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Abstract. The resistance of a cryptographic implementation with re-
gards to side-channel analysis is often quantified by measuring the success
rate of a given attack. This approach cannot always be followed in prac-
tice, especially when the implementation includes some countermeasures
that may render the attack too costly for an evaluation purpose, but
not costly enough from a security point of view. An evaluator then faces
the issue of estimating the success rate of an attack he cannot mount.
The present paper addresses this issue by presenting a methodology to
estimate the success rate of higher-order side-channel attacks targeting
implementations protected by masking. Specifically, we generalize the
approach initially proposed at SAC 2008 in the context of first-order
side-channel attacks. The principle is to approximate the distribution of
an attack’s score vector by a multivariate Gaussian distribution, whose
parameters are derived by profiling the leakage. One can then accurately
compute the expected attack success rate with respect to the number
of leakage measurements. We apply this methodology to higher-order
side-channel attacks based on the widely used correlation and likelihood
distinguishers. Moreover, we validate our approach with simulations and
practical attack experiments against masked AES implementations run-
ning on two different microcontrollers.

1 Introduction

Estimating the success rate of a side-channel attack –that uses a given number of
leakage observations– is a central issue regarding the physical security evaluation
of a cryptographic implementation. The empirical way is to perform the attack
a certain number of times and to record the average number of successes. How-
ever, this approach is prohibitive against implementations protected by effective
countermeasures since the attacks may become too costly to be performed sev-
eral times (or even once). This does not mean that the implementation is secure
though; this only means that the implementation is secure beyond the means of
the evaluator (which may not compete with the means of a motivated attacker).



This situation is not satisfactory in practice where one desires that the compu-
tational cost of performing a security evaluation be fairly low and uncorrelated
to the actual security of the target implementation.

In this paper, we propose a methodology to estimate the success rate of
higher-order side-channel attacks targeting implementations protected by mask-
ing. Our methodology is based on the approach proposed by Rivain in [13] in the
context of first-order side-channel attacks. The principle of this approach is to
study the multivariate distribution of the score vector resulting from an attack.
Specifically, Rivain suggests to approximate this distribution by a multivariate
Gaussian distribution, which is sound in the context of additive distinguishers
such as the correlation and the likelihood. We generalize this approach to higher-
order side-channel analysis and we show how to derive the distribution param-
eters with respect to the leakage parameters. We show that using this method-
ology makes it possible to accurately estimate the success rate of a higher-order
side-channel attack based on a simple profiling of the leakage parameters. More-
over, we demonstrate the soundness of our methodology by comparing its results
to various attack experiments against masked AES implementations running on
two different microcontrollers.

Related Works. In [10] and [17], the success rate of first-order side-channel
analysis based on the correlation distinguisher is evaluated using Fisher’s trans-
formation. The obtained formulas are simple and illustrative, but they lack of
accuracy. Indeed, it has been observed in [18] that the estimated success rates
using this approach do not well match to the experimental ones. As explained
in [18], this is mainly due to the incorrect assumption that the scores for the
wrong key guesses are independent of the score for the good key guess. That is
why, one should rather focus on the joint distribution of all scores as initially
suggested in [13]. In the latter work, the author provide accurate formulae for
the success rate of first-order side-channel attacks based on the correlation and
likelihood distinguishers. A more recent work [6] further focuses on the mono-bit
difference-of-means distingusisher as originally described by Kocher et al. [9].

Paper Organization. In Section 2, we provide some preliminaries about prob-
ability theory and the (multivariate) Gaussian distribution. Then Section 3 intro-
duces our theoretical model for higher-order side-channel attacks and Section 4
describes the general methodology for estimating the success rate of such attacks
based on additive distinguishers. In Sections 5 and 6, we apply the methodology
to the correlation and the likelihood distinguishers respectively, and we show
how to compute the score vector distribution parameters. Eventually, some at-
tack simulations and practical attack experiments are reported in Sections 7 and
8 that demonstrate the soundness of our approach.
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2 Preliminaries

Calligraphic letters, like X , are used to denote finite sets (e.g. Fn
2 ). The corre-

sponding large letter X denotes a random variable over X , while the lowercase
letter x a value over X . The probability of an event ev is denoted by P[ev]. The
expectation and the variance of a random variable X are respectively denoted
by E [X] and Var [X]. The covariance between two random variables X and Y
is denoted by Cov [X,Y ].

The Gaussian distribution of dimension T with T -size expectation vector m
and T × T covariance matrix Σ is denoted by N (m,Σ), and the corresponding
probability density function (pdf) is denoted by φm,Σ . We recall that this pdf
is defined for every x ∈ RT as

φm,Σ(x) =
1√

(2π)T |Σ|
exp

(
−1

2
(x−m)′ ·Σ−1 · (x−m)

)
, (1)

where (x−m)′ denotes the transpose of the vector (x−m) and |Σ| denotes the
determinant of the matrix Σ. The corresponding cumulative distribution func-
tion (cdf) is denoted Φm,Σ and is defined for a pair of vectors a = (a1, a2, . . . , aT )
and b = (b1, b2, . . . , bT ) over (R ∪ {−∞,+∞})T by

Φm,Σ(a, b) =

∫ b1

a1

∫ b2

a2

· · ·
∫ bT

aT

φm,Σ(x) dx . (2)

If the dimension T equals 1, then the Gaussian distribution is said to be
univariate and its covariance matrix is reduced to the variance of the single
coordinate denoted σ2. If T is greater than 1, the Gaussian distribution is said
to be multivariate.

