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Abstract. Masking is a popular countermeasure against differential
power analysis (DPA) and other side-channel attacks. When designing
integrated circuits to resist DPA, masking at the logic gate level has the
benefit that it can be implemented without consideration of the high-
level function of the circuit. However, the phenomena of glitches and early
propagation reduce the effectiveness of many gate-level masking schemes.
In this paper we present a new technique for gate-level masking that is
free of glitches and early propagation, yet requires only cell-level “don’t
touch” constraints. Our technique, which we call LUT-Masked Dual-rail
with Precharge Logic (LMDPL), can therefore be implemented in a typ-
ical FPGA or standard cell ASIC design flow. LMDPL does not require
routing constraints, nor sequencing of the evaluation of individual gates
with enables, registers, or latches. We verify our techniques with an AES
implementation on an FPGA. Our implementation shows no significant
leaks in evaluations using up to 200 million traces.

Keywords: DPA, Side-Channel Analysis, Masked Logic, Dual-Rail Pre-
charge Logic, Glitches, Early Propagation, AES, S-box

1 Introduction

Many devices leak information through side channels such as power consump-
tion or radiated electromagnetic energy. Side channel analysis techniques such
as differential power analysis (DPA) [11] can recover information about secrets
manipulated in a cryptographic device. Given enough measurements, these tech-
niques may enable an attacker to recover a portion, or the entirety, of a secret
key intended to be kept secure within a cryptographic device.

Masking countermeasures [4] seek to prevent DPA attacks by making the
electrical activity in a device independent of secret values being operated upon.
This is done by dividing the secret into multiple shares. The shares can be com-
bined to recover the original secret, but each share is random when considered
individually. Thus, operations may be performed on the shares without leaking
information about the secret. For example, given a secret value k in some group
G, a first-order additive masking uses a mask m chosen randomly from G, and
divides k into the shares m and m + k. Each of these shares is, when considered
individually, independent of k.
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Gate-level masking strategies attempt to construct masked versions of the
elemental Boolean functions (AND, OR, etc.). For example, two common masked
versions of a two-input Boolean function f : a, b→ q are:

g(a⊕ma, b⊕mb, ma, mb, mq) = f(a, b)⊕mq (1)
h(a⊕m, b⊕m, m) = f(a, b)⊕m (2)

The masked function g uses two independent mask bits for the inputs, and
produces an output masked with a third mask that is independent of the input
masks. The function h uses a common mask bit that is reused for both of the
inputs and the output.

Suppose we can construct a masked gate that can compute Boolean functions
without leaking the unmasked values of the secret data a, b, and q. Then, more
complex functions can be constructed from those masked gates, ideally in the
same manner that any circuit can be constructed out of standard logic gates.
Alternatively, given an implementation of some cryptographic circuit constructed
using standard Boolean gates, the masked gates could perhaps be swapped for
the standard gates to yield a masked implementation of the circuit. Our goal is
to create such a masked gate.

1.1 Previous Work

Masking countermeasures have been studied extensively. We focus here on tech-
niques that are most relevant to hardware implementations. Trichina et al. made
an early proposal for a masked AND gate using four ANDs and four XORs [28].
Subsequent study found that direct implementation of masked operations in
hardware may leak information through extraneous signal transitions known as
glitches, due to the multitude of paths through the circuit [7, 13].

This led to the proposal of masked dual-rail with precharge logic (MDPL) [22].
MDPL avoids glitches through the use of precharged, monotonic, dual-rail logic,
with each signal x encoded as a complementary pair (x, x). The authors observe
that the h version of a masked AND gate can be implemented as:

qm = MAJ(am, bm, m)
qm = MAJ(am, bm, m) (3)

However, it was later shown that MDPL circuits exhibited significant first-order
leakage due to early propagation [12, 21, 26]. Improved MDPL (iMDPL) ad-
dresses early propagation, but requires use of latches to control the moment at
which gates evaluate [21].

