
RSA meets DPA: Recovering RSA Secret Keys
from Noisy Analog Data

Noboru Kunihiro1 and Junya Honda2

1 The University of Tokyo, Japan, kunihiro@k.u-tokyo.ac.jp
2 The University of Tokyo, Japan

Abstract. We discuss how to recover RSA secret keys from noisy ana-
log data obtained through physical attacks such as cold boot and side
channel attacks. Many studies have focused on recovering correct secret
keys from noisy binary data. Obtaining noisy binary keys typically in-
volves first observing the analog data and then obtaining the binary data
through quantization process that discards much information pertaining
to the correct keys. In this paper, we propose two algorithms for recov-
ering correct secret keys from noisy analog data, which are generalized
variants of Paterson et al.’s algorithm. Our algorithms fully exploit the
analog information. More precisely, consider observed data which fol-
lows the Gaussian distribution with mean (−1)b and variance σ2 for a
secret key bit b. We propose a polynomial time algorithm based on the
maximum likelihood approach and show that it can recover secret keys
if σ < 1.767. The first algorithm works only if the noise distribution is
explicitly known. The second algorithm does not need to know the ex-
plicit form of the noise distribution. We implement the first algorithm
and verify its effectiveness.

Keywords: RSA, Key-Recovery, Cold Boot Attack, Side Channel At-
tack, Maximum Likelihood

1 Introduction

1.1 Background and Motivation

Side channel attacks are important concerns for security analysis in the both of
public key cryptography and symmetric cryptography. In the typical scenario of
the side channel attacks, an attacker tries to recover the full secret key when he
can measure some kind of leaked information from cryptographic devices. From
the proposal of Differential Power Analysis (DPA) by Kocher et al. [6], many
studies have been intensively made on the side channel attacks.

We focus on the side channel attacks on RSA cryptosystem. In the RSA
cryptosystem [11], a public modulus N is chosen as the product of two distinct
primes p and q. The key-pair (e, d) ∈ Z2 satisfies ed ≡ 1 (mod (p − 1)(q − 1)).
The encryption keys are (N, e) and the decryption keys are (N, d). The PKCS#1
standard [10] specifies that the RSA secret key includes (p, q, d, dp, dq, q

−1 mod p)



in addition to d, which allows for fast decryption using the Chinese Remainder
Theorem. It is important to analyze its security as well as the original RSA.

Recently, the cold boot attack was proposed by Halderman et al. [3] at
USENIX Security 2008. They demonstrated that DRAM remanence effects make
possible practical, nondestructive attacks that recover a noisy version of secret
keys stored in a computer’s memory. They showed how to reconstruct the full
of secret key from the noisy variants for some encryption schemes: DES, AES,
tweakable encryption modes, and RSA. How can we recover the correct secret key
from a noisy version of the secret key? This is an important question concerning
the cold boot attack situation.

Inspired by cold boot attacks [3], much research has been carried on re-
covering an RSA secret key from a noisy version of the secret key. At Crypto
2009, Heninger and Shacham [5] proposed an algorithm that efficiently recov-
ers secret keys (p, q, d, dp, dq) given a random fraction of their bits. Concretely,
they showed that if more than 27% of the secret key bits is leaked at random,
the full secret key can be recovered. Conversely, this means that even if 73%
of the correct secret bits is erased, the key can be recover. As opposed to the
Heninger-Shacham algorithm for correcting erasures, Henecka et al. [4] proposed
an algorithm for correcting error bits of secret keys at Crypto 2010. They showed
that the secret key (p, q, d, dp, dq) can be fully recovered if the error probability
is less than 0.237. They also showed that the bound for the error probability is
given by 0.084 if the associated secret key is (p, q). Paterson et al. proposed an
algorithm correcting error bits that occurs asymmetrically at Asiacrypt 2012 [9].
They adopted a coding theoretic approach for designing a new algorithm and
analyzing its performance. Sarkar and Maitra [12] revisited the result of [4] and
applied the Henecka et al.’s algorithm to break a Chinese Remainder Theorem
type implementation of RSA with low weight decryption exponents. Kunihiro
et al. [7] proposed an algorithm that generalized the work of [4, 5], and which
considered a combined erasure and error setting.

Motivation: Key-Recovery from Noisy Analog Data The previous works [4,
5, 7, 9] considered an erasure and/or error setting, where each bit of the secret key
is either erased or flipped. Thus, the noisy version of the secret key is composed
of discrete symbols, that is, {0, 1} and the erasure symbol “?”. However, such
discrete data is not always obtained directly and analog data is more natural
as observed data obtained through the actual physical attacks such as the cold
boot and side channel attacks. We further assume that the observed data follows
some fixed probability distributions. It is frequently considered and verified in
the practice of side channel attacks (for details, see [8]). Thus, our leakage model
is more realistic. Our goal is to propose efficient algorithms that can recover an
RSA secret key from noisy analog data.

Paterson et al. [9] concluded that it is an open problem to generalize their
approach to the case where soft information (that is, analog data) about the
secret bits is available. This is the problem we address in this paper.

2



1.2 Our Contributions

This paper discusses secret key recovery from a noisy analog data sequence.
In our leakage model, the observed value is output according to some fixed
probability distribution depending on the corresponding correct secret key bit.
Although we cannot directly obtain the true secret key bit, we can observe the
noisy and analog variants of the secret key through a side channel or cold boot
attack. If the noise is sufficiently small, key recovery from the noisy data is fairly
easy in general. However, if the noise is large, the task of recovering the secret
key becomes more difficult. Our challenge is to propose an efficient algorithm
that recovers the RSA secret key even in the presence of large noise. For this
purpose, we adopt a maximum likelihood-based approach.