3 Higher-Order Side-Channel Model

We consider a cryptographic algorithm protected by masking and running on
a leaking device. A (higher-order) side-channel attack exploits the leakage re-
sulting from intermediate computations in order to recover (part of) the secret
involved in the cryptographic algorithm. Let s denote such an intermediate vari-
able satisfying:

s = ϕ(x, k∗) , (3)

where x is (part of) the public input of the algorithm, k∗ is (part of) the secret
input of the algorithm, and ϕ is some function from X ×K to S.

For an implementation protected with masking, such a variable s is never
stored nor handled in clear but in the form of several, say d + 1, shares s0, s1,
. . . , sd satisfying the relation

s0 ⊕ s1 ⊕ · · · ⊕ sd = s (4)

for some operation ⊕. In the common case of Boolean masking this operation is
the bitwise addition (or XOR), but it might be some other group addition law.
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One of the share, say s0, is sometimes referred to as masked variable and the
other shares, s1, s2, . . . , sd as the masks. For masking approach to be sound, it
is usually required that the masks are uniformly and independently generated.
In that case, the (d + 1)-tuple of shares can be modeled as a random vector

(S0, S1, . . . , Sd) where S0 = s ⊕
⊕d

j=1 Sj and, for j > 1, the Sj are mutually
independent random variables with uniform distribution over S.

3.1 Leakage Model

During the execution of the algorithm, the processing of each share Sj produces
some leakage Lj revealing some information about the share value. In what
follows, we shall denote by L the leakage tuple:

L = (L0, L1, . . . , Ld) . (5)

We shall sometimes use the alternative notation Ls or Lx,k∗ to indicate that the
leakage arises for the shared value s = ϕ(x, k∗).

In this paper, we shall make the common assumption that given the values of
the shares, the leakage has a Gaussian distribution. This assumption is referred
here as the Gaussian leakage assumption, and it is formally stated by:

(Lj | Sj = s) ∼ N (mj,s,Σj,s) , (6)

for every j ∈ {0, 1, . . . , d} and for every s ∈ S, where mj,s are expectation
vectors defined over RT and Σj,s are (non-singular) covariance matrices defined
over RT×T . We shall further assume that the leakage Lj can be viewed as a
deterministic function of Sj with an additive Gaussian noise:

Lj = fj(Sj) +Nj . (7)

This assumption, referred here as Gaussian noise assumption, is equivalent to the
Gaussian leakage assumption with the additional requirement that the covari-
ance matrices Σj,s are all equal to some matrix Σj . We then have fj : s 7→mj,s

and Nj ∼ N (0,Σj), where 0 denotes the null vector.

As a final assumption, we consider that for any fixed values of the shares,
the leakage components are independent. That is, for every (s0, s1, . . . , sd) ∈
Sd+1, the random variables (Lj | Sj = sj) are mutually independent. Under the
Gaussian noise assumption, this simply means that the noises Nj are mutually
independent, and that is why we shall refer to this assumption as the independent
noises assumption.

Remark 1. For the sake of simplicity, we consider that all the leakages Lj have
the same dimension T . Note that our analysis could be easily extended to the
general case where each leakage Lj has its own dimension Tj .
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3.2 Higher-Order Side-Channel Attacks

In a higher-order side-channel attack (HO-SCA), the adversary aims to extract
information about k∗ by monitoring the leakage of the shares. Specifically, the
adversary observes several samples `i ∈ L of the leakage Lxi,k∗ , corresponding
to some public input xi that he may either choose or just know. According to
the above leakage model, the leakage space L is defined as L = RT×(d+1) and
each leakage sample can be written as

`i = (`i,0, `i,1, · · · , `i,d) , (8)

with `i,j ∈ RT for every j. Moreover, the Gaussian noise assumption implies
that each leakage sample coordinate can be further written as

`i,j = fj(si,j) + ni,j , (9)

where si,1, si,2, . . . , si,d are d random mask values, where si,0 = ϕ(xi, k
∗) ⊕⊕d

j=1 si,j , and where ni,0, ni,1, . . . , ni,d are samples of the Gaussian noises N0,
N1, . . . , Nd.

Once several, say q, leakage samples have been collected, the adversary makes
use of a distinguisher, that is a function mapping the input-leakage samples
(x1, `1), (x2, `2), . . . , (xq, `q) to some score vector d = (dk)k∈K ∈ R|K|. If the
distinguisher is sound and if the leakage brings enough information on the shares,
then the equality

k∗ = argmax
k∈K

dk

should hold with a probability substantially greater than 1
|K| .