In addition to the above issues, MDPL and other maskings of the form h
described in Eq. 2 may not provide adequate resistance against attacks that
examine leakage distributions [6, 8, 24, 29]. Another technique that can be used
to attack protected implementations is the collision-correlation attack [17]. This
is a powerful technique for exploiting complex leakages such as those arising
from incompletely masked combinational logic [14, 15].
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The maskings shown in Eqs. 1 and 2 divide a secret into two shares. It is
also possible to utilize more than two shares. Techniques from the field of multi-
party computation may be used to perform computations without ever operating
on all the shares simultaneously, thus ensuring immunity from glitch-related
leakage [23]. However, a memory effect was identified, in which leakages from a
computation can persist in a circuit for a period of time after the computation
occurs. This phenomenon can impact the security of schemes thought to be
immune to univariate attacks [16].

The technique of Prouff and Roche [23] performs shared multiplications in
GF(28). In contrast, threshold implementations instead use bitwise shares. The
product of the values x = x1 + x2 + x3 and y = y1 + y2 + y3 is a collection of
xiyj terms, which can be allocated to output shares such that no single output
share contains sufficent information to leak the secret. Thus, threshold imple-
mentations also address the problem of glitches [2, 18, 19, 20].

Of the foregoing techniques, threshold implementations offer the greatest
promise for strong masking of arbitrary circuits, but doing so still requires in-
sertion of additional registers in some cases. In this work, we offer a strategy for
general gate-level masking that does not require additional registers.

1.2 Roadmap

The paper is organized as follows. First, we briefly describe the idea of path-based
leakage assessment. Next, we introduce LUT-Masked Dual-rail with Precharge
Logic (LMDPL), a masking technique that is leak-free under a path-based leak-
age metric. Finally, we present some experimental results obtained from FPGA
implementations of an LMDPL AES core.

2 Path-Based Leakage Assessment

Many previous countermeasures have been justified with arguments that the set-
tled final values of each circuit node in each clock cycle are independent of secret
data. However, such analyses cannot identify ways in which the transient elec-
trical behavior may correlate with secret data. In practice, designs constructed
without consideration of transient electrical behavior have remained vulnerable
to side-channel attacks.

Most contemporary semiconductor devices are implemented using comple-
mentary metal-oxide-semiconductor (CMOS) or closely related technology. In
CMOS technology, when a logic gate changes state, the parasitic capacitance
at the inputs of downstream gates must be either charged or discharged. Ignor-
ing quasi-static operating conditions such as supply voltage and temperature,
the time it takes to (dis)charge the inputs of downstream gates still depends
on many factors. The factors can include the number of inputs of a gate that
are switching, the transition time (slew rate) at the switching inputs, and the
logic state (voltage) present at non-switching inputs. When considering whether
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the electrical activity is independent of a secret, these effects should be consid-
ered cumulatively for the entire propagation path. For example, in a two-share
scheme, if the output transition of an early gate exhibits a slight delay depend-
ing on the value of one share, and this output propagates to a gate at which
the activity depends on the other share, the combination of these two effects
may make the electrical activity at the downstream gate correlated with the
unmasked secret.
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v4 v5

v6
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A r r r 0 r
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Fig. 1. Two activity images, A and B, for a simple circuit

To investigate whether masked logic styles leak due to this type of electrical
effect, we have developed a technique that we call activity image analysis. Due
to space constraints we include only a brief description of the technique here.
Activity image analysis determines whether electrical activity at upstream and
downstream gates can combine to leak a secret by considering the switching
events at adjacent gates jointly, rather than separately. The idea is illustrated in
Fig. 1. A circuit is leak-free under an activity image metric if, for each activity
image, observation of that image does not correlate with any secret value. This
is a significantly stronger condition than balancing the distribution of final gate
output values.

Activity image analysis is more comprehensive than toggle simulation anal-
ysis, which analyzes a single extracted model of propagation time through gates
and wires, and applies to a single combination of operating conditions. Similar
to structural clock domain crossing checks, activity image analysis examines the
logical structure of the circuit and provides an assurance that is robust to tim-
ing variation. We also believe activity images can be helpful in detecting early
propagation, but have no formal proof.

