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1 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
thomas.poeppelmann@rub.de,tim.gueneysu@rub.de

2 University of California, San-Diego
lducas@eng.ucsd.edu

Abstract. The recent Bimodal Lattice Signature Scheme (Bliss) showed
that lattice-based constructions have evolved to practical alternatives to
RSA or ECC. Besides reasonably small signatures with 5600 bits for a
128-bit level of security, Bliss enables extremely fast signing and signa-
ture verification in software. However, due to the complex sampling of
Gaussian noise with high precision, it is not clear whether this scheme
can be mapped efficiently to embedded devices. Even though the authors
of Bliss also proposed a new sampling algorithm using Bernoulli vari-
ables this approach is more complex than previous methods using large
precomputed tables. The clear disadvantage of using large tables for high
performance is that they cannot be used on constrained computing en-
vironments, such as FPGAs, with limited memory. In this work we thus
present techniques for an efficient Cumulative Distribution Table (CDT)
based Gaussian sampler on reconfigurable hardware involving Peikert’s
convolution lemma and the Kullback-Leibler divergence. Based on our
enhanced sampler design, we provide a first Bliss architecture for Xil-
inx Spartan-6 FPGAs that integrates fast FFT/NTT-based polynomial
multiplication, sparse multiplication, and a Keccak hash function. Ad-
ditionally, we compare the CDT with the Bernoulli approach and show
that for the particular Bliss-I parameter set the improved CDT ap-
proach is faster with lower area consumption. Our core uses 2,431 slices,
7.5 BRAMs, and 6 DSPs and performs a signing operation in 126 µs on
average. Verification takes even less with 70 µs.
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1 Introduction and Motivation

Virtually all currently used digital signature schemes rely either on the factoring
(RSA) or the discrete logarithm problem (DSA/ECDSA). However, with Shor’s
algorithm [39] sufficiently large quantum computers can solve these problems
in polynomial time which potentially puts billions of devices and users at risk.
Although powerful quantum computers will certainly not become available soon,
significant resources are definitely spent by various organizations to boost their



further development [35]. Also motivated by further advances in classical crypt-
analysis (e.g., [4,5,20]), it is important to investigate potential alternatives now
to have secure constructions and implementations at hand when they are finally
needed.

In this work we deal with such a promising alternative, namely the Bimodal
Lattice Signature Scheme (Bliss) [12], and specifically address implementation
challenges for constrained devices and reconfigurable hardware. First efforts in
this direction were made in 2012 by Güneysu et al. [16] (GLP). Their scheme
was based on work by Lyubashevsky [26] and tuned for practicability and effi-
ciency in embedded systems. This was achieved by a new signature compression
mechanism, a more ”aggressive”, non-standard hardness assumption, and the
decision to use uniform (as in [25]) instead of Gaussian noise to hide the secret
key contained in each signature via rejection sampling. While GLP allows high
performance on low-cost FPGAs [16] and CPUs [17] it later turned out that the
scheme is suboptimal in terms of signature size and its claimed security level
compared to Bliss. The main reason for this is that Gaussian noise, which is
prevalent in almost all lattice-based constructions, allows more efficient, more
secure, and also smaller signatures. However, while other techniques relevant for
lattice-based cryptography, like fast polynomial arithmetic on ideal lattices re-
ceived some attention [1, 32, 36], it is currently not clear how efficient Gaussian
sampling can be done on reconfigurable and embedded hardware for large stan-
dard deviations. Results from electrical engineering (e.g., [19,41]) are not directly
applicable, as they target continuous Gaussians. Applying these algorithms for
the discrete case is not trivial (see, e.g., [8] for a discrete version of the Ziggurat
algorithm). First progress was recently made by Roy et al. [37] based on work
by Galbraith and Dwarakanath [13] providing results for a Gaussian sampler in
lattice-based encryption that requires low resources. We would also like to note
that for lattice-based digital signature schemes large tables in performance op-
timized implementations might imply the impression that Gaussian-noise based
schemes are a suboptimal choice on constrained embedded systems. A recent ex-
ample is a microcontroller implementation of Bliss [7] that requires tables for the
Gaussian sampler of roughly 40 to 50 KB on an ATxmega64A3. Other lattice-
based signatures with explicit reductions to standard lattice problems [14,24,28]
are also inefficient in terms of practical signature and public key sizes (see [3] for
an implementation of [28]). Thus, despite the necessity of improving Gaussian
sampling techniques (which is one contribution of this work) Bliss seems to be
currently the most promising scheme with a signatures length of 5600 bit, equally
large public keys, and 128-bit of equivalent symmetric security. There surely is
some room for theoretical improvement, as suggested by the new compression
ideas developed by Bai and Galbraith [2]; one can hope that all those techniques
can be combined to further improve lattice-based signatures.