In what follows, we shall consider a natural equivalence relation between
distinguishers. We say that two score vectors are rank-equivalent if for every
n ∈ {1, 2, . . . , |K|}, the n coordinates with highest scores are the same for the
two vectors. Two distinguishers d and d′ are then said equivalent, denoted d ≡ d′

if for every (xi, `i)i ∈ (X × L)q, the score vectors d
(
(xi, `i)i

)
and d′

(
(xi, `i)i

)
are rank-equivalent.

In this paper, we focus on additive distinguishers which we formally define
hereafter.

Definition 1. A distinguisher d is additive if for every (x1, x2, . . . , xq) ∈ X q,
there exists a family of functions {gx,k : L→ R ; (x, k) ∈ X ×K} such that for
every (`1, `2, . . . , `q) ∈ Lq we have

d
(
(xi, `i)i

)
= (dk)k∈K with dk =

1

q

q∑
i=1

gxi,k(`i) for every k ∈ K.

A distinguisher equivalent to an additive distinguisher as defined above is also
said to be additive.
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It was shown in [13] that the widely used first-order correlation and likeli-
hood distinguishers are both additive distinguishers in the sense of the above
definition. We will show in Sections 5 and 6 that their higher-order counterparts
are also additive.

4 Estimating the Success Rate

In this section, we generalize the methodology introduced in [13] to HO-SCA as
modelled in the previous section. Namely, we show how to get a sound estimation
of the attack success rate by studying the multivariate probability distribution
of the score vector for the case of additive distinguishers.

The success rate of a HODPA, denoted Succdx,k∗ , is defined with respect to
some input vector x = (x1, x2, . . . , xq), some secret k∗, and some distinguisher
d, as the probability:

P
[
k∗ = argmax

k∈K
dk

∣∣∣ `1 $←− Lx1,k∗ ; . . . ; `q
$←− Lxq,k∗ ; (dk)k∈K = d

(
(xi, `i)i

)]
,

where `i
$←− Lxi,k∗ means randomly sampling `i according to the distribution of

Lxi,k∗ .

Remark 2. For the sake of generality, we chose to fix the input vector x as a
parameter of the attack so that we do not need to assume any specific strategy
for the choice of the public inputs. However, we will investigate the particular
setting where the xi are uniformly distributed.

According to Definition 1, the score vector (dk)k∈K resulting from an additive
distinguisher satisfies

dk =
1

q

q∑
i=1

gxi,k(`i) , (10)

for some gx,k : L → R. Then a simple application of the central limit theorem
yields the following result, where we define the occurrence ratio τx of an element
x ∈ X in the input vector (x1, x2, . . . , xq) as

τx =
|{i; xi = x}|

q
. (11)

Proposition 1. The distribution of the score vector (dk)k∈K tends toward a
multivariate Gaussian distribution as q grows, with expectation vector (E [dk])k∈K
satisfying

E [dk] =
∑
x∈X

τx E [gx,k(Lx,k∗)] (12)

for every k ∈ K, and with covariance matrix (Cov [dk1 , dk2 ])(k1,k2)∈K2 satisfying

Cov [dk1 , dk2 ] =
1

q

∑
x∈X

τx Cov [gx,k1(Lx,k∗), gx,k2(Lx,k∗)] (13)

for every (k1, k2) ∈ K2.
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Proof. The first statement results by definition of additive distinguishers and
the central limit theorem. Equations (12) and (13) directly holds by mutual
independence between the leakage samples. �

The above proposition shows that for a sufficient number of leakage observa-
tions, the distribution of the score vector d = (dk)k∈K can be soundly estimated
by a multivariate Gaussian. As in [13], we now define the comparison vector as
the (|K| − 1)-size vector c = (ck)k∈K/{k∗} whose coordinates satisfy

ck = dk∗ − dk , (14)

for every k ∈ K/{k∗}. The comparison vector is a linear transformation of the
score vector by a ((|K| − 1)× |K|)-matrix P whose expression straightforwardly
follows from (14). This implies that the distribution of the comparison vector can
also be soundly estimated by a multivariate Gaussian distribution N (mc,Σc)
where mc = P · md and Σc = P · Σd · P ′. Moreover, by definition of the
comparison vector, an attack is successful (i.e. the correct secret k∗ is ranked
first in the score vector) if and only if all the coordinates of the comparison
vector are positive. We deduce that the success rate Succdx,k∗ of a distinguisher
d satisfies

Succdx,k∗ = P[c > 0] ≈ Φmc,Σc

(
0,∞

)
(15)

where Φm,Σ denotes the Gaussian cdf as defined in (2), 0 denotes the null vector,
and ∞ denotes the vector (∞,∞, . . . ,∞).

Remark 3. In [16], the authors propose to extend the notion of success rate to
different orders. The o-th order success rate of a side-channel attack is defined as
the probability that the target secret k∗ is ranked among the o first key guesses
by the score vector. The authors of [16] also suggest to consider the so-called
guessing entropy, which is defined as the expected rank of the good key guess in
the score vector [11,3]. As shown in [13], both the success rate of any order and
the guessing entropy can be estimated using a similar approach as above.

