ω2(d1) = k − 1,

and hence
d◦(xyd1) = k.

Notice that xyd1 does not appear in the terms of F
′
(x, y), then the algebraic degree of y +

(x + y2
i+1)

1

2i+1 equals k. This means F (x, y) has a component function with algebraic degree
k. Thus d◦(F (x, y)) ≥ k. Then we complete the proof. ut

According to the above results, we have the following result.

Theorem 7. Suppose k is an odd integer and gcd(i, k) = 1. Let

F (x, y) = (x+ y2
i+1 + (y + (x+ y2

i+1)
1

2i+1 )2
i+1, y + (x+ y2

i+1)
1

2i+1 ),

which is the S-box over F2
2k

constructed by three-round Feistel structure with round functions

P1 = P3 = (x)2
i+1 and P2 = P1(x)−1 = x

1

2i+1 . Then the following statements hold.

(1) F (x, y) is an involution over F2
2k

, which means F (F (x, y)) = (x, y).
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(2) The differential uniformity of F (x, y) equals 4 and its differential spectrum is {0, 4}.
(3) The nonlinearity of F (x, y) equals 22k−1 − 2k and its Walsh spectrum is {0,±2k+1}.
(4) The algebraic degree of F (x, y) equals k.

Remark 1. When k = 3, i = 1, it can be checked that F (x, y) in Theorem 7 is CCZ-equivalent to
x5. In general, we do not know whether F (x, y) is CCZ-equivalent to the Gold type permutations
over F22k , i.e., x2

i+1 with gcd(i, 2k) = 2. However, the permutations in Theorem 7 are still
interesting due to their efficient hardware implementation.

The following result also holds, whose proof is similar to the proof of above results.

Theorem 8. Suppose k is an odd integer and gcd(i, k) = 1, α, β, γ ∈ F2k . Let

F (x, y) = (x+(y+α)2
i+1 +(y+γ+(x+β+(y+α)2

i+1)
1

2i+1 )2
i+1, y+(x+β+(y+α)2

i+1)
1

2i+1 ),

which is the S-box over F2
2k

constructed by three-round Feistel structure with round functions

P1(x) = (x+α)2
i+1, P2(x) = (x+β)

1

2i+1 and P3(x) = (x+γ)2
i+1. Then the following statements

hold.

(1) F (x, y) is an involution over F2
2k

when α = γ.
(2) The differential uniformity of F (x, y) equals 4 and its differential spectrum is {0, 4}.
(3) The nonlinearity of F (x, y) equals 22k−1 − 2k and its Walsh spectrum is {0,±2k+1}.
(4) The algebraic degree of F (x, y) equals k.

Remark 2. “Characterizing the F -functions whose maximum differential probability with keys
is small” is an open problem proposed in [1]. In that paper, the i-th round of Feistel structure
is a transformation as (Li, Ri)→ (Ri, Li + f(Li + ki)). F -function means f(x+ ki), where f is
a permutation and ki is the i-th round key. Theorem 8 means that for any fixed round keys,

the three-round Feistel scheme with round functions P1 = P3 = x2
i+1 and P2 = x

1

2i+1 always
posses the best differential uniformity and nonlinearity.

5 Constructing optimal 4-bit S-boxes with unbalanced Feistel structure

Four bit S-boxes are always chosen for lightweight cryptography because of their less hardware
implementation cost. It has been shown that, the best differential uniformity and nonlinearity
of 4-bit S-boxes both equal 4 [17]. These S-boxes are called optimal 4-bit S-boxes.

In order to reduce hardware implementation cost, a method of constructing recursive diffu-
sion layers is proposed in PHONTON [14] and LED [15], and further studied in [26]. We use
a similar idea to construct recursive S-boxes in this section. We show that some optimal 4-bit
S-boxes can be constructed with 4 or 5 round unbalanced Feistel structure.