Contribution. One contribution of this work are improved techniques for ef-
ficient sampling of Gaussian noise that support parameters required for digital
signature schemes such as Bliss and similar constructions. First, we detail how
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to accelerate the binary search on a cumulative distribution table (CDT) using
a shortcut table of intervals (also known as guide table [9, 11]) and develop an
optimal data structure that saves roughly half of the table space by exploit-
ing the properties of the Kullback-Leibler divergence. Furthermore, we apply a
convolution lemma [29] for discrete Gaussians that results in even smaller ta-
bles of less than 2.1 KB for Bliss-I parameters. Based on these techniques we
provide an implementation of the Bliss-I parameter set on reconfigurable hard-
ware that is tweaked for performance and offers 128-bit of security. For practical
evaluation we compare our improvements for the CDT-based Gaussian sampler
to the Bernoulli approach presented in [12]. Our implementation includes an
FFT/NTT-based polynomial multiplier (contrary to the schoolbook approach
from [16]), more efficient sparse multiplication, and the KECCAK-f [1600] hash
function to provide the full picture of the performance that can be achieved
by employing latest lattice-based signature schemes on reconfigurable hardware.
Our implementation on a Xilinx Spartan-6 FPGA supports up to 7958 signa-
tures per second using 7,491 LUTs, 7,033 flip-flops, 6 DSPs, and 7.5 block RAMs
and outperforms previous work [16] both in time and area.

In order to allow third-party evaluation of our results, source code, test-
benches, and documentation is available on our website3.

2 The Bimodal Lattice Signature Scheme

The most efficient instantiation of the Bliss signature scheme [12] is based on
ideal-lattices [27] and operates on polynomials over the ringRq = Zq[x]/〈xn+1〉.
For quick reference, the Bliss key generation, signing as well as verification
algorithms are given in Figure 1 and implementation relevant parameters as
well as achievable signature and key sizes are listed in Table 1. Note that for the
remainder of this work, we will focus solely on Bliss-I. The Bliss key generation
basically involves uniform sampling of two small and sparse polynomials f ,g,
computation of a certain rejection condition (Nκ(S)), and computation of an
inverse. For signature generation two polynomials y1,y2 of length n are sampled
from a discrete Gaussian distribution with standard deviation σ. Note that the
computation of ay1 can still be performed in the FFT-enabled ring Rq instead
of R2q. The result u is then hashed with the message µ. The output of the
hash function is interpreted as sparse polynomial c. The polynomials y1,2 are
then used to mask the secret key polynomials s1,2 which are multiplied with
the polynomial c and thus ”sign” the hash of the message. In order to prevent
any leakage of information on the secret key, rejection sampling is performed
and signing might restart. Finally, the signature is compressed and (z1, z

†
2, c)

returned. For verification the norms of the signature are first validated, then
the input to the hash function is reconstructed and it is checked whether the
corresponding hash output matches c from the signature.