Methodology. According to the above analysis, we propose the following method-
ology for an evaluator of some cryptographic algorithm to estimate the success
rate of a HO-SCA against his masked implementation. We consider that the
evaluator has access to the random masks generated during the computation,
and is therefore able to predict the value of each share involved in the successive
execution of the protected algorithm. The methodology is composed of three
main steps:

1. Profile the leakage of every share using standard estimation techniques.
Under the Gaussian leakage assumption, this estimation amounts to com-
pute the sample means and the sample covariance matrices of the leakage
(Li | Si = s) for every share Si and every possible value s ∈ S based on a
set of collected leakage samples.

2. Use Proposition 1 to compute the expectation vector and covariance matrix
of the score vector with respect to the leakage parameters.
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3. Deduce the parameters of the comparison vector distribution and evaluate
the success rate according to (15).

The precision of the obtained estimation is impacted by two main factors:

– the accuracy of the leakage parameter estimations, and
– the tightness of the Gaussian approximation arising in Proposition 1.

The accurate estimation of leakage parameters has been a widely investigated is-
sue and efficient techniques are known to deal with it (see for instance [4,15,1,7]).
Basically, the more noisy the leakage, the more samples must be used to get an
accurate estimation. Note that in our approach, the evaluator only has to esti-
mate first-order leakage parameters with respect to the share values. Practical
aspects of leakage parameter estimation are further discussed in Section 8.

On the other hand, the Gaussian approximation is the main issue in our
approach. One can fairly expect that if the considered implementation is not too
weak, the convergence toward the Gaussian distribution should be rather fast
compared to the number of leakage observations required to succeed the HO-
SCA. In order to validate this intuition, we provide in Section 7 an empirical
validation of the Gaussian approximation.

5 Application to the Correlation Distinguisher

In this section, we apply the general methodology described in Section 4 when
the linear correlation coefficient is used as distinguisher [2]. For two samples
x = (x1, x2, . . . , xq) ∈ Rq and y = (y1, y2, . . . , yq) ∈ Rq, the linear coefficient is
defined by

ρ(x,y) =

1
q

∑q
i=1(xi − x) · (yi − y)√

1
q

∑
i(xi − x)2 ·

√
1
q

∑
i(yi − y)2

, (16)

where x (resp. y) denotes the sample mean q−1
∑

i xi (resp. q−1
∑

i yi).
In the context of HO-SCA, the correlation coefficient is used together with

a model function m : X × K 7→ R and a combining function C : L 7→ R (see
for instance [12]). The combining function is involved to map a leakage sample
into a univariate sample combining the leakages of the different shares. On the
other hand, the model function computes some expected value for the combined
leakage with respect to some input x and some guess k on the target secret. The
correlation distinguisher dcor is then defined as

dcor
(
(xi, `i)i

)
= ρ
(
(m(xi, k))i, (C(`i))i

)
. (17)

The following proposition extends the analysis conducted in [13] and states
that the (higher-order) correlation distinguisher dcor is additive (see proof in
appendix). This particularly implies that the methodology described in Section
4 can be applied to this distinguisher.
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Proposition 2. For any model function m : X × K 7→ R and any combining
function C : L 7→ R, the correlation distinguisher dcor is additive. Moreover, dcor
is equivalent to the distinguisher d′cor defined for every (xi, `i)i ∈ (X ×L)q by

d′cor
(
(xi, `i)i

)
=
(1

q

q∑
i=1

gxi,k(`i)
)
k∈K

,

where the function gx,k : L→ R satisfies

gx,k(`) =
1

sk
(m(x, k)− mk) · C(`) , (18)

for every (x, k) ∈ X×K, with mk = 1
q

∑
i m(xi, k) and sk =

√
1
q

∑
i(m(xi, k)− mk)2.

Remark 4. If we focus on the uniform setting where the input vector x =
(x1, x2, . . . , xq) is balanced (meaning that each value x ∈ X have an occur-
rence ratio of τx = 1

|X | ), then mk and sk are constant with respect to k and dcor
is equivalent to another simpler distinguisher:

d′′cor :
(
(xi, `i)i

)
7→
(1

q

∑
i
m(xi, k) · C(`i)

)
k∈K

. (19)

Application to the Normalized Product Combining. Let us now study
the particular case of the higher-order correlation distinguisher based on the
centered product combining function [12]. This combining function is defined for
univariate share leakages (i.e. for T = 1 in the model of Section 3), namely its
domain is L = Rd+1. For every (`0, `1, . . . , `d) ∈ L, it is defined as

C(`0, `1, . . . , `d) =

d∏
j=0

(`j − µj) , (20)

where µj denotes the leakage expectation E [Lj ].
Note that in practice, the adversary does not know the exact expectation

µj but he can estimate it based on leakage samples. As argued in [12], the
number of leakage samples required to succeed a HO-SCA is substantially greater
than the number of leakage samples required to get precise estimations of the
expectations µj . Therefore, we can soundly assume that the µj in (20) are the
exact expectations E [Lj ].