Appendix A shows an activity image analysis of iMDPL. Residual leakage
in an iMDPL implementation due to circuit effects was also examined in [14].
Based on the results we have obtained from activity image analysis, we question
whether mapping a single-rail circuit to a dual-rail circuit (as done e.g. in [5]) is
an effective technique for producing first-order masked implementations.



Gate-Level Masking Under a Path-Based Leakage Metric 5

3 LUT-Masked Dual Rail Logic

In this section, we introduce LMDPL, explain its usage, and then describe how
we implemented AES using LMDPL.

3.1 The LMDPL Non-linear Gate

t7 t6 t5 t4 t3 t2 t1 t0

am

am
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bm

am

am

bm

bm

qmqm

Fig. 2. LMDPL Non-linear Gate

It is well-known that linear functions are amenable to being computed on a
shared representation of their argument, while non-linear functions pose substan-
tial difficulty. Consequently, our efforts focused on identifying a way of computing
non-linear functions in masked logic while satisfying the activity image leakage
metric. We arrived at the dual-rail table lookup structure shown in Fig. 2. In
our schematics, wires shown crossing at a right angle are not electrically joined,
whereas wires shown meeting at a tee are electrically joined.

The LMDPL non-linear gate is intended to be used with a masking in the
form of Eq. 1. Secret inputs a and b are converted to masked representation by
obtaining two random mask values ma and mb, and computing

am = a⊕ma

bm = b⊕mb (4)

The values ma and mb constitute one share (the “mask share”), and am and
bm constitute the other share (the “masked data share”). In dual-rail logic, each
logical value is represented by a complementary pair of signals, only one of which
may be active at any time. The masked data values am and bm are input in dual-
rail encoding at the left of Fig. 2. The eight ti inputs at the top of the figure
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provide the values of a lookup table. By supplying the appropriate lookup table
corresponding to the desired function f and the mask values ma, mb, and mq,
the LMDPL gate produces a pair of complementary outputs that are a dual-rail
encoding of qm. We will return to the computation of the lookup table values in
Section 3.2. Although the LMDPL non-linear gate may be used to implement an
arbitrary two-input function, more compact alternatives are available for linear
functions.

The structure shown in Fig. 2 is important. If EDA tools are permitted to
freely restructure the logic, the gate will no longer pass a path-based leakage
assessment. Fortunately, it is not difficult to instruct common EDA tools to
preserve certain cell instantiations with a mechanism known as a don’t touch
constraint. Limited restructuring of the gate is acceptable. For example, ASIC
implementations may prefer the NAND/NAND structure obtained by applying
De Morgan’s Law. We suggest some strategies for implementing LMDPL with
common tools in Appendix B

Between each evaluation, the circuit must be precharged by driving both
signals in each masked data pair to zero. Zeros on the four masked data inputs
will propagate to the outputs, hence a precharge applied at the masked data
inputs of a collection of LMDPL gates will propagate to the final outputs. During
the evaluation of the gate, a transition away from zero on an output requires a
non-zero value to have arrived on one of the component signals of each dual-rail
input pair. Thus, the LMDPL gate does not exhibit early propagation.

LMDPL avoids glitches through the use of monotonic gates, in the same
manner as the original MDPL. In the course of any evaluation, each of the qm

and qm outputs will transition at most once.
On any evaluation, exactly one of the AND gates in the LMDPL non-linear

gate will produce a rising transition at the output. Even after fixing any or all of
the unmasked data values, each of the eight AND gates has an equal probability
of being the active gate upon each evaluation, depending upon the mask values.
This effect is similar to Baddam et al.’s path switching countermeasure [1].