3 See http://www.sha.rub.de/research/projects/lattice/
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Algorithm KeyGen()

1: Choose f ,g as uniform polynomials with exactly d1 = dδ1ne entries in {±1} and
d2 = dδ2ne entries in {±2}

2: S = (s1, s2)t ← (f , 2g + 1)t

3: if Nκ(S) ≥ C2 · 5 · (dδ1ne+ 4dδ2ne) · κ then restart
4: aq = (2g + 1)/f mod q (restart if f is not invertible)
5: Return(pk = A, sk = S) where A = (a1 = 2aq, q − 2) mod 2q

Alg. Sign(µ,pk=A,sk=S)

1: y1,y2 ← DZn,σ
2: u = ζ · a1 · y1 + y2 mod 2q
3: c← H(bued mod p, µ)
4: Choose a random bit b
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: Continue with probability

1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
otherwise restart

8: z†2 ← (bued − bu− z2ed) mod p
9: Return (z1, z

†
2, c)

Alg. Verify(µ,pk=A,(z1,z†2,c))

1: if ‖(z1|2d · z†2)‖2 > B2 then Reject
2: if ‖(z1|2d · z†2)‖∞ > B∞ then Reject
3: Accept iff c = H

(⌊
ζ ·a1 ·z1 + ζ · q ·c

⌉
d

+

z†2 mod p, µ)

Fig. 1: The Bimodal Lattice Signature Scheme [12].

3 Improving Gaussian Sampling for Lattice-Based Digital
Signatures

Target distribution. We recall that the centered discrete Gaussian distribution

DZ,σ is defined by a weight proportional to ρσ(x) = exp(−x
2

2σ2 ) for all integers x.
Our goal is to efficiently sample from that distribution for a constant value σ ≈
215.73 as specified in Bliss-I (precisely σ = 254 · σbin where σbin =

√
1/(2 ln 2)

is the parameter of the so-called binary-Gaussian; see [12]). This can easily be
reduced to sampling from a distribution over Z+ proportional to ρ(x) for all
x > 0 and to ρ(0)/2 for x = 0.

Overview. Gaussian sampling using a large cumulative distribution table (CDT)
has been shown to be an efficient strategy for the software implementation of
Bliss given in [12]. In this section, we further enhance CDT-based Gaussian
sampling for use on constrained devices. For simplicity, we explicitly refer to
the parameter set Bliss-I although we remark that our enhancements can be
transferred to any other parameter set as well. To increase performance, we first
analyze and improve the binary search step to reduce the number of compar-
isons (cf. Section 3.1). Secondly, we decrease the size of the precomputed tables.
In Section 3.3 we therefore apply a convolution lemma for discrete Gaussians
adapted from [30] that enables the use of a sampler with much smaller standard
deviation σ′ ≈ σ/11, reducing the table size by a factor 11. In Section 3.4 we
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Table 1: Parameters proposals from [12].
Name of the scheme Bliss-I Bliss-II Bliss-III Bliss-IV

Security 128 bits 128 bits 160 bits 192 bits

(n, q) (512,12289) (512,12289) (512,12289) (512,12289)
Secret key densities δ1, δ2 0.3 , 0 0.3 , 0 0.42 , 0.03 0.45, 0.06

Gaussian std. dev. σ 215.73 107.86 250.54 271.93
Weight of the challenge κ 23 23 30 39
Verif. thresholds B2, B∞ 12872, 2100 11074, 1563 10206,1760 9901, 1613

Repetition rate 1.6 7.4 2.8 5.2
Signature size 5.6kb 5kb 6kb 6.5kb
Secret key size 2kb 2kb 3kb 3kb
Public key size 7kb 7kb 7kb 7kb

finally reduce the size of the precomputed table further by roughly a factor of
two using floating-point representation by introducing an adaptive mantissa size.

For those last two steps we require the “measure of distance”4 for a distribu-
tion, called Kullback-Leibler divergence [10, 23], that offers tighter proofs than
the usual statistical distance (cf. Section 3.2). Kullback-Leibler is a standard
notion in information theory and already played a role in cryptography, mostly
in the context of symmetric cryptanalysis [6, 42].

3.1 Binary Search with Shortcut Intervals

The CDT sampling algorithm uses a table 0 = T [0] ≤ T [i] ≤ · · · ≤ T [S + 1] = 1
to sample from a uniform real r ∈ [0, 1). The output x is the unique index
satisfying T [x] ≤ r < T [x+ 1] and it is obtain via a binary search. Each output
x ∈ {0 . . . S} has a probability T [x+ 1]− T [x]. For Bliss-I we need a table with
S = 2891 ≈ 13.4σ entries to dismiss only a portion of the tail less than 2−128. As
a result, the naive binary search would require C ∈ [blog2 Sc, dlog2 Se] = [11, 12]
comparisons on average.