First, we modify the algorithm of Paterson et al. [9] to adapt an analog
data; while their algorithm takes a (noisy) binary bit sequence as input. For the
modification, we introduce the concept of score; a node with a low score will
be discarded, whereas a node with the highest score will be kept and generate
a subtree of depth t with 2t leaf nodes. The score function is calculated from a
candidate of the secret key in {0, 1}5t and the corresponding observed data in
R5t. The choice of score function is crucial for our modification.

We propose an algorithm whose score function is constructed from the like-
lihood ratio and in which the node with the maximal value is regarded as the
correct node. We then prove that our algorithm recovers the correct secret key
in polynomial time if the noise distribution satisfies a certain condition (Theo-
rem 1). Note that the condition is represented by symmetric capacity. In par-
ticular, under the condition that the noise distribution is Gaussian with mean
(−1)b and variance σ2 for a secret key bit b, we show that we can recover the
secret key if σ < 1.767 (Corollary 2).

The main drawback of the first algorithm is that we need to know the noise
distribution exactly; indeed, without this knowledge it does not work. We also
propose another algorithm that does not require any knowledge of noise distribu-
tion. The score function in the second algorithm is given as a difference between
sums of the observed data when the candidate bits are 0 and that when the
candidate bits are 1. This score is similar to that of differential power analysis
(DPA) [6]. We also prove that the algorithm recovers the correct secret key with
high probability if the noise distribution satisfies the certain condition (Theo-
rems 2). Owing to the lack of knowledge of the noise distribution, the condition
is slightly worse than that in the first algorithm. However, if the noise follows
the Gaussian distribution, the algorithm achieves the same bound as the first
one.

We then verify the effectiveness of our algorithm by numerical experiments in
the case of Gaussian noise. Our experimental results show that the first algorithm
recovers the RSA secret key with significant probability if σ ≤ 1.7, which matches
with theoretically predicted bound.

3



2 Preliminaries

This section presents an overview of the methods [4, 5, 9] using binary trees to
recover the secret key of the RSA cryptosystem. We use similar notations to
those in [4]. For an n-bit sequence x = (xn−1, . . . , x0) ∈ {0, 1}n, we denote the
i-th bit of x by x[i] = xi, where x[0] is the least significant bit of x. Let τ(M)
denote the largest exponent such that 2τ(M)|M . We denote by lnn the natural
logarithm of n to the base e and by log n the logarithm of n to the base 2. We
denote the expectation of random variable X by E[X].

2.1 Our Problem: RSA Key-Recovery from Analog Observed Data

Our problem is formulated as follows. We denote the correct secret key by sk. For
each bit in sk, a value is observed from the probability distribution depending
on the bit value, which means that the analog data are observed according to
the leakage model. We denote the observed analog data sequence by s̄k. Our
goal is to recover sk from s̄k.

We will give a more detailed explanation. Suppose that the probability dis-
tribution Fx of the observed data is Gaussian with mean (−1)x and variance
σ2 for x ∈ {0, 1}. The SNR is commonly used to evaluate the strength of noise
is defined by (variance of signal)/(variance of noise). In our leakage model, the
variance of the noise is given by σ2 and that of signal is given by 1. Then, the
SNR is given by 1/σ2. A greater SNR means that the signal is stronger and
we can extract information with fewer errors. In this paper, we consider the
standard deviation σ for the strength of the noise.

Consider the case that noise level σ is larger. In this case, key-recovery is
difficult. In fact, if the noise is extremely large, we cannot recover the secret key,
as is discussed in Section 6. Conversely, consider a smaller noise level. In this
case, key recovery is relatively easy. Thus, it is important to make a detailed
analysis for the value σ.

2.2 Recovering the RSA Secret Key Using a Binary Tree

The first half of explanation of this section is almost the same as previous
works [4, 5, 7, 9]. Making this paper self-contained, we give details. We review
the key setting of the RSA cryptosystem [11], particular for the PKCS #1 stan-
dard [10]. Let (N, e) be the RSA public key, where N is an n-bit RSA modulus
and sk = (p, q, d, dp, dq, q

−1 mod p) be the RSA secret key. As in the previous
works, we ignore the last component q−1 mod p in the secret key. The public
and secret keys have the following four equations:

N = pq, ed ≡ 1 (mod (p−1)(q−1)), edp ≡ 1 (mod p−1), edq ≡ 1 (mod q−1).

There exist integers k, kp and kq such that

N = pq, ed = 1+ k(p− 1)(q− 1), edp = 1+ kp(p− 1), edq = 1+ kq(q− 1). (1)

4



Suppose that we know the exact values of k, kp and kq, then there are five
unknowns (p, q, d, dp, dq) in the four equations in Eq. (1).

A small public exponent e is usually used in practical applications [15], so
we suppose that e is small enough such that e = 216 +1 as is the case in [4, 5, 7,
9]. See [4] for how to compute k, kp and kq.

In the previous methods and our new methods, a secret key sk is recovered
by using a binary-tree-based technique. Here we explain how to recover secret
keys, considering sk = (p, q, d, dp, dq) as an example.

First we discuss the generation of the tree. Since p and q are n/2-bit prime
numbers, there exist at most 2n/2 candidates for each secret key in (p, q, d, dp, dq).

Heninger and Shacham [5] introduced the concept of slice. We define the i-th
bit slice for each bit index i as

slice(i) := (p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], dq[i+ τ(kq)]).