We recall that, according to the leakage model presented in Section 3.1, the
jth leakage component Lj satisfies Lj = fj(Sj) + Nj where fj : s 7→ mj,s and
Nj ∼ N (0, σ2

j ). Since the noise Nj is centered in 0, we have E [fj(Sj)] = E [Lj ] =
µj . Moreover, we shall denote νj = Var [fj(Sj)]. By uniformity of Sj over S, we
have:

µj =
1

|S|
∑
s∈S

mj,s and νj =
1

|S|
∑
s∈S

(mj,s − µj)
2 . (21)
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In the following we shall further denote, for every s ∈ S,

αs :=
1

|S|d
∑
s1∈S

∑
s2∈S

· · ·
∑
sd∈S

d∏
j=0

(mj,sj − µj) (22)

and

βs :=
1

|S|d
∑
s1∈S

∑
s2∈S

· · ·
∑
sd∈S

d∏
j=0

(mj,sj − µj)
2 (23)

where s0 = s⊕
⊕d

j=1 sj .

Note that both (22) and (23) can be expressed as a higher-order convolution
product of the form

H(s) =
∑
s1

∑
s2

· · ·
∑
sd

h0(s⊕ s1⊕ s2⊕ · · ·⊕ sd) ·h1(s1) ·h2(s2) · · ·hd(sd) . (24)

We show in appendix how such a convolution can be efficiently computed for all
values over S in O(d · |S| · log |S|) operations.

We then have the following corollary of Proposition 1 for the distinguisher
d′cor with centered product combining function (see proof in appendix).

Corollary 1. Let k∗ ∈ K, let (x1, x2, . . . , xq) ∈ X q and let `i
$←− Lxi,k∗ for

every i ∈ {1, 2, . . . , q}. Then the distribution of the score vector (d′k)k∈K =
d′cor
(
(xi, `i)i

)
with centered product combining function tends toward a multi-

variate Gaussian distribution with expectation vector (E [d′k])k∈K satisfying

E [d′k] =
∑
x∈X

τx M(x, k) αϕ(x,k∗) , (25)

for every k ∈ K, and with covariance matrix (Cov
[
d′k1

, d′k2

]
)(k1,k2)∈K2 satisfying

Cov
[
d′k1

, d′k2

]
=

1

q

∑
x∈X

τx M(x, k1) M(x, k2)

×
(
βϕ(x,k∗) − α2

ϕ(x,k∗) +

d∏
j=0

(νj + σ2
j )−

d∏
j=0

νj

)
, (26)

for every (k1, k2) ∈ K2, where

M : (x, k) 7→ m(x, k)− mk

sk
. (27)

Remark 5. For the distinguisher d′′cor defined in (19) and which is equivalent to
the correlation distinguisher in the uniform setting (see Remark 4), we have the
same result as in Corollary 1 but the function M is simply defined as the model
function m.
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According to Corollary 1, the methodology presented in Section 4 can be
applied to estimate the success rate of a HO-SCA based on the correlation dis-
tinguisher with centered product combining. The first step of the methodology
shall provide estimations of the leakage functions fj : s 7→ mj,s (and hence of
the corresponding µj and νj), while the second step shall simply consist in the
evaluations of Formulae (25) and (26).

6 Application to the Likelihood Distinguisher

In this section, we apply the general methodology described in Section 4 when
the likelihood is used as distinguisher [4]. The likelihood distinguisher, denoted
dlik, is usually applied after a profiling step whose goal is to provide an estimation
p̂s of the pdf of the random variable Ls for every s ∈ S. Then, for every sample
(xi, `i)i ∈ (X ×L)q, the likelihood distinguisher is defined as

dlik
(
(xi, `i)i

)
=

q∏
i=1

p̂ϕ(xi,k)(`i) . (28)

In practice, one often makes use of the equivalent (averaged) log-likelihood dis-
tinguisher d′lik defined as

d′lik
(
(xi, `i)i

)
=

1

q
log dlik

(
(xi, `i)i

)
=

1

q

q∑
i=1

log(p̂ϕ(xi,k)(`i)) . (29)

The log-likelihood distinguisher is usually preferred as it less susceptible to ap-
proximation errors than the likelihood. We straightforwardly get the following
proposition.

Proposition 3. The likelihood distinguisher dlik is additive and equivalent to
the log-likelihood distinguisher d′lik. Moreover, for every (xi, `i)i ∈ (X ×L)q, d′lik
satisfies

d′lik
(
(xi, `i)i

)
=
(1

q

q∑
i=1

gxi,k(`i)
)
k∈K

, (30)

where the function gx,k : L→ R satisfies

gx,k(`) = log(p̂ϕ(x,k)(`)) , (31)

for every (x, k) ∈ X ×K.

Under the Gaussian leakage assumption, it can be checked that the variable
Ls has a Gaussian mixture distribution, with pdf ps satisfying

ps : (`0, `1, . . . , `d) 7→ 1

|S|d
∑
s1∈S

∑
s2∈S

· · ·
∑
sd∈S

d∏
j=0

φmj,sj
,Σj (`j) , (32)

11



where s0 = s⊕
⊕d

j=1 sj . Note that for every s ∈ S, the estimated pdf p̂s obtained
from the profiling phase has a similar expression as ps but with estimations m̂j,sj

and Σ̂j for the leakage means and covariance matrices.