As an improvement we propose to combine the binary search with a hash
map based on the first bits of r to narrow down the search interval in a first
step (an idea that is not exactly new [9,11], also known as guide tables). For the
given parameters and memory alignment reasons, we choose the first byte of r
for this hash map: the unique v ∈ {0 . . . 255} such that v/256 ≤ r < (v+ 1)/256.
This table I of intervals has length 256 and each entry I[v] encodes the smallest
interval (av, bv) such that T [av] ≤ v/256 and T [bv] ≥ (v + 1)/256. With this
approach, the search can be directly reduced to the interval (av, bv). By letting

C denote the number of comparison on average, we have that
∑
v
blog2(bv−av)c

256 ≤
C ≤

∑
v
dlog2(bv−av)e

256 . For this distribution this would give C ∈ [1.3, 1.7] com-
parisons on average.

4 Technically, Kullback-Leibler divergence is not a distance; it is not even symmetric.
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3.2 Preliminaries on the Kullback-Leibler Divergence

We now present the notion of Kullback-Leibler (KL) divergence that is later
used to further reduce the table size. Detailed proofs of following lemmata are
given in the full version [31].

Definition 1 (Kullback-Leibler Divergence). Let P and Q be two distribu-
tions over a common countable set Ω, and let S ⊂ Ω be the strict support of P
(P(i) > 0 iff i ∈ S). The Kullback-Leibler divergence, noted DKL of Q from P
is defined as:

DKL(P‖Q) =
∑
i∈S

ln

(
P(i)

Q(i)

)
P(i)

with the convention that ln(x/0) = +∞ for any x > 0.

The Kullback-Leibler divergence shares many useful properties with the more
usual notion of statistical distance. First, it is additive so that DKL(P0×P1‖Q0×
Q1) = DKL(P0‖Q0)+DKL(P1‖Q1) and, second, non-increasing under any func-
tion DKL(f(P)‖f(Q)) ≤ DKL(P‖Q). An important difference though is that it
is not symmetric. Choosing parameters so that the theoretical distribution Q
is at KL-divergence about 2−128 from the actually sampled distribution P, the
next lemma will let us conclude the following5: if the ideal scheme SQ (i.e. Bliss

with a perfect sampler) has about 128 bits of security, so has the implemented
scheme SP (i.e. Bliss with our imperfect sampler).

Lemma 1 (Bounding Success Probability Variations). Let EP be an al-
gorithm making at most q queries to an oracle sampling from a distribution P
and returning a bit. Let ε ≥ 0, and Q be a distribution such that DKL(P‖Q) ≤ ε.
Let x (resp. y) denote the probability that EP (resp. EQ) outputs 1. Then,
|x− y| ≤

√
qε/2.

In certain cases, the KL-divergence can be as small as the square of the
statistical distance. For example, noting Bc the Bernoulli variable that returns
1 with probability c, we have DKL(B 1−ε

2
‖B 1

2
) ≈ ε2/2. In such a case, one re-

quires q = O(1/ε2) samples to distinguish those two distribution with constant
advantage. Hence, we yield higher security using KL-divergence than statisti-
cal distance for which the typical argument would only prove security up to
q = O(1/ε) queries. Intuitively, statistical distance is the sum of absolute errors,
while KL-divergence is about the sum of squared relative errors.

Lemma 2 (Kullback-Leibler divergence for bounded relative error).
Let P and Q be two distributions of same countable support. Assume that for
any i ∈ S, there exists some δ(i) ∈ (0, 1/4) such that we have the relative error
bound |P(i)−Q(i)| ≤ δ(i)P(i). Then

DKL(P‖Q) ≤ 2
∑
i∈S

δ(i)2P(i).

5 Apply the lemma to an attacker with success probability 3/4 against SP and number
of queries < 2127 (amplifying success probability by repeating the attack if neces-
sary), and deduce that it also succeeds against SQ with probability at least 1/4.
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Using floating-point representation, it seems now possible to halve the storage
ensuring a relative precision of 64 bits instead of an absolute precision of 128
bits. Indeed, storing data with slightly more than of relative 64 bits of precision
(that is, mantissa of 64 bits in floating-point format) one can reasonably hope
to obtain relative errors δ(i) ≤ 2−64 resulting in a KL-divergence less than
2−128. We further exploit this idea in Section 3.4. But first, we will also use
KL-divergence to improve the convolution Lemma of Peikert [30] and construct
a sampler using convolutions.