x1 x2 x3 x4

f�

Fig. 2. Constructing S-box with NLFSR
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f Operations Gi f Operations Gi

x2x3 (1, 1, 0) 8 x2x3 + 1 (1, 1, 1) 8
x3x4 (1, 1, 0) 8 x3x4 + 1 (1, 1, 1) 8
(x3 + 1)x4 (1, 1, 1) 8 (x3 + 1)x4 + 1? (1, 1, 2) 8
x2(x3 + 1) (1, 1, 1) 8 x2(x3 + 1) + 1? (1, 1, 2) 8
x3(x4 + 1) (1, 1, 1) 8 x3(x4 + 1) + 1? (1, 1, 2) 8
(x2 + 1)x3 (1, 1, 1) 8 (x2 + 1)x3 + 1? (1, 1, 2) 8
(x2 + 1)(x3 + 1) + 1 (1, 1, 3) 8 (x2 + 1)(x3 + 1) (1, 1, 2) 8
(x3 + 1)(x4 + 1) + 1 (1, 1, 3) 8 (x3 + 1)(x4 + 1) (1, 1, 2) 8
x2x3 + x4 (2, 1, 0) 8 x2x3 + x4 + 1? (2, 1, 1) 8
x2 + x3x4 (2, 1, 0) 8 x2 + x3x4 + 1? (2, 1, 1) 8
x2 + (x3 + 1)x4 (2, 1, 1) 8 x2 + (x3 + 1)x4 + 1 (2, 1, 2) 8
(x2 + 1)x3 + x4 (2, 1, 1) 8 (x2 + 1)x3 + x4 + 1 (2, 1, 2) 8
x2 + x3(x4 + 1) (2, 1, 1) 8 x2 + x3(x4 + 1) + 1 (2, 1, 2) 8
x2(x3 + 1) + x4 (2, 1, 1) 8 x2(x3 + 1) + x4 + 1 (2, 1, 2) 8
x2 + (x3 + 1)(x4 + 1) + 1 (2, 1, 3) 8 x2 + (x3 + 1)(x4 + 1)? (2, 1, 2) 8
(x2 + 1)(x3 + 1) + x4 + 1 (2, 1, 3) 8 (x2 + 1)(x3 + 1) + x?4 (2, 1, 2) 8
x2(x3 + x4) + x3x4 (3, 2, 0) 1 x2(x3 + x4) + x3x4 + 1 (3, 2, 1) 1
x2(x4 + x3 + 1) + (x3 + 1)x4 (3, 2, 1) 1 x2(x4 + x3 + 1) + (x3 + 1)x4 + 1 (3, 2, 2) 1
x2(x3 + x4 + 1) + x3(x4 + 1) (3, 2, 1) 1 x2(x3 + x4 + 1) + x3(x4 + 1) + 1 (3, 2, 2) 1
(x2 + 1 + x4)x3 + (x2 + 1)x4 (3, 2, 1) 1 (x2 + 1 + x4)x3 + (x2 + 1)x4 + 1 (3, 2, 2) 1

Table 2. Boolean functions such that P 4
f are optimal 4-bit S-boxes

Construction 1 Suppose f is a nonlinear Boolean function with three variables, and xi ∈
F2, 1 ≤ i ≤ 4. One round unbalanced Feistel structure is a transformation as follows

Pf (x1, x2, x3, x4) = (x2, x3, x4, x1 + f(x2, x3, x4)).

Then an S-box over F4
2 can be constructed with t round unbalanced Feistel structure as follows

F (x1, x2, x3, x4) = P tf (x1, x2, x3, x4),

where t = 4 or 5, P jf defined as Pf (P j−1f ) for j ≥ 2 and P 1
f = Pf .

It is easy to see that P tf is a permutation over F4
2 for t ≥ 1. In order to update every bit of the

output of the S-boxes constructed as above, t should larger than or equal to 4. Considering the
efficiency of S-boxes, it is better to construct S-boxes with not too many rounds. Thus, we choose
t = 4 or 5 in the above construction. P tf can be implemented with nonlinear feedback register
(NLFSR) as shown in Figure 2. It also can be implemented similarly as the implementation of
S-boxes in Piccolo [23] and LS-design [13].

Let Qf (x1, x2, x3, x4) = (x4 + f(x1, x2, x3), x1, x2, x3), which is also a transformation that
can be implemented easily. Then it is easy to verify that

P (Q(x1, x2, x3, x4)) = (x1, x2, x3, x4).

Hence the compositional inverse of P tf equals Qtf . It should be noticed Qtf also can be imple-
mented with nonlinear shift register.

By an exhaustive searching, we list all Boolean functions f such that P 4
f , P 5

f are optimal
4-bit S-boxes in Table 2 and Table 3 respectively. The cost of hardware implementation of one
round transformations of P tf , i.e. x1 +f , is estimated in the two tables. An element “(r1, r2, r3)”
in the “Operations” columns of the two tables means that the number of operations “+” (XOR),
“∗” (AND) and “+1” (NOT) in x1 + f is r1, r2 and r3 respectively.