Assume that we have computed a partial solution sk′ = (p′, q′, d′, d′p, d
′
q) up to

slice(i − 1). Heninger and Shacham [5] applied Hensel’s lemma to Eq. (1) and
obtained the following equations

p[i] + q[i] = (N − p′q′)[i] mod 2,

d[i+ τ(k)] + p[i] + q[i] = (k(N + 1) + 1− k(p′ + q′)− ed′)[i+ τ(k)] mod 2,

dp[i+ τ(kp)] + p[i] = (kp(p
′ − 1) + 1− ed′p)[i+ τ(kp)] mod 2,

dq[i+ τ(kq)] + q[i] = (kq(q
′ − 1) + 1− ed′q)[i+ τ(kq)] mod 2.

We can easily see that p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], and dq[i+ τ(kq)] are not
independent. Each Hensel lift, therefore, yields exactly two candidate solutions.
Thus, the total number of candidates is given by 2n/2.

Henecka et al.’s algorithm (in short, the HMM algorithm) [4] and Paterson
et al.’s algorithm (in short, the PPS algorithm) [9] perform t Hensel lifts for
some fixed parameter t. For each surviving candidate solution on slice(0) to
slice(it − 1), a tree with depth t and whose 2t leaf nodes represent candidate
solutions on slice(it) to slice((i + 1)t − 1), is generated. This involves 5t new
bits.

For each new node generated, a pruning phase is carried out. A solution is
kept for the next iteration if the Hamming distance between the 5t new bits and
the corresponding noisy variants of the secret key is less than some threshold as
for the HMM algorithm or if the likelihood of the corresponding noisy variants
of the secret key for the 5t new bits is the highest (or in the highest L nodes) of
the 2t (or L2t) nodes as for the PPS algorithm [9].

The main difference between the HMM and PPS algorithms is how to set the
criterion determining whether a certain node is kept or discarded. We adopt a
similar approach to the PPS algorithm [9] rather than the HMM algorithm [4].
In other words, we keep the top L nodes with the highest likelihood rather than
of the nodes with a lower Hamming distance than the fixed threshold.

5



3 Maximum Likelihood-based Approach

3.1 Notation and Settings

We denote by m the number of associated secret keys. For example, m = 5 if
sk = (p, q, d, dp, dq), m = 3 if sk = (p, q, d), and m = 2 if sk = (p, q).

Let x1,a ∈ {0, 1}m, a ∈ {1, 2}, be the a-th candidate of the first slice slice(0).
We write the two candidates of the first (i+ 1) slices when the first i slices are
xi,a = (slice(0), · · · , slice(i− 1)) by xi+1,2a−1, xi+1,2a ∈ {0, 1}m(i+1).

For notational simplicity we write the j-th slice by xi,a[j] ∈ {0, 1}m and its
m elements are denoted by xi,a[j][1],xi,a[j][2], · · · ,xi,a[j][m] ∈ {0, 1}. Similarly,
for a secret key sequence xi,a, the observed sequence is denoted by yi ∈ Rmi and
its element corresponding to xi,a[j][k] is denoted by y[j][k] ∈ R. We write the

sequence of j, j+1, · · · , j′-th elements of a vector x by x[j : j′] ∈ {0, 1}m(j′−j+1)

for j′ ≥ j. Therefore we have

xi−1,a = xi,2a−1[1 : i− 1] = xi,2a[1 : i− 1] . (2)

Define Bl(a) = ⌈a/2l⌉. When we regard xi,a as a node at depth i of the binary
tree, the node xi−l,Bl(a) corresponds to the ancestor of xi,a at depth i− l. Thus,
the relation (2) is generalized to

xi−l,Bl(a) = xi,a[1 : i− l] = xi,a′ [1 : i− l] if Bl(a) = Bl(a
′). (3)

We also write xl for the last l elements of a sequence x, that is, we write xl =
x[i− l + 1 : i] for x ∈ {0, 1}mi.

Now we introduce the assumption on the secret key.

Assumption 1

(i) Each xi,a is a realization of a random variable Xi,a which is (marginally)
distributed uniformly over {0, 1}im.

(ii) There exists c ≥ 1 satisfying the following: for any i, l, a, a′ ∈ Z such that
c ≤ l ≤ i and Bl(a) ̸= Bl(a

′), a pair of two random variables (X l−c
i,a ,X l−c

i,a′ )

is uniformly distributed over {0, 1}2m(l−c).

(iii) X1
i,2a−1 ̸= X1

i,2a holds almost surely for any a.

Assumptions (i) and (ii) correspond to weak randomness assumption considered
in [9]. Assumption (iii) asserts that any pair of candidates of the key is not
identical.

3.2 Generalized PPS Algorithm

Let F0 and F1 be probability distributions of an observed symbol when the
correct secret key bits are 0 and 1, respectively. In the following algorithms we

6



compare likelihood of each candidate of the secret key. We call a criterion for
choice of candidates score. As the score we use the log-likelihood ratio given by

Ri(x;y) =
i∑

j=1

m∑
k=1

R(x[j][k];y[j][k]) , x ∈ {0, 1}mi, y ∈ Rmi

for a single-letter log-likelihood ratio

R(x; y) = log
dFx

dG
(y) , x ∈ {0, 1}, y ∈ R , (4)

where G is the mixture distribution (F0 + F1)/2 and dFx/dG is the Radon-
Nikodym’s derivative. When F0 and F1 have probability densities f0 and f1,
respectively, (4) is simply rewritten as

R(x; y) = log
fx(y)

g(y)
, x ∈ {0, 1}, y ∈ R , (5)

where g(y) = (f0(y) + f1(y))/2. We use (4) for a definition of a score since
(4) always exists even in the case of discrete noises, which are considered in
preceding researches [4, 5, 7, 9].