3.3 Reducing Precomputed Data by Gaussian Convolution

Given that x1, x2 are variables from continuous Gaussian distributions with vari-
ances σ2

1 , σ
2
2 , then their combination x1+cx2 is Gaussian with variance σ2

1 +c2σ2
2

for any c. While this is not generally the case for discrete Gaussians, there ex-
ists similar convolution properties under some smoothing condition as proved
in [29, 30]. Yet those lemmata were designed with asymptotic security in mind;
for practical purpose it is in fact possible to improve the O(ε) statistical dis-
tance bound to a O(ε2) KL-divergence bound. We refer to [30] for the formal
definition of the smoothing parameter η; for our purpose it only matters that
ηε(Z) ≤

√
ln(2 + 2/ε)/π and thus our adapted lemma allows to decrease the

smoothing condition by a factor of about
√

2.

Lemma 3 (Adapted from Thm. 3.1 from [30]). Let x1 ← DZ,σ1 , x2 ←
DkZ,σ2

for some positive reals σ1, σ2 and let σ−23 = σ−21 +σ−22 , and σ2 = σ2
1 +σ2

2.
For any ε ∈ (0, 1/2) if σ1 ≥ ηε(Z)/

√
2π and σ3 ≥ ηε(kZ)/

√
2π, then distribution

P of x1 + x2 verifies

DKL(P‖DZ,σ) ≤ 2
(

1−
(1 + ε

1− ε

)2)2
≈ 32ε2.

Remark. The factor 1/
√

2π in our version of this lemma is due to the fact that
we use the standard deviation σ as the parameter of Gaussians and not the
renormalized parameter s =

√
2πσ often found in the literature.

Proof. The proof is similar to the one of [30], with Λ1 = Z, Λ2 = kZ, c1 = c2 = 0;
but for the last argument of the proof where we replace statistical distance by
KL-divergence. As in [30], we first establish that for any x̄ ∈ Z one has the
following relative error bound

Px←P [x = x̄] ∈
[(1− ε

1 + ε

)2
,
(1 + ε

1− ε

)2]
· Px←DZ,σ [x = x̄].

It remains to conclude using Lemma 2.

To exploit this lemma, for Bliss-I we set k = 11, σ′ = σ/
√

1 + k2 ≈ 19.53,
and sample x = x1+kx′2 for x1, x

′
2 ← DZ,σ′ (equivalently k ·x′2 = x2 ← DkZ,kσ′).

The smoothness conditions are verified for ε =
√

2−128/32 and ηε(Z) ≤ 3.92. Due
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to usage of the much smaller σ′ instead of σ the size of the precomputation table
reduces by a factor of about k = 11 at the price of sampling twice. However,
the running time does not double in practice since the enhancement based on
the shortcut intervals reduces the number of necessary comparisons to C ∈
[0.22, 0.25] on average. For a majority of first bytes v the interval length bv − av
is reduced to 1 and x is determined without any comparison.

Asymptotics cost. If one considers the asymptotic costs in σ our methods al-
low one to sample using a table size of Θ(

√
σ) rather than Θ(σ) by doubling

the computation time. Actually, for much larger σ one could use O(log σ) sam-
ples of constant standard deviation and thus achieve a table size of O(1) for
computational cost in O(log σ).