3.2 Implementing LMDPL

A simple circuit constructed using LMDPL is illustrated in Fig. 3. The circuit
has three inputs, x, y, and z, and one output, w. The top portion of the figure
operates on the mask share, and the bottom portion of the figure operates on the
masked data share. The lookup tables ti for the LMDPL gates are passed from
the mask share to the masked data share through registers. There are two non-
linear gates, so the mask share takes two fresh mask bits from the RNG. Each
of the mask share logic and masked data share logic is constructed by making
modifications to the original circuit. The mask share retains linear elements,
ties the output of each non-linear element to an RNG bit, and instantiates a
“Table Gen” component for each non-linear element. The masked data share
replaces the linear elements with corresponding dual-rail versions, and replaces
the non-linear elements with instances of the LMDPL non-linear gate.
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Fig. 3. A simple circuit using LMDPL

The “Table Gen” components compute the ti values for each non-linear gate
in the manner typical of masked lookup tables. A function f : GF(2)×GF(2)→
GF(2) is assigned to each table generator according to the original circuit. Each
table generator accepts input masks ma and mb and an output mask mq, which
vary for each evaluation, and computes a varying table for each evaluation by
the following formula.

Let m = (mb, ma) and i = (i1, i0) with i0, i1 ∈ {0, 1}. Then,

t4+2i1+i0 = f(i⊕m)⊕mq = f(i1 ⊕mb, i0 ⊕ma)⊕mq

t2i1+i0 = t4+2i1+i0 ⊕ 1 (5)

The non-linear function implemented by the LMDPL gate will commonly be a
logical AND: f(a, b) = a · b. The operation of the table generation logic for this
case is shown in Table 1.

3.3 Implementing Linear Functions

Circuits typically also include gates that are linear (or affine) under boolean
masking. When implementing linear gates, it is not necessary to consider the
masking, so LMDPL is compatible with the linear gates from non-masked dual-
rail logic styles such as WDDL [27]. We review briefly how to implement NOT
and XOR gates.

A NOT gate can be implemented without any transistors, simply by swapping
the complementary dual-rail signals. That is, q = NOT(a) is implemented by:

q = a

q = a (6)
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Table 1. Computation of the ti for f(a, b) = a · b

mq mb ma t7 t6 t5 t4 t3 t2 t1 t0

0 0 0 1 0 0 0 0 1 1 1
0 0 1 0 1 0 0 1 0 1 1
0 1 0 0 0 1 0 1 1 0 1
0 1 1 0 0 0 1 1 1 1 0
1 0 0 0 1 1 1 1 0 0 0
1 0 1 1 0 1 1 0 1 0 0
1 1 0 1 1 0 1 0 0 1 0
1 1 1 1 1 1 0 0 0 0 1

XOR gates should be implemented as monotonic logic (i.e., constructed out
of AND and OR gates) to ensure the logic remains glitch-free and to correctly
propagate the precharge state. An XOR gate q = XOR(a, b) can be implemented
as follows:

q = a · b + a · b
q = a · b + a · b (7)

3.4 AES Implementation

To test the effectiveness of LMDPL, we developed an implementation of AES.
The overall architecture of the AES implementation is shown in Fig. 4. The
design computes a complete round transformation in parallel, and thus has 16
S-boxes. We favor simplicity and use a clock-based approach for the precharge,
driving inputs to the LMDPL logic to zero in alternate cycles. Recall that so-
phisticated masking techniques are required only for non-linear operations, and
the only non-linear operation in AES is the GF(28) inversion within SubBytes.
We implement only the inversion in LMDPL, and implement the remainder of
the round transformation (including the linear portions of SubBytes) in ordinary
logic. The sequence of operation is:

0. Initially, the LMDPL inversion logic is precharged.
1. In cycle 1 of a cipher operation, ordinary logic performs AddRoundKey and

converts bytewise to the subfield basis used for inversion. The LMDPL logic
is still precharged.

2. In cycle 2, the LMDPL logic computes bytewise inversion in GF(28).
3. In cycle 3, ordinary logic converts bytewise to the standard AES basis, ap-

plies the SubBytes affine transformation, performs ShiftRows, MixColumns,
and AddRoundKey, and then converts bytewise back to the subfield basis.
Also in cycle 3, the LMDPL logic is precharged.