Let X ∈ {0, 1} be a random variable uniformly distributed over {0, 1}. We
define Y ∈ R as a random variable which follows distribution FX given X. The
mutual information between X and Y is denoted by

I(X;Y ) = E[R(X;Y )] .

Remark 1. I(X;Y ) is called a symmetric capacity for a channel Fx and is gener-
ally smaller than the channel capacity for asymmetric cases. We show in Theo-
rem 1 that I(X;Y ), rather than the channel capacity, appears in the asymptotic
bound. This corresponds to the fact that in our problem the distribution of the
input symbol (i.e., the secret key) is fixed to be uniform and cannot be designed
freely.

Now we discuss the following algorithm, which is generalized variant of PPS
algorithm proposed in [9]. Note that the original PPS algorithm deals with only
discrete noises; while the generalized variant can deal with continuous noises.
This algorithm maintains a list Lr, |Lr| ≤ L, of candidates of the first tr bits
of the secret key. We say that the recovery error occurred if the output Ln/2t

does not contain the correct secret key. By abuse of notation each element of Lr

denotes both a subsequence xtr,a and its index a.
Now we bound the error probability of generalized PPS algorithm from above

by the following theorem.

Theorem 1. Assume that

1/m < I(X;Y ) . (6)

7



Algorithm 1 Generalized PPS Algorithm

Input: Public keys (N, e), observed data sequences s̄k
Output: Secret keys sk.
Parameter: t, L ∈ N.
Initialization: Set L0 := {1}.
Loop: For r = 1, 2, · · · , n/2t do the following.

1. Expansion Phase Generate list L′
r of all ancestors with depth t from nodes in

Lr−1, that is,

L′
r :=

∪
a∈Lr−1

{(a− 1)2t + 1, (a− 1)2t + 2, · · · , a2t} .

2. Pruning Phase If 2tr ≤ L then set Lr := L′
r. Otherwise, set Lr to a subset of

L′
r with size L such that Rrt(xrt,a;yrt) are the largest so that for any a ∈ Lr

and a′ ∈ L′
r \ Lr

Rrt(xrt,a;yrt) ≥ Rrt(xrt,a′ ;yrt) .

Here the tie-breaking rule is arbitrary.

Output of Loop: List of candidates Ln/2t.
Finalization: For each candidate in Ln/2t, check whether the candidate is indeed
a valid secret key with the help of public information.

Then, under generalized PPS algorithm it holds for any index a and parameters
(t, L) that

Pr[Xn/2,a /∈ Ln/2t|Xn/2,a is the correct secret key] ≤ n

2t
ρ1L

−ρ2 . (7)

for some ρ1, ρ2 > 0 which only depend on c, m and Fx. Consequently, the error
probability converges to zero as L → ∞ for any t > 0.

The proof of Theorem 1 are given in the full version.
We evaluate the computational cost of generalized PPS algorithm. The costs

of Expansion and Pruning phases in each loop are evaluated by 2L(2t − 1) and
L2t. Since each phase is repeated n/2t times, the whole cost of the Expansion
phase and Pruning phase are given by nL(2t − 1)/t and nL2t/(2t), respectively.

This theorem shows that the error probability is bounded polynomially by L
and t. Here note that the RHS of (7) cannot go to to zero for fixed L since t ≤ n/2
is required, whereas it goes to zero3 for any fixed t as L → ∞. Furthermore,
the complexity grows exponentially in t whereas it is linear in L. From these
observations we can expect that the generalized PPS algorithm performs well
for small t and large L.

3 In the theoretical analysis in [9], it seems to be implicitly assumed that the score
of the first mt(r − 1) bits is discarded at each r-th loop, that is Rmt(X

t
tr,i;y

t
tr) is

considered instead of Rmtr(Xtr,i;ytr). In this case we require t → ∞ to assure that
the error probability approaches zero.

8



Remark 2. It is claimed in [9] for the case of binary observations that the error
probability of PPS algorithm goes to zero as t → ∞ for any fixed L oppositely
to the above argument. This gap does not mean that the bound (7) is loose but
comes from an inappropriate argument in [9]. In fact, we can prove that the
error probability never vanishes for any fixed L as shown in Appendix A.

3.3 Implications: Continuous Distributions

Informally, Theorem 1 states that we can recover the secret key with high proba-
bility if I(X;Y ) > 1/m. The actual values of I(X;Y ) depends on the distribution
Fx. We evaluate the value of I(X;Y ) for some continuous distribution Fx which
has density fx(y).

First, we introduce a differential entropy.

Definition 1. The differential entropy h(f) of a probability density function f
is defined as

h(f) = −
∫ ∞

−∞
f(y) log f(y)dy.

We give some properties of the differential entropy [1]. Let f be an arbitrary
probability density with mean µ and variance σ2. Then it is shown in [1, Theorem
8.6.5] that

h(f) ≤ h(N (µ, σ2)) = log
√
2πeσ2 , (8)

where N (µ, σ2) is the density of Gaussian distribution with mean µ and variance
σ2.

The symmetric capacity I(X;Y ) can be expressed as h(g)−(h(f0)+h(f1))/2
for g(y) = (f0(y) + f1(y))/2 since

I(X;Y ) =
∑

x∈{0,1}

∫
fx(y)

2
log

fx(y)∑
x′∈{0,1}

fx′ (y)
2

dy =
∑

x∈{0,1}

∫
fx(y)

2
log

fx(y)

g(y)
dy

=
∑

x∈{0,1}

∫
fx(y)

2
log fx(y)dy −

∫
g(y) log g(y)dy = h(g)− h(f0) + h(f1)

2
.