Here again, it can be seen from (32) that for a given ` ∈ L the probability
ps(`) is a higher-order convolution product as in (24). The set of probability
values {ps(`) ; s ∈ S} can then be computed in O(d · |S| · log |S|) operations (see
details in appendix).

Let us now consider the two functions:

λ(s1, s2) :=

∫
`∈L

log(p̂s1(`)) ps2(`) d` , (33)

and

ψ(s1, s2, s3) :=

∫
`∈L

log(p̂s1(`)) log(p̂s2(`)) ps3(`) d` . (34)

Then, by definition, we have

Λ(x, k, k∗) := λ(ϕ(x, k), ϕ(x, k∗)) = E [gx,k(Lx,k∗)]

and

Ψ(x, k1, k2, k
∗) := ψ(ϕ(x, k1), ϕ(x, k2), ϕ(x, k∗))

= E [gx,k1
(Lx,k∗) · gx,k2

(Lx,k∗)] .

A direct application of Proposition 1 then yields the following corollary for
the log-likelihood distinguisher.

Corollary 2. Let k∗ ∈ K, let (x1, x2, . . . , xq) ∈ X q and let `i
$←− Lxi,k∗ for

every i ∈ {1, 2, . . . , q}. Then the distribution of the score vector (d′k)k∈K =
d′lik
(
(xi, `i)i

)
tends toward a multivariate Gaussian distribution with expectation

vector (E [d′k])k∈K satisfying

E [d′k] =
∑
x∈X

τx Λ(x, k, k∗) , (35)

for every k ∈ K, and with covariance matrix (Cov
[
d′k1

, d′k2

]
)(k1,k2)∈K2 satisfying

Cov
[
d′k1

, d′k2

]
=

1

q

∑
x∈X

τx
(
Ψ(x, k1, k2, k

∗)− Λ(x, k1, k
∗) · Λ(x, k2, k

∗)
)
. (36)

According to Corollary 2, the methodology presented in Section 4 can be
applied to estimate the success rate of a HO-SCA based on the likelihood dis-
tinguisher.
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7 Empirical Validation of the Gaussian Approximation

In Section 4, we have presented a methodology to estimate the success rate of
higher-order side-channel attacks based on so-called additive distinguishers. The
principle of this methodology is to approximate the distribution of the score
vector by a multivariate Gaussian distribution whose parameters are derived
from the leakage parameters. This Gaussian approximation is asymptotically
sound by the central limit theorem. However, in the non-asymptotic context of a
HO-SCA with a given number of leakage samples, it is fair to question whether
this approximation is sound or not. In this section, we conduct an empirical
study of the Gaussian approximation. For this purpose, we compare the success
rates obtained from attack simulations, to the success rates obtained by applying
the methodology of Section 4.

Since our purpose here is the sole validation of the Gaussian approximation,
we do not focus on the leakage estimation issue, but we assume the exact leakage
parameters {(mj,s, σ

2
j ) ; 0 6 j 6 d, s ∈ S} are known (in a univariate setting).

From these leakage parameters, and for a given HO-SCA based on some dis-
tinguisher d ∈ {dcor, dlik}, we evaluate the success rate with the two following
approaches:

• Simulation success rate. We perform several attack simulations and count
the number of successes in order to get an estimation of the success rate. For
each attack simulation, we randomly generate input-leakage samples (x1, `1),
(x2, `2), . . . , (xq, `q). Specifically, for every i, xi is uniformly picked up and
`i is randomly sampled from the variable Lxi,k∗ according to the leakage
parameters. Then we apply the distinguisher d to these samples, and we
count a success whenever the good secret is ranked first.
• Gaussian cdf evaluation. We apply Corollaries 1 and 2 to compute the

expectation vector and covariance matrix of the score vector with respect
to the leakage parameters and taking τx = 1/|X | as occurrence ratio for
every x ∈ X (in accordance to the uniform distribution of the xi). Then we
compute the Gaussian cdf of the comparison vector to evaluate the success
rate according to (15).

We plot hereafter the results obtained with these two approaches for different
HO-SCA targeting an AES Sbox output:

ϕ(x, k∗) = SB(x⊕ k∗) ,

where SB denote the AES Sbox function. For the leakage parameters, we used
sample means and sample variances obtained by monitoring the leakage of two
different devices running masked AES implementations (Device A and Device
B, see Section 8 for details).

Figure 1 shows the results obtained for a second-order correlation attack
with centered product combining function and Hamming weight model function
(i.e. m = HW), for leakage parameters from Device A. Figure 2 plots the results
of a second-order likelihood attack with the same leakage parameters, assuming

13
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Fig. 1. Simulation SR (plain curve) vs.
theoretical SR (dashed curve) for 2nd-
order correlation attack.
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Fig. 2. Simulation SR (plain curves) vs.
theoretical SR (dashed curves) for 2nd-
order likelihood attacks.

a perfect profiling (i.e. p̂s = ps for every s) on the one hand and a slightly
erroneous profiling on the other hand.3 We observe that for both distinguishers,
the experimental success rate curves and theoretical success rate curves clearly
match. This validates the Gaussian approximation in these HO-SCA contexts.