4. In subsequent even cycles, the LMDPL logic is active.
5. In subsequent odd cycles, the ordinary logic is active, and the LMDPL logic

is precharged.
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Fig. 4. Architecture of the AES implementation

Fig. 4 emphasizes the masked data share logic. The mask share logic (not shown
in detail) mirrors the masked data share logic, with the table generation imple-
mented according to Fig. 3, and without the need for registers surrounding the
GF(28) inversion.

The GF(28) inversion uses the GF(((22)2)2) normal basis identified in [3].
This implementation requires 36 bit-multiplications in GF(2). Some additional
detail on our implementation of the inversion is provided in Appendix B.

The mask share (the ti) would ideally be kept in the Hamming-weight-
balanced 8-bit encoding to minimize leakages usable by second-order attacks.
However, this is quite expensive. At some cost in resistance to second-order at-
tacks, we generate and register only half of the table. The complementary half
is obtained by inversion. In some cases, registers with complementary outputs
could be used.

For purposes of comparison, we synthesized an ASIC version of our LMDPL
AES core using Synopsys Design Compiler 2013.03-SP2. Table 2 compares our
implementation with several others reported in the literature. Note that the
threshold implementations [2, 18] have the advantage that the S-box can be
pipelined, meaning the overall throughput is one S-box evaluation per clock
rather than 1/latency. However, this benefit disappears in fully parallel imple-
mentations, as it is necessary to obtain the previous round’s SubBytes output
and apply the remaining transformations of an AES round before the next Sub-



10 Andrew J. Leiserson, Mark E. Marson, and Megan A. Wachs

Table 2. Comparison of implementations. Area reported both as count of Virtex 5
LUTs and as NAND2-normalized ASIC area (“Gate Equivalents”). Area does not
include PRNG. LMDPL S-box area includes pre- and post-inversion data registers,
single/dual rail conversion, table generation, table registers, and basis converters im-
plemented in single-rail logic.

Random
bits per
S-box

S-box
latency

Parallel AES Per S-box

LUTs GE LUTs GE
[16] 8 132 21,328 1,387
[18] 48 5 4,244
[2] 44 3 3,003

This work 36 2 8,538 59,311 447 2,825

Bytes input is ready. Also, note that although it requires fewer random bits per
S-box, the parallel AES presented in this work requires more random bits in
per-clock terms (576/2) compared to the threshold implementations with 8-bit
datapaths (44/3 and 48/5). As was the case for the threshold implementations,
we have provided ASIC area figures for comparison, while presenting evaluation
results from an FPGA.

4 Experimental Results

This section presents assessments of DPA resistance on two designs incorporat-
ing LMDPL. Each design is described in Verilog, and implemented for Xilinx
Virtex-5 FPGA using Synplify Pro 2009.03 and Xilinx ISE 13.2.

4.1 Evaluation Methodology

To evaluate the information leakage in different designs, we used the test vector
leakage assessment (TVLA) methodology proposed by Goodwill et al. [9]. The
TVLA methodology is designed to measure information leakage and provide an
objective score. It specifies test vectors and uses Welch’s t-test to measure the
significance in the difference of means of two distributions. One of the tests in the
methodology is known as the “fixed versus random” (FVR) test. In this test, the
measurements are collected as the device operates repeatedly using fixed input
data and randomly varying input data. (The fixed and random input vectors
are randomly interleaved.) Welch’s t-test is then used to score the differences
between the two sets of measurements. We follow [9] and use |t| < 4.5 as the
criteria for a passing result.

The fixed versus random evaluation technique does not target specific leaks.
Rather, it measures aggregate information leakage at each point in time during
the cryptographic operation. It is extremely powerful and can often find potential
vulnerabilities with fewer traces than needed to identify specific leakages. In
particular, for designs where the parallelism exceeds the portion of the key that
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can be guessed by a DPA attack, a leak identified by the FVR test is stronger
than that which would actually be available to an attacker who cannot guess the
entire key at once. Nevertheless, a failure of the FVR test does represent some
correlation with secret intermediates, and the goal of masking is to eliminate
such correlations.