Next, we further assume that the distributions are symmetric: f1(y) = f0(α−
y) for some α. Since the differential entropy is invariant under translation, we
have h(f1) = h(f0) and thus I(X;Y ) = h(g) − h(f0) if the distributions are
symmetric. A typical example of the symmetric distribution is symmetric addi-
tive noise: the sample can be written as the sum of a deterministic part and a
symmetric random noise part.

Summing up the above discussion, we have the following corollary.

Corollary 1. Assume that Fx has a probability density fx. Then the error
probability of generalized PPS algorithm converges to zero as L → ∞ if

h(g)− h(f0) + h(f1)

2
>

1

m
.

Further assume that the f0(y) and f1(y) are symmetric. In this case, the condi-
tion is expressed as h(g)− h(f0) > 1/m.

9



Gaussian Distribution We remind readers of the Gaussian distributionN (µ, σ2).

The density function of this distribution is f(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
, where

µ and σ2 are the mean and variance of the distribution, respectively.

The most standard setting of a continuous noise is an additive white Gaussian
noise (AWGN): the density fx of distribution Fx is represented by

fx(y) =
1√
2πσ2

exp

(
− (y − (−1)x)2

2σ2

)
. (9)

Note that the expectation of f0(x) and f1(x) are +1 and −1, respectively. In
this case the score is represented by

Ri(x;y) =

i∑
j=1

m∑
k=1

(−1)x[j][k]y[j][k]

2(ln 2)σ2

−
i∑

j=1

m∑
k=1

(
y[j][k]2 + 1

2(ln 2)σ2
+ log

exp(− (y[j][k]−1)2

2σ2 ) + exp(− (y[j][k]+1)2

2σ2 )

2

)
.

(10)

The symmetric capacity for Fx is given by

I(X;Y ) = h(g)− h(f0) = h(g)− log
√
2πeσ2 . (11)

It is equivalent to use a score

i∑
j=1

m∑
k=1

(−1)x[j][k]y[j][k] (12)

instead of (10) in generalized PPS algorithm since the factor (2(ln 2)σ2)−1 and
the second term of (10) are common to all candidates xi,a.

The following corollary is straightforward from the computation of I(X;Y )
for the Gaussian case.

Corollary 2. Assume that fx is the Gaussian distribution given in Eq. (9).
Then the error probability of generalized PPS algorithm converges to zero as
L → ∞ if σ < 1.767 when m = 5 and if σ < 1.297 when m = 3 and if σ < 0.979
when m = 2.

Proof. Regarding h(f), we have h(f) = log
√
2πeσ2 from (8). The differential en-

tropy h(g) of the mixture distribution g is not given in explicit form but numeri-
cal calculation shows that h(g)−h(f) = 1/5, 1/3, 1/2 for σ = 1.767, 1.297, 0.979,
respectively. Thus the corollary follows immediately from (11) and Theorem 1.

⊓⊔

10



3.4 Implications: Discrete Distribution

Next, we discuss the discrete distribution cases. As an example, we consider the
binary symmetric error. In the case that Fx is a discrete distribution on {0, 1}
such that {

F0({0}) = F1({1}) = 1− p ,

F0({1}) = F1({0}) = p ,

for some 0 < p < 1/2, we have

Ri(x;y) = mi log(2(1− p)) + dH(x,y) log
p

1− p
,x ∈ {0, 1}mi, y ∈ Rmi , (13)

where dH(x,y) is the Hamming distance between x and y. Note that it is equiv-
alent to use a score dH(x;y) instead of (13) in generalized PPS algorithm since
the factor mi log(p/(1 − p)) and the constant log(2(1 − p)) are common to all
candidates xi,a and do not change the order of scores.

In this case the capacity is given by I(X;Y ) = 1 − h2(p) for the binary
entropy function h2(p) = −p log p− (1− p) log(1− p).

3.5 Discussion: Comparison with Quantization-based Approach

The simplest algorithm for our key-recovery problem would be a quantization-
based algorithm. Here, we focus on the AWGN setting introduced in Section 3.3.
First, we consider the following simple quantization. If the observed value is
positive, its corresponding bit is converted to 0 and if it is negative, it is converted
to 1. Then, the binary sequence of the secret key with error is obtained by
quantization. The HMM algorithm [4] is applied to the obtained noisy secret
key sequences. A simple calculation shows that we can recover the secret key if
the noise follows the Gaussian distribution and σ < 1.397 when m = 5.

Next, we consider a more clever quantization rule, which uses the “erasure
symbol”. Let D be a positive threshold; then the quantization rule is given as
follows. The corresponding is converted to 0 if x ≥ D; 1 if x < −D; “?” if
−D ≤ x < D. The binary sequence of the secret key with error and erasure
is obtained by quantization. Kunihiro et al.’s algorithm [7] is applied to the
obtained noisy secret key sequences. A simple calculation shows that we can
recover the secret key if the noise follows the Gaussian distribution and σ < 1.533
when m = 5 under optimally chosen D.

As shown in Corollary 2, our proposed algorithm works well if σ < 1.767
when m = 5 and is significantly superior to the quantization-based algorithms.
The reason for this is that generalized PPS algorithm uses all the information of
the observed data whereas the quantization-based algorithms ignore the value
of observed data after quantization and thus suffer from quantization errors. A
consequence is that we can improve the bound of σ.

11



4 DPA-like Algorithm: Unknown Distribution Case

The generalized PPS algorithm works only if the explicit form of Fx is known
since it is needed in the calculation of Rrt(xrt,a;yrt). However, in many actual
attack situations, the explicit form of noise distribution is not known. In this
section, we propose an effective algorithm that works well even if these explicit
forms are unknown.