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Simulation SR (plain curve) vs.
theoretical SR (dashed curve) for 3rd-
order correlation attack.
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Fig. 4. Simulation SR (plain curve) vs.
theoretical SR (dashed curve) for 4th-
order correlation attack.

In order to test the Gaussian approximation to higher orders, we also per-
formed third-order and fourth-order attacks, with leakage parameters from De-
vice B. The results of the correlation attacks (centered product combining func-
tion and Hamming weight model function) are presented in Figure 3 and Figure
4 respectively. The figures for the higher-order likelihood attacks are provided
in the full version of the paper. We see that the curves perfectly match, which
further validates the Gaussian approximation in these higher-order contexts.

3 Specifically, we introduce random errors in the (mj,s)j,s used in the estimated pdfs
p̂s.
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8 Practical Experiments

In this section, we confront our methodology to practical attack experiments. We
report the results of several higher-order correlation attacks against two different
devices running masked AES implementations. We also apply our methodology
to estimate the expected success rate of these attacks with respect to the inferred
leakage parameters.

Experimental setup. Practical experiments were performed on two microcon-
trollers made in different CMOS technologies (130 and 350 nanometer processes,
respectively called devices A and device B in the sequel). The side-channel traces
were obtained by measuring the electromagnetic (EM) radiations emitted by
the device during a masked AES-128 encryption handling one byte at a time.
To this aim, an EM sensor was used (made of several coils of copper with di-
ameter of 500µm), and was plugged into a low-noise amplifier. To sample the
leakage measurements, a digital oscilloscope was used with a sampling rate of
10G samples per second for the device A and 2G samples per second for the
device B, whereas microcontrollers were running at few dozen of MHz. As the
microcontrollers clocks were not stable, we had to resynchronize the EM traces.
This process is out of the scope of this work, but we would like to emphasize
that resynchronization is always required in a practical context and it has a non
negligible impact on the measurements noise.

In our attack context, the random values involved in the masking/sharing
could be known by the evaluator and we used this ability to identify the time
samples corresponding to the different manipulation of the different shares. This
step allowed us to associate each share to a unique time sample (the one with
maximal SNR) and to profile the leakage parameters.4

Estimation of the leakage parameters. To estimate the leakage functions
fj : s 7→ mj,s, we applied linear regression techniques on 200000 leakage samples.
When applied on leakage samples `1,j , `2,j , . . . , `q,j , corresponding to successive
share values s1,j , s2,j , . . . , sq,j , a linear regression of degree t returns an approx-
imation of fj(s) as a degree-t polynomial in the bits of s (see [15,5] for more
detail on linear regression in the context of side-channel attacks). We applied
linear regression of degree 1 and 2 on Device A and B respectively. Once the fj
function estimated, we could easily get an estimation for the variance σ2

j of the
noise Nj by computing the sample variance of (`i,j − fj(si,j))i for every j.

Methodology versus practice. In order to validate our methodology in
practice, we performed higher-order correlation attacks with centered prod-
uct combining function (see Section 5) and Hamming weight model function
(i.e. m = HW). On the other hand, the success rate was estimated using the
methodology described in Sections 4 and 5 by computing the parameters of the
multivariate Gaussian distribution arising for the correlation distinguisher with
respect to the inferred leakage parameters.

4 The knowledge of the masks was however not used in the attack phase itself.
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Fig. 5. Experimental SR (plain curve)
vs. theoretical SR (dashed curve) for
2nd-order correlation attack on Device
A.
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Fig. 6. Experimental SR (plain curve)
vs. theoretical SR (dashed curve) for
2nd-order correlation attack on Device
B.

Figures 5 and 6 plot the experimental success rates versus the theoretical suc-
cess rates for the second-order correlation attacks against Device A and Device
B. In order to validate our approach with respect to higher-order attacks in prac-
tice, we also compare the results obtained with our methodology to third-order
and fourth-order attack results on Device B (see Figures 7 and 8). We observe a
clear match between the experimental and theoretical success rate curves. These
results demonstrate the soundness of the methodology in practice.
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Fig. 7. Experimental SR (plain curve)
vs. theoretical SR (dashed curve) for
3rd-order correlation attack on Device
B.
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Fig. 8. Experimental SR (plain curve)
vs. theoretical SR (dashed curve) for
4th-order correlation attack on Device
B.

Further experiments are provided in the full version of the paper in order to
observe the impact of the leakage profiling phase on our methodology.
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9 Conclusion

In this work we have presented a methodology to evaluate the success rate of
higher-order side-channel attacks. We have shown how to apply this methodology
in the particular cases of attacks based on the correlation and likelihood distin-
guishers. The soundness of our approach has been validated by simulations and
experiments performed on different microcontrollers. Using this methodology, an
evaluator can estimate the side-channel resistance of his masked cryptographic
implementation at the cost of inferring a few linear regression coefficients.
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A Proof of Proposition 2

Proof. Let (dk)k∈K = dcor
(
(xi, `i)i

)
and (d′k)k∈K = d′cor

(
(xi, `i)i

)
for some input-

leakage samples (xi, `i)i6q ∈ (X × L)q. We have:

dk =
1

sC

∑q
i=1(m(xi, k)− mk)C(`i)

sk
=

1

sC
d′k ,

where sC =
√

1
q

∑
i(C(`i)− C)2 with C = 1

q

∑
i C(`i).