3.4 CDT Sampling with Reduced Table Size

We recall that when doing floating-point error analysis, the relative error of a
computed value v is defined as |v − ve|/ve where ve is the exact value that was
meant to be computed. Using the table 0 = T [0] ≤ T [i] ≤ · · · ≤ T [S + 1] = 1,
the output of a CDT sampler follows the distribution P with P(i) = T [i +
1] − T [i]. When applying the results from KL-divergence obtained above, the
relative error of T [i + 1] − T [i] might be significantly larger than the one of
T [i]. This is particularly true for the tail, where T [i] ≈ 1 but P(i) is very small.
Intuitively, we would like the smallest probability to come first in the CDT.
A simple workaround is to reverse the order of the table so that 1 = T [0] ≥
T [i] ≥ · · · ≥ T [S + 1] = 0 with a slight modification of the algorithm so that
P(i) = T [i]−T [i+ 1]. With this trick, the subtraction only increase the relative
error by a factor roughly σ. Indeed, leaving aside the details relative to discrete
Gaussian, for x ≥ 0 we have∫ ∞

y=x

ρs(y)dy
/
ρs(x) ≤ σ whereas

∫ x

y=0

ρs(y)dy
/
ρs(x) −→

x→∞
+∞.

The left term is an estimation of the relative-error blow-up induced by the sub-
traction with the CDT in the reverse order and the right term the same estima-
tion for the CDT in the natural order. We aim to have a variable precision in
the table T [i] so that δ(i)2P(i) is about constant around 2−128/|S| as suggested
by Lemma 2 while δ(i) denotes the relative error δ(i) = |P(i) −Q(i)|/P(i). As
a trade-off between optimal variable precision and hardware efficiency, we pro-
pose the following data-structure. We define 9 tables M0 . . .M8 of bytes for the
mantissa with respective lengths `0 ≥ `1 ≥ · · · ≥ `8 and another byte table E
for exponents, of length `0. The value T [i] is defined as

T [i] = 256−E[i] ·
8∑
k=0

256−(k+1) ·Mk[i]

where Mk[i] is defined as 0 when the index is out of bound i ≥ `k. Thus, the value
of T [i] is stored with p(i) = 9−min{k|`k > i} bytes of precisions. More precisely,
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Smooth line: Value of log2(P(i)) Storage precision of T [i] in bits: 8p(i)
Dashed line: Dashed line:

−8E[i] = 8dlog256(
∑
j≥i P(j))e precision required for naive CDF

Relative error on P(i) in bits: log2 δ(i) Contribution to KL-div: log2(δ(i)2P(i))

Fig. 2: Data of our optimized CDT sampler for a discrete Gaussian of parameter
σ′ ≈ 19.53.

lengths are defined as [`0, . . . , `8] = [262, 262, 235, 223, 202, 180, 157, 125, 86] so
that we store at least two bytes for each entry up to i < 262, three bytes up to
i < 213 and so forth. Note that no actual computation is involved in constructing
T [i] following the plain CDT algorithm.

For evaluation, we used the closed formula for KL-divergence and measured
DKL(P‖Q) ≤ 2−128. The storage requirements of this table is computed by
2`0 + `1 + · · ·+ `8 ≈ 2.1 KB. The straightforward CDF approach requires each
entry up to i < 262 to be stored with 128 + log2 σ bits of precisions and thus
requires a total of at least 4.4 KB. The storage requirements are graphically
depicted by the area under the curves in the top-right quadrant of Figure 2.

4 Implementation on Reconfigurable Hardware

In this section we provide details on our implementation of the Bliss-I signature
scheme on a Xilinx Spartan-6 FPGA. We include the enhancements from the
previous section to achieve a design that is tweaked for high-performance at
moderate resource costs. For details on the implementation of the Bernoulli
sampler proposed in [12] we refer to the full version [31].

4.1 Enhanced CDT Sampling.

Along the lines of the previous section our hardware implementation operates
on bytes in order to use the 1024x8-bit mode of operation of the Spartan-6
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-1

x1
.
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.

x

Fig. 3: Block diagram of the CDT sampler which generates two samples x′1, x
′
2

of standard deviation σ′ ≈ 19.53 which are combined to a sample x = x′1 + 11x′2
with standard deviation σ = 215.73. The sampling is performed using binary
search on the size optimized Table T .