4.1 DPA-like Algorithm

Consider the case that we only know the expectation of F0 and F1, which we
assume without loss of generality to be +1 and −1, respectively. In this case it
is natural to use (12) as a score from the viewpoint of DPA analysis [6] instead
of Rmi(x,y) itself. We define DPA function as follows.

DPAmi(x;y) :=

i∑
j=1

m∑
k=1

(−1)x[j][k]y[j][k]. (14)

Note that this score can be calculated without knowledge of the specific form of
the noise distribution. In the case that DPAmi is used as a score, the bound in
Theorem 1 is no more achievable for distributions other than Gaussians but a
similar bound can still be established.

Theorem 2. Assume that Fx has a probability density fx. Under generalized
PPS algorithm with score function (14) the error probability converges to zero
as L → ∞ if

1

m
< h(g)− log

√
πe(σ2

0 + σ2
1),

where g(y) = (f0(y) + f1(y))/2 and σ2
x = Var(fx) is the variance of distribution

fx.

The proof of Theorem 2 is almost the same as that of Theorem 1 and given in
the full version.

Note that I(X;Y ) can be expressed as h(g) − (h(f0) + h(f1))/2. Thus, in
view of Theorems 1 and 2, information loss of the score (14) can be expressed
as log

√
πe(σ2

0 + σ2
1)− (h(f0) + h(f1))/2, which is always nonnegative since

log
√

πe(σ2
0 + σ2

1)−
h(f0) + h(f1)

2
≥ log

√
πe(σ2

0 + σ2
1)−

log
√

2πeσ2
0 + log

√
2πeσ2

1

2
≥ 0 ,

where the first and second inequalities follow from (8) and from the concavity
of the log function, respectively. This loss becomes zero if and only if f0 and f1
are Gaussians with the same variances.

Further assume that f0 and f1 are symmetric. In this case, it holds that
σ2
1 = σ2

0 and h(f1) = h(f0). Thus information loss of the score (14) can be
expressed as log

√
2πeσ2

0 − h(f0) = h(N (0, σ2
0)) − h(f0), which increases as the

true noise distribution deviates from Gaussian.

12



Remark 3. We need not to know the expectation of F0 and F1 in practice. To
proceed the argument in this section it is sufficient to know the intermediate
value of these expectations, that is, the expectation of G = (F0 + F1)/2. Since
it is the expectation of the observed values, we can estimated it accurately by
averaging all the elements of the observation y.

4.2 Connection to DPA

We briefly review DPA. It was proposed as a side channel attack against DES by
Kocher et al. [6] and was then generalized to other common secret key encryption.
It derives the secret key from many physically measured waveforms of power
consumption. They introduced the DPA selection function whose input includes
a guessed secret key. In attacking phase, an attacker guesses the secret key
and calculate the difference between the average of the waveforms of power
consumption for which the value of the DPA selection function is one and it
is zero. If the guess is incorrect, the waveforms are cancelled since they are
uncorrelated. Then, the resulting waveform becomes flat. However, if the guess is
correct, they are correlated and the resulting waveform has spikes. By observing
the difference, we can find the correct key.

We introduce two sets: S1 = {(j, k)|x[j][k] = 1} and S0 = {(j, k)|x[j][k] = 0}.
The function DPA can be transformed as follows:

DPAmi(x;y) =
∑

(j,k)∈S0

y[j][k]−
∑

(j,k)∈S1

y[j][k],

which is similar to the DPA selection function used in DPA [6].
We give an intuitive explanation of how the algorithm works. Without loss

of generality, we assume that E(f0) = +1 and E(f1) = −1. We consider two
cases that the candidate solution is correct and incorrect in the following. First,
assume that the candidate solution is correct. If the bit in the candidate solution
is 0, the observed value follows f0(y); if it is 1, the observed value follows f1(y)
and then the negative of the observed value can be seen to be output according
to f1(−y). The means of both f0(y) and f1(−y) are +1. Hence, the expectation
of Eq. (14) is mi if the candidate solution is correct. Hence, the score calculated
by Eq. (14) is close to mi with high probability. Second, Next, assume that
the candidate solution is incorrect. In this case, the observed value is output
according to the mixture distribution g(y) = (f1(y) + f0(y))/2 which has zero
mean. Hence, the expectation of Eq. (14) is 0 if the the candidate solution is
incorrect and the score calculated by Eq. (14) is close to 0 with high probability.
Thus, if the score is high enough (that is, the score is around mi), the estimation
is correct, whereas if the score is low enough (that is, the score is around 0), the
estimation is incorrect and such a node will be discarded. We give a toy example
on the function DPA in Appendix B for a better understanding.

4.3 Connection to Communication Theory

The problem of RSA secret key recovery is strongly related to the communication
theory. Each candidate of the secret key corresponds to a codeword of a message

13



and the attacker corresponds to the receiver trying to estimate the message from
the sent codeword distorted by noise. The key estimation after quantization pro-
cess in [4, 5, 7, 9] is called a hard-decision decoding and the proposed algorithm
exploiting full information of the observed data is called a soft-decision decoding.

The structure of the secret key characterized by Hensel lift can be regarded
as a convolutional code with infinite constraint length. It is known that Viterbi
algorithm works successfully for convolutional codes with small constraint length
and many algorithms such as Fano algorithm and stack algorithm have been
proposed for codes with large constraint length [13, 14]. Thus one can expect that
these algorithms for large constraint length perform well also for the problem of
secret key recovery.