Another characteristic of the FVR test is that false positives may arise due to
the plaintext and ciphertext being fixed. The dilemma is similar to the need in
conventional DPA attacks to select an intermediate separated from the plaintext
or ciphertext by a non-linear function. We avoided the problem of input and
output leaks by splitting the input into separate mask and masked data shares
prior to transfer to the device under test (DUT), and likewise retrieving mask
and masked data shares from the DUT before combining. We refer to this scheme
as externally applied masking and the more conventional scheme where the DUT
divides the data into shares as internally applied masking.

We also perform a variant of a collision correlation attack [17]. Our simulated
collision correlation (SCC) attack operates by dividing the pool of traces into
two equal-size groups and computing for each group the 256 means correspond-
ing to the possible values of the S-box input. Then, for each of 256 possible
“guesses” of a linear key byte distance, the means in one group are permuted
according to the guess, and the correlation computed between the two sets of
means. The unpermuted case represents the “correct” guess. To select points for
this attack, we used one-way analysis of variance (ANOVA) to identify points
with the strongest dependency on the S-box input value.

Our evaluation setup uses a Sasebo-GII board and a Signatec PX14400A
PCI-E card for data acquisition. The signal is taken from the 1 Ω supply-
side sense resistor on the Sasebo-GII and connected through a Mini-Circuits
BLK-89-S+ DC blocker, a Mini-Circuits BLP-150+ LPF, and a Mini-Circuits
ZFL-1000+ amplifier before driving the input of the Signatec card, which has a
sample rate of 400 MS/s and 14 bits of resolution.

The design operates at 24 MHz. Our evaluation harness performs 2,000 con-
secutive AES operations with data obtained from and stored to buffers on the
FPGA. The design provides a trigger signal concurrent with the start of the first
AES operation. This signal is used as an external trigger for the Signatec card.
To ensure that the 400 MS/s sample rate does not impact the alignment quality
when analyzing our traces, we use a technique similar to that of [10] to achieve
sub-sample alignment resolution.

4.2 Results from a Single S-box Design

Prior to presenting results from the full AES implementation, we present results
from a simplified design. The simplified design maintains the 128-bit parallel
datapath of the full AES implementation, but replaces 15 of the 16 S-boxes with
passthroughs. We chose this approach, rather than a true 8-bit datapath AES,
to focus on leakage from the LMDPL S-box as opposed to leakage from registers.

We first disabled the mask generator and collected waveforms from 10,000
encryptions. For each encryption, we chose with even probability between the
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Fig. 5. Single S-box design, masking disabled. (a) sample-wise t statistic on 10,000
traces, (b) sample 71 t statistic vs. number of traces, (c) SCC attack using sample 71
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Fig. 6. Single S-box design, masking enabled. (a) average of 100M traces, (b) sample-
wise FVR t statistic, (c) sample-wise 2nd-order FVR t statistic, (d) overlay of 2nd-order
t for each of the 36 S-box non-linear gate outputs, (e) t for each of 256 possible key
guesses, bit 25 sample 92, (f) t for each of 256 possible key guesses, bit 25 sample 99,
(g) first-order SCC using sample 86, and (h) second-order SCC using sample 86.
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fixed plaintext and a random plaintext. Fig. 5 shows several analyses of these
traces. A sample-wise plot of the t statistic (a) immediately indicates that the
design is leaking. We selected sample 71, the point in the first round with the
greatest |t| value, for further analysis. For this design, slightly over 300 traces
are needed before the |t| > 4.5 threshold is reached for sample 71 (b). We then
performed a SCC attack at sample 71. For this evaluation, between 1,000 and
1,500 traces are needed before the correct guess becomes dominant (c).

We next enabled the mask generator and collected 100,000,000 traces, again
choosing evenly between a fixed plaintext or a random plaintext for each encryp-
tion. Fig. 6 presents analysis of these traces. With the masking enabled, the t
statistic does not exceed the |t| > 4.5 threshold with 100M traces (b), demon-
strating that the first-order masking is effective. However, the design exhibits
second-order leakage, as can be seen by using the t statistic to compare the
squared residuals between the two groups (c).