block RAMs. The design of our CDT sampler is depicted in Figure 3 and uses
the aforementioned convolution lemma. Thus two samples with σ′ ≈ 19.53 are
combined into a sample with standard deviation σ ≈ 215.73. The BinSearch

component performs a binary search on the table T as described in Section 3.4
for a random byte vector r to find a c such that T [c] ≥ r > T [c+ 1]. It accesses
T byte-wise and thus Tj [i] = Mj−E[i][i] denotes the entry at index i ∈ (0, 261)
and byte j where Tj [i] = 0 when j − E[i] < 0 or i ≥ `j−E[i]. When a sampling
operation is started in the BinSearch component we set j = 0 and initialize the
pointer registers min and max with the values stored in the reverse interval table
I[r0] where r0 is the first random byte. The reverse interval table is realized
as 256x15-bit single port distributed ROM (6 bits for the minimum and 9 bits
for the maximum). The index of the middle element of the search radius is i =
(min+max)/2. In case Tj [i] > rj we set (min = i, i = (i+max)/2, max = max, j =
0). Otherwise, for Tj [i] < rj we set (i = (min+i)/2, min = min, max = i, j = 0)
until max−min < 2. In case of Tj[i] = rj we increase j = j+1 and thus compare
the next byte. The actual entries of M0 . . .M8 are consecutively stored in block
memory B and the address is computed as a = S[j − E[i] + i] where we store
the start addresses of each byte group in a small additional LUT-based table
S = [0, 262, 524, 759, 982, 1184, 1364, 1521, 1646]. Some control logic takes care
that all invalid/out of bound requests to S and B return a zero.

For random byte generation we use three instantiations of the Trivium stream
cipher (each Trivium instantiation outputs one bit per clock cycle) to generate a
uniformly random byte every third clock cycle and store spare bits in a LIFO for
later use as sign bits. The random values rj are stored in a 128x8 bit ring buffer
realized as simple dual-port distributed RAM. The idea is that the sampler may
request a large number of random bytes in the worst-case but usually finishes
after one or two comparisons due to the lazy search. As the BinSearch compo-
nent keeps track of the maximum number of accessed random bytes, it allows
the Uniform sampler to refresh only the used max(j) + 1 bytes in the buffer. In
case the buffer is empty, we stop the Gaussian sampler until a sufficient amount
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of randomness becomes available. In order to compute the final sample x we
determine sign bits of two samples x′1, x

′
2 and finally output x = x′1 + 11x′2.

To achieve a high clock frequency, a comparison in the binary search step
could not be performed in one cycle due to the excessive number of tables and
range checks involved. We therefore allow two cycles per search step which are
carefully balanced. For example, we precompute the indices i′ = (min+i)/2 and
i′′ = (max+i)/2 in the cycle prior to a comparison to relax the critical paths. We
further merged the block memory B (port A) and the exponent table E (port B)
into one 18k block memory and optimized the memory alignment accordingly.
Note also that we are still accessing the two ports of the block RAM holding
B and E only every two clock cycles which would enable another sampler to
operate on the same table using time-multiplexing.

4.2 Signing and Verification Architecture

The architecture of our implementation of a high-speed Bliss signing engine
is given in Figure 4. Similar to the GLP design [16] we implemented a two
stage pipeline where the polynomial multiplication a1y1 runs in parallel to the
hashing H(bued, µ) and sparse multiplication z1,2 = s1,2c+y1,2

6. For polynomial
multiplication [1,32,36] of a1y1 we rely on a publicly available FFT/NTT-based
polynomial multiplier [33] (PolyMul). The public key a1 is stored already in NTT
format so that only one forward and one backward transform is required. The
multiplier also instantiates either the Bernoulli or the CDT Gaussian sampler
(configurable by a VHDL generic) and an intermediate FIFO for buffering.
When a new triple (a1y1,y1,y2) is available the data is transferred into the block
memories BRAM-U, BRAM-Y1 and BRAM-Y2 and the small polynomial u = ζa1y1 +
y2 is computed on-the-fly and stored in BRAM-U for later use. The lower order bits
bued mod p of u are saved in the RAM-U. As random oracle we have chosen the
KECCAK-f [1600] hash function for its security and speed in hardware [22, 38].
A configurable hardware implementation7 is provided by the KECCAK project
and the mid-range core is parametrized so that the KECCAK state it split into
16 pieces (Nb = 16). To simplify control logic and padding we just hash multiples
of 1024 bit blocks and rehash in case of a rejection. Storing the state of the hash
function after hashing the message (and before hashing bued mod p) would be
possible but is not done due to the state size of KECCAK. After hashing the
ExtractPos component extracts the κ positions of c which are one from the
binary hash output and stores them in the 23x9-bit memory RAM-Pos.