However there also exists a gap between the settings of the secret key recovery
and the communication theory. In the case of message transmission, the noise
ratio is set to be relatively small because the error probability has to be negligibly
small value, say, e.g., 10−8. On the other hand when we consider security of the
secret key, 10% success rate of the recovery is critical and we have to consider
the success probability under large noise ratio. For this gap it is not obvious
whether the above algorithms work successfully for the secret key recovery.

5 Implementation and Experiments

We have implemented generalized PPS algorithm. In our experiments on 1024, 2048-
bit RSA, we prepared 100 (or 200 if the success rate is less than 0.1) different
tuples of secret keys sk, e.g., sk = (p, q, d, dp, dq). We generated the Gaussian
noisy output sk for each sk. In our experiments, the incorrect candidate solution
is randomly generated based on Assumption 1 with c = 1.

The experimental results for n = 1024 and sk = (p, q, d, dp, dq) are shown in
Figure 1. We set (t, L) = (1, 211), (2, 211), (4, 210), (8, 27), (16, 20), which makes
the computational cost for Pruning phase to be equal: 221.

As can be seen in Figure 1, if σ ≤ 1.3, the success rate for small t (say,
t = 1, 2, 4) is almost 1. Generalized PPS algorithm can succeed to recover the
correct secret key with probability larger than 0.1 for σ ≤ 1.7; while it almost fails
to recover the key for σ ≥ 1.8. This results match with theoretically predicted
bound σ = 1.767. Figure 1 also shows generalized PPS algorithm fails with
high probability if we use a small L, (say L = 1); while the computational cost
is almost the same as the setting (t, L) = (1, 211). This fact is reinforced by
Theorem 3 shown in Appendix A.

Figure 1 suggests that the setting t = 1 is enough for gaining high success
rates. We then present experimental results for t = 1 and n = 1024, 2048 in
Figures 2 and 3. Figures 2 and 3 show that the success rates for any n and σ will
significantly increase if we use a larger list size L. For each bit size n, generalized
PPS algorithm almost always succeed to find the secret key if σ ≤ 1.3. The
generalized PPS algorithm still has a non-zero success rate for σ as large as 1.7.

14



Fig. 1. Experiments for sk = (p, q, d, dp, dq), n = 1024

In communication theory, there are many techniques such as stack algo-
rithm [13]. We do not implement such techniques in our experiments. It is possi-
ble to increase the success rate if we implement them together in our algorithm.

6 Concluding Remarks

In this paper, we showed that we can recover the secret key if Eq. (6) holds; the
symmetric capacity I(X;Y ) is larger than 1/m. As mentioned in [9], the success
condition for key-recovery from noisy secret keys has a strong connection to
channel capacity. As explained in Remark 1, symmetric capacity is less than
channel capacity for asymmetric distribution cases. Hence, one might wonder
if the condition can be improved. Unfortunately, it is hopeless to improve the
bound since the distribution of input symbol (i.e., the correct secret key) is
fixed to uniform in our problem whereas the input distribution is optimized to
achieve the channel capacity in coding theory. Then, from the coding theoretic
viewpoint, the condition I(X;Y ) > 1/m is optimal for our problem.

Acknowledgement

The first author was supported by JSPS Grant Number KAKENHI 25280001.

References

1. C. M. Cover and J. A. Thomas, “Elements of Information Theory, 2nd Edition,”
Wiley-Interscience, 2006.

15



Fig. 2. m = 5, n = 1024 and t = 1 Fig. 3. m = 5, n = 2048 and t = 1

2. A. Dembo and O. Zeitouni, Large deviations techniques and applications, 2nd ed.,
ser. Applications of Mathematics. New York: Springer-Verlag, 1998, vol. 38.

3. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-
landrino, A. J. Feldman, J. Appelbaum and, E. W. Felten, “Lest We Remember:
Cold Boot Attacks on Encryption Keys,” in Proc. of USENIX Security Symposium
2008, pp. 45–60, 2008.

4. W. Henecka, A. May, and A. Meurer, “Correcting Errors in RSA Private Keys,”
in Proc. of Crypto 2010, LNCS 6223, pp. 351–369, 2010.

5. N. Heninger and H. Shacham, “Reconstructing RSA Private Keys from Random
Key Bits,” in Proc. of Crypto 2009, LNCS 5677, pp. 1–17, 2009.

6. P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis,” in Proc. of
CRYPTO’99, LNCS 1666, pp.388-397, 1999.

7. N. Kunihiro, N. Shinohara and T. Izu, “Recovering RSA Secret Keys from Noisy
Key Bits with Erasures and Errors,” in Proc. of PKC 2013, LNCS 7778, pp. 180-
197, 2013.

8. S. Mangard, E. Oswald and F. -X. Standaert, “One for all - all for one: unifying
standard differential power analysis attacks,” IET Information Security, vol. 5, no.
2, pp. 100–110, 2011.

9. K. G. Paterson, A. Polychroniadou and D. L. Sibborn, “A Coding-Theoretic Ap-
proach to Recovering Noisy RSA Keys,” in Proc. of Asiacrypt 2012, LNCS 7658,
pp. 386–403, 2012.

10. PKCS #1 Standard for RSA. Available at http://www.rsa.com/rsalabs/node.

asp?id=2125.

11. R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems,” Communications of the ACM, vol. 21(2), pp. 120–
126, 1978.

12. S. Sarkar and S. Maitra, “Side Channel Attack to Actual Cryptanalysis: Break-
ing CRT-RSA with low weight decryption exponents,” in Proc. of CHES2012,
LNCS7428, pp. 476–493, 2012.