Since sC is strictly positive and constant with respect to the guess k, the
score vectors (dk)k∈K and (d′k)k∈K are clearly rank-equivalent, implying that
the distinguishers dcor and d′cor are equivalent. Moreover, after denoting by gx,k
the function `i 7→ s−1k (m(x, k) − mk)C(`i), we get d′k = 1

q

∑q
i=1 gxi,k(`i), which

implies that d′cor is additive. �

B Fast Evaluation of Higher-Order Convolution

Proposition 4. Let d be a positive integer, and let (S,⊕) be a group of size
|S| = 2m. Let (hj)0≤j≤d be a family of functions from S into R, such that hj(s)
can be efficiently evaluated for every s ∈ S in o(1) operations (one typically has
a look-up table for every hj). Consider the function H : S → R defined as

H : s 7→
∑
s1∈S

∑
s2∈S

· · ·
∑
sd∈S

h0(s⊕ s1 ⊕ s2 ⊕ · · · ⊕ sd) · h1(s1) · h2(s2) · · ·hd(sd) .

Then, the whole set of outputs {H(s) ; s ∈ S} can be computed in O(d · 2m ·m)
operations.
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Proof. For every s ∈ S, the function H satisfies

H(s) =
∑
sd∈S

hd(sd) · · ·
∑
s2∈S

h2(s2)
∑
s1∈S

h1(s1) · h0(s⊕ s1 ⊕ s2 ⊕ · · · sd) .

Consider the convolution product of the form

h1 ⊗ h0 : s 7→
∑
t∈S

h1(t) · h0(s⊕ t) .

We have

WH(h1 ⊗ h0) = 2
m
2 WH(h1) · WH(h0) ,

whereWH is the (normalized) Walsh-Hadamard transform (WHT). This convo-
lution product can hence be efficiently computed from three evaluations of fast
WHT that each takes O(2m ·m) operations.5

One can check that the sequence of functions (Hi)0≤i≤d defined as{
H0 = h0
Hi = hi ⊗Hi−1 for every i > 1

is such that Hd = H. One can then sequentially compute the set of outputs of
H1, H2, . . . , Hd = H by evaluating d convolution products, which gives a total
cost of O(d · 2m ·m) operations. �

C Proof of Corollary 1

To prove the corollary, we first introduce the following lemma.

Lemma 1. The expectation and variance of the random variable C(Lx,k∗) re-
spectively satisfy

E [C(Lx,k∗)] = αϕ(x,k∗) (37)

and

Var [C(Lx,k∗)] = βϕ(x,k∗) − α2
ϕ(x,k∗) +

d∏
j=0

(νj + σ2
j )−

d∏
j=0

νj . (38)

Proof. Since the Nj are independent and centered in 0, we have

E [C(Lx,k∗)] = E
[
C
(
f0(S0), f1(S1), . . . , fd(Sd)

)2]
= αϕ(x,k∗) ,

On the other hand, by definition of the variance, we have

Var [C(Lx,k∗)] = E
[
C(Lx,k∗)2

]
− E [C(Lx,k∗)]

2
= E

[
C(Lx,k∗)2

]
− α2

ϕ(x,k∗) .

5 The WHT is involutive, hence we have h1 ⊗ h0 = 2
m
2 WH

(
WH(h1) · WH(h0)

)
.
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Then, we have

E
[
C(Lx,k∗)2

]
= E

 d∏
j=0

(
fj(Sj) +Nj − µj

)2 = E

 d∏
j=0

(
(fj(Sj)− µj)

2 +N2
j

)
where the second holds since the Nj have zero means and are mutually inde-
pendent and independent of the Sj . By developing the product, we get a sum of
monomials, such that each monomial involves random variables that are mutu-
ally independent, except for one single monomial which is

∏d
j=0(fj(Sj) − µj)

2.
We can then develop the above equation as

E
[
C(Lx,k∗)2

]
=

d∏
j=0

(
E
[
(fj(Sj)− µj)

2
]

+ E
[
N2

j

] )

−
d∏

j=0

E
[
(fj(Sj)− µj)

2
]

+ E

 d∏
j=0

(fj(Sj)− µj)
2

 ,

which gives

E
[
C(Lx,k∗)2

]
=

d∏
j=0

(νj + σ2
j )−

d∏
j=0

νj + βϕ(x,k∗).

�

Proof of Corollary 1. Applying (12) and (13) to the functions gx,k : ` 7→
1
sk

(m(x, k)− mk) · C(`) as defined in (18), we get

E [d′k] =
1

sk

∑
x∈X

τx (m(x, k)− mk) E [C(Lx,k∗)] ,

and

Cov
[
d′k1

, d′k2

]
=

1

q

1

sk1
sk2

∑
x∈X

τx (m(x, k1)− mk1
) (m(x, k2)− mk2

)Var [C(Lx,k∗)] ,

Then Lemma 1 directly yields the corollary statement. �
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