14



f Operations Gi f Operations Gi

x2(x3 + x4) + 1 (2, 1, 1) 7 (x2 + x4)x3 + 1? (2, 1, 1) 4
(x2 + x3)x4 + 1 (2, 1, 1) 7 (x2 + x4)(x3 + 1) + 1? (2, 1, 2) 4
(x2 + x3)(x4 + 1) + 1 (2, 1, 2) 7 (x2 + 1)(x3 + x4) + 1 (2, 1, 2) 7
x2x3 + (x2 + 1)x4 (2, 2, 1) 13 x2(x4 + 1) + x3x4 (2, 2, 1) 13
x2x4 + x3(x4 + 1) + 1 (2, 2, 2) 13 x2(x3 + 1) + x3(x4 + 1) (2, 2, 2) 4
(x2 + 1)x3 + x2x4 + 1 (2, 2, 2) 13 x2x4 + (x3 + 1)(x4 + 1)? (2, 2, 2) 13
x2x3 + (x2 + 1)(x4 + 1)? (2, 2, 2) 13 (x2 + 1)(x4 + 1) + x3x

?
4 (2, 2, 2) 13

(x2 + 1)(x3 + 1) + x2x
?
4 (2, 2, 2) 13 (x2 + 1)x3 + (x3 + 1)x4 (2, 2, 2) 4

x2((x3 + 1)x4 + 1) + x3(x4 + 1) (2, 3, 3) 11 (x2(x4 + 1) + 1)x3 + (x2 + 1)x4 (2, 3, 3) 11
(x2x3 + 1)x4 + (x2 + 1)(x3 + 1) (2, 3, 3) 11 x2(x3x4 + 1) + (x3 + 1)(x4 + 1) (2, 3, 3) 11
(x2x3 + 1)x4 + (x2 + 1)(x3 + 1) + 1 (2, 3, 4) 11 (x2x4 + 1)x3 + (x2 + 1)(x4 + 1) + 1 (2, 3, 4) 3
x2(x3x4 + 1) + (x3 + 1)(x4 + 1) + 1 (2, 3, 4) 11 x2(x3(x4 + 1) + 1) + (x3 + 1)x4 + 1 (2, 3, 4) 3
(x2(x4 + 1) + 1)x3 + (x2 + 1)x4 + 1 (2, 3, 4) 11 x2((x3 + 1)x4 + 1) + x3(x4 + 1) + 1 (2, 3, 4) 11

Table 3. Boolean functions such that P 5
f are optimal 4-bit S-boxes

According to [17], there are exactly 16 classes of optimal 4-bit S-boxes up to affine equiva-
lence. An element “j” in the columns “Gi” in Table 2 (resp. Table 3) means the P 4

f (resp. P 5
f )

is CCZ-equivalent to Gj in [17]. It can be checked that the S-box used in PRESENT [2] is affine
equivalent to G1.

The functions with a “?” in the superscript, such as “f?”, in Table 2 (resp. Table 3) means
that P 4

f (resp. P 5
f ) does not have fixed points. For other functions in the two tables, it can be

checked that there always exists nonzero constant (a1, a2, a3, a4) ∈ F4
2, such that P 4

f (x1+a1, x2+

a2, x3 +a3, x4 +a4) (resp. P 5
f (x1 +a1, x2 +a2, x3 +a3, x4 +a4)) does not have fixed points. Note

that adding a constant to input does not change the differential uniformity and nonlinearity,
then for any function f in the two tables, optimal 4-bit S-boxes with no fixed points can also be
constructed by adding a constant to the input. For example, let f = x2x3, by adding (1, 0, 1, 0)
to the input of P 4

f , we have P 4
f (x1 + 1, x2, x3 + 1, x4) is a optimal 4-bit S-boxes which does not

have fixed points.
With the method in this section, it can only use 1 XOR, 1 AND and 2 NOT for one round

transformation to construct an 4-bit optimal S-box with no fixed points by 4 round unbalanced
Feistel structure, see Table 2.

6 Conclusion

In the present paper, we investigate cryptographic properties of S-boxes constructed with three-
round Feistel structure. A class of differential 4-uniform S-boxes with the best known nonlin-
earity over F2

2k
for k odd is given. It is also shown that optimal 4-bit S-boxes can be constructed

with unbalanced Feistel structure and some experiment results are given in the paper. The prob-
lem of constructing new, which means CCZ-inequivalent to known ones, differential 4-uniform
permutations over F2

2k
with the best known nonlinearity is an interesting problem that needs

further study.
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