13. C. Schlegel and L. Perez, “Trellis and Turbo Codes,” Wiley-IEEE Press, 2004.

16



14. B. Sklar, “Digital Communications: Fundamentals and Applications, 2nd Edition,”
Prentice Hall, 2001.

15. S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage, “When Private Keys
are Public: Results from the 2008 Debian OpenSSL Vulnerability,” IMC 2009, ACM
Press, pp. 15–27, 2009.

A Lower bound on Error Probability of Generalized PPS
Algorithm

As mentioned in Remark 2, the upper bound (7) on the error probability of PPS
algorithm cannot go to zero for fixed L even though it is claimed in [9] that
the error probability vanishes as t increases for any fixed L. We show in this
appendix that L → ∞ is actually necessary to achieve an arbitrary small error
probability.

Let pe = Pr[R(1 − X;Y ) > R(X;Y )] be the single-letter error probability
under decoding X̂ := argmaxx∈{0,1}{R(x;Y )}. Note that pe = 0 is a degraded
case in which each bit X can be recovered from Y without error by the above
decoding rule. We can bound the error probability of PPS algorithm from below
in a simple form by using pe.

Theorem 3. Under generalized PPS algorithm it holds for any index a and
parameters (t, L) that

Pr[Xn/2,a /∈ Ln/2t|Xn/2,a is the correct secret key] ≥ pm(1+logL)
e . (15)

Consequently, the error probability does not go to zero as t → ∞ with a fixed L
if pe > 0.

We can easily see that the error probability does not vanish for a fixed L by
the following argument. For simplicity let us consider the case that the correct
secret key is Xn/2,1. Then the candidate Xn/2,2 is identical to the correct key
except for the last m bits. Similarly, Xn/2,3 and Xn/2,4 are identical to the
correct key except for the last 2m bits. Thus, once the last 2m observed symbols
y2
n/2 become very noisy (the probability of this event does not depend on t) then

the likelihood of Xn/2,b for b = 2, 3, 4 exceeds that of the correct key Xn/2,1,
and the recovery error occurs when the list size is L ≤ 3. This argument always
holds when the list size L is fixed and we see that the error probability heavily
depends on L.

Proof of Theorem 3. Recall that lt = ⌊(logL)/t⌋+1. SinceXn/2,1 ∈ Ln/2t implies
Xn/2,1[1 : tlt] = Xtlt,1 ∈ Llt , we have

Pr[Xn/2,1 /∈ Ln/2t] ≥ Pr [Xtlt,1 /∈ Llt ]

≥ Pr

2tlt∑
a=2

1l [Rtlt(Xtlt,a;Ytlt) > Rtlt(Xtlt,1;Ytlt)] ≥ L

 .

17



For l = ⌊logL⌋+ 1, we have l ≤ tlt and

Pr[Xn/2,1 /∈Ln/2t] ≥ Pr

 2l∑
a=2

1l [Rtlt(Xtlt,a;Ytlt) > Rtlt(Xtlt,1;Ytlt)] ≥ L


= Pr

 2l∑
a=2

1l
[
Rl(X

l
tlt,a;Y

l
tlt) > Rtlt(X

l
tlt,1;Y

l
tlt)
]
≥ L

 (by (3))

≥ Pr

 2l∑
a=2

1l
[
Rl(X

l
tlt,a;Y

l
tlt) > Rtlt(X

l
tlt,1;Y

l
tlt)
]
= 2l − 1

 . (16)

Now consider the case thatR(1−Xtlt,1[j][k];Ytlt [j][k]) > R(Xtlt,1[j][k];Ytlt [j][k])

for all j = tlt−l+1, · · · , tlt and k = 1, · · · ,m. Then Rl(x;Y
l
tlt
) > Rl(X

l
tlt,1

;Y l
tlt
)

for all x ̸= X l
tlt,1

. As a result, (16) is bounded as

Pr[Xn/2,1 /∈ Ln/2t]

≥ Pr

 tlt∩
j=tlt−l+1

m∩
k=1

{R(1−Xtlt,1[j][k];Ytlt [j][k]) > R(Xtlt,1[j][k];Ytlt [j][k])}


= pml

e ≥ pm(1+logL)
e .

and we complete the proof.

Remark 4. In the theoretical analysis of Peterson et al. [9], they compared scores
between the correct secret key and a subset of L′

r with size L randomly chosen
from L′. However, in the actual algorithm all elements of L′

r are scanned and
such an analysis based on the random choice does not have validity, which led
to the conclusion contradicting Theorem 3.

B A Toy Example for Generalized PPS Algorithm with
(14)

To better understand the algorithm, we present a toy example. Suppose that
the correct solution is 1100010011 and that we observed the data sequence
as y = (−3,−2,+2,+3,+3,−3,+1,+4,−3,−2). Attackers know the observed
data; but, do not know the correct solution. Assume that we know E(f0) =
3 and E(f1) = −3. Suppose that we have three candidate sequences: x1 =
(1100010011), x2 = (1001110010) and x3 = (0101011001).

The score for x1 = (110001001) is given by DPA(x1;y) = 3+2+2+3+3+
3 + 1 + 4 + 3 + 2 = 26. Since the value 26 is close to 3× 10 = 30, the candidate
seems to be correct.

The score for x2 = (1001110010) is given by DPA(x2;y) = 3−2+2−3−3+
3+1+4+3− 2 = 6. The value 6 is close to 0. The score for x3 = (0101011001)
is given by DPA(x3;y) = −3 + 2+ 2− 3 + 3+ 3− 1 + 4− 3 + 2 = 2. The value
2 is close to 0. Thus these candidates seem to be incorrect.

18