We used the 50,000,000 random traces out of the same data set to develop
an attack exploiting the second-order leakage. We sorted the traces based on
the output from each of the 36 non-linear gates in the S-box. The difference in
variance due to the value of a single bit is smaller than the difference that arises
when the entire plaintext is fixed, but it it still detectable. We examined all 36
candidates (d) and selected for the attack the bit and time sample combinations
with the largest |t|. The first candidate, bit 25 at sample 92, does not result in
selection of the correct key guess with 50 million traces (e). The second candidate,
bit 25 at sample 99, does result in the selection of the correct key guess with
50 million traces (f). First- and second-order versions of our SCC attack on this
design were not successful (g,h).

0 200 400 600
−300

−200

−100

0

100

200

300

sample

t

(a)

0 50 100 150 200
−5

0

5

10

15

number of traces

t

(b)

0 2 4 6

x 10
4

−0.5

0

0.5

1

co
rr

el
at

io
n

number of traces

(c)

Fig. 7. Parallel design, masking disabled. (a) sample-wise FVR t statistic on 100,000
traces, (b) sample 441 FVR t statistic vs. number of traces, (c) SCC attack using
sample 71

4.3 Results from a Parallel Design

One possible strategy to improve upon the resistance of the single S-box imple-
mentation would be to incorporate higher-order masking. However, in low-noise
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environments, the security benefit of higher-order masking is limited [25]. With
this in mind, we explored the resistance of an AES-256 implementation perform-
ing SubBytes on the entire round state in parallel.

We again measured the design with masking disabled as a baseline. For the
parallel design we collected 100,000 traces. For each trace, we chose randomly
between the fixed plaintext or a random plaintext. Fig. 7 shows our analysis of
these traces. Fig. 7(a) is a plot of the FVR t statistic versus the sample index, and
as with the corresponding plot for the serial implementation, provides immediate
evidence that the design is leaking. Fig. 7(b) plots the t statistic between the
fixed and random traces at sample 441 (the sample with the largest absolute
t value), and shows that less than 50 traces are needed before the |t| > 4.5
threshold is reached. Finally, Fig. 7(c) shows the results of our SCC attack at
sample 71. The correct key guess becomes dominant after about 10,000 traces.
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Fig. 8. Parallel design, masking enabled. (a) sample-wise FVR t statistic on 200,000,000
traces, (b) sample-wise 2nd-order FVR t statistic on 200,000,000 traces, (c) first-order
SCC attack at sample 87, (d) second-order SCC attack at sample 87, (e) CPA vs.
round1-round2 mask Hamming distance

Finally, we enabled the mask generator in our parallel design and collected
200,000,000 traces. Fig. 8 shows our results. The first-order FVR t has only
marginally exceeded the |t| > 4.5 threshold with 200,000,000 traces. In contrast
with the serial implementation, where the second-order t statistic reached sig-
nificantly larger values than the first-order t, the second-order t for the parallel
implementation reaches only slightly larger values than the first-order t. The
spike at the end of the second-order analysis in Fig. 8(b) is due to the final
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masked output, and mask, being manipulated at the end of the calculation, and
does not represent a leak of sensitive information. We performed the SCC attack
on this design, and it was not successful (c,d).

Fig. 8(e) is shown to demonstrate a technique that we use to investigate the
behavior of our designs and to verify that our data collection is correct. The
masked implementation used for evaluation allows re-seeding of the PRNG with
an externally-supplied per-encryption seed. This allows us to compute the values
of circuit intermediates that are a function of the mask, which would normally
not be predictable by an attacker. The figure shows the correlation between the
current measurement and the Hamming distance between the round one and
round two masks. Because the mask values for successive rounds overwrite each
other in the mask share logic, a strong correlation is expected and is indeed
present. We additionally note that the memory effect [16] is clearly visible here.
The register update occurs at the time of the initial downward spike around
sample 83. A strong correlation exists for around 50 samples (3 clock cycles) after
the register update, and a weak correlation persists throughout the encryption.

5 Conclusion

In this work, we propose the use of a path-based model for the leakage from
combinational circuits. Unlike traditional methods that focus on the settled val-
ues of circuit nodes, activity image analysis considers ways that data-dependent
behavior can accumulate as transitions propagate through combinational logic.

We also present LMDPL, a new technique for gate-level masking. LMDPL
compares competitively or favorably with previous techniques on multiple met-
rics. Furthermore, LMDPL does not require routing constraints, and does not
require that sequential elements or enable signals be used to delay the propaga-
tion of signals through the circuit.
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A Activity Image Analysis Example

Table 3 presents an activity image analysis of iMDPL in tabular form. Each row
describes one activity image. Columns to the left of the double line represent
states observed at the output of each gate in the circuit. The columns to the
right of the double line are labeled with a value x∗ of the secret x = xm⊕m, and
entries in those columns report the count of observations of that row’s activity
image when x takes the value x∗. In this example there are eight possible inputs
to the circuit, corresponding to the two possible values for each of xm, ym, and
m. Evaluation of a circuit for a given input may exhibit multiple activity images.

We define a circuit to be balanced under the activity image metric if, for
any value x∗ that the secret x may take, the conditional probability that x =
x∗, given that some particular activity image was observed, is the same as the
unconditional probability that x = x∗. In other words, the observation counts in
each row of the table must have the same proportion as the global probabilities
of the associated x∗ values. In the case of iMDPL, Pr{x = 0} = Pr{x = 1} = 0.5,
so the requirement is that the counts in each row be equal. The iMDPL circuit
is not balanced, as the observation counts are different in 6 of the 10 rows. The
same analysis for the LMDPL circuit (omitted for space reasons) shows that it
is balanced under this metric.
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Table 3. iMDPL AND, assuming AND/OR decomposition

a0 = xm · ym a1 = xm · m a2 = ym · m qm = a0 + a1 + a2 (8)

xm ym m a0 a1 a2 qm x∗ = 0 x∗ = 1
0 r 0 1 1
r 0 0 1 1
r r 0 0 r r 0 1

0 r 0 0 2
0 r 0 1 1
r 0 0 0 2
r r 0 r 0 r 1 0
r 0 0 1 1
r r r 0 0 r 0 1
r r r r r r r 1 0

B Details on implementing AES with LMDPL

As discussed in Section 3.1, LMDPL requires the structure of the non-linear gate
be preserved with don’t touch constraints (sometimes called “keep” constraints).
For an ASIC design, library cells implementing the elemental functions may be
instantiated in the HDL description, and a don’t touch attribute applied to the
instantiations. A common and simple way to do this is to use a distinguishing
prefix in the instance names, and use a wildcard pattern to identify for the tool
the cells not to touch. For either an ASIC or an FPGA, the elemental functions
(AND/OR/NAND) used in the gate may be placed in a dedicated module, and
a hierarchy-preserving attribute or directive applied to that module.

For the Virtex 5 FPGA, hierarchy preservation attributes limited the amount
of packing the place and route tools would perform. We obtained better results by
applying net preservation directives to the interface of the modules implementing
the elemental functions, or to the interface of the module implementing the
LMDPL gate. For example, preserving the interface of the dual-rail XOR (a 4-
input, 2-output function) allows it to be packed in a single dual-output LUT.
Similarly, appropriate constraints enable the eight AND gates of the non-linear
gate to be packed pairwise into four dual-output LUTs.

Our AES implementation incorporates an optimized inversion circuit, which
uses functions other than AND for some of the 36 non-linear gates. We created
a Liberty-format library description containing cells of unit area implementing
the XOR and XNOR functions, and cells of ten units area implementing each
of the non-linear two-input boolean functions. We then used Synopsys Design
Compiler to map the normal-basis GF(28) inversion onto this library. The netlist
from Design Compiler contained 37 non-linear gates rather than the expected 36,
however, inspection revealed that two of the non-linear gates could be combined
with minor rearrangement of neighboring XORs to achieve a 36-gate implemen-
tation. This optimized circuit was used as the basis for translation to LMDPL
mask and masked data share implementations.
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