For the computation of s1c and s2c we then exploited that c has mainly zero
coefficients and only κ = 23 coefficients set to one. Moreover, only d1 = dδ1ne =

6 Another option would be a three stage pipeline with an additional buffer between
the hashing and sparse multiplication. As a tradeoff this would allows to use a slower
and thus more area efficient hash function but also imply a longer delay and require
pipeline flushes in case of an accepted signature.

7 See http://keccak.noekeon.org/mid_range_hw.html for more information on the
core.
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154 coefficients in s1 are ±1 and s2 has d1 entries in ±2 where the first coefficient
is from {−1, 1, 3}. The simplest and, in this case, also best suited algorithm for
sparse polynomial multiplication is the row- or column-wise schoolbook algo-
rithm. While row-wise multiplication would benefit from the sparsity of s1,2 and
c, more memory accesses are necessary to add and store inner products. Since
memory that has more than two ports is extremely expensive, this also prevents
or at least limits efficient and configurable parallelization. As a consequence, our
implementation consists of a configurable number of cores (C) which perform
column-wise multiplication to compute z1 and z2, respectively. Each core stores
the secret key (either s1 or s2) efficiently in a distributed RAM and accumulates
inner products in a small multiply-accumulate unit (MAC). Positions of c are fed
simultaneously into the cores. Another advantage of our approach is that we
can compute the norms and scalar products for rejection sampling parallel to
the sparse multiplication. In Figure 4 a configuration with C = 2 is shown for
simplicity but our experiments show that C = 8 leads to an optimal trade-off
between speed and resource consumption. Our verification engine uses only the
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Fig. 4: Block diagram of the implemented Bliss-I signing engine.

PolyMul (without a Gaussian sampler) and the Hash component and is thus
much more lightweight compared to signing. The polynomial c stored as (un-
ordered) positions is expanded into a 512x1-bit distributed RAM and the input
to the hash function is computed in a pipelined manner when PolyMul outputs
a1y1.

5 Results and Comparison

In this section we discuss our results which were obtained post place-and-route
(PAR) on a Spartan-6 LX25 (speed grade -3) with Xilinx ISE 14.6.

Gaussian Sampling. Detailed results on area consumption and timing of the
CDT and Bernoulli Gaussian sampler designs are given in Table 2. The results
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show that the enhanced CDT sampler consumes less logic resources than the
Bernoulli sampler, as described in the full version [31], at the cost of one 18k
block memory to store the tables E and B. This is a significant improvement in
terms of storage size compared to a naive implementation without the application
of the Kullback-Leibler divergence and Gaussian convolution. A standard CDT
implementation would require at least στλ = 370 kbits (that is about 23 many
18K block Rams) for the defined parameters matching a standard deviation
σ = 215.73, tailcut τ = 13.4 and precision λ = 128.

Regarding randomness consumption the CDT sampler needs on average 21
bits for one sample (using two smaller samples and the convolution theorem)
which are generated by three instantiations of Trivium. The Bernoulli sampler
on the other hand consumes 33 bits on average, generated by two instantiations
of Trivium. With respect to the averaged performance, 7.4 and 18.5 cycles are
required by the CDT and the Bernoulli sampler to provide one sample, respec-
tively.

As a consequence, by combining the convolution lemma and KL-divergence
we were able to maintain the advantage of the CDT, namely high speed and rela-
tive simple implementation, but significantly reduced the memory requirements
(from ≈ 23 18K block RAMs to one 18K block RAM). The convolution lemma
works especially well in combination with the reverse tables as the overall table
sizes shrink and thus the number of comparisons is reduced. Thus, we do not
expect a CTD sampler that samples directly from standard deviation σ to be
significantly faster. Additionally, larger tables would require more complex ad-
dress generation which might lower the achievable clock frequency. The Bernoulli
approach on the other hand does not seem as suitable for an application of the
convolution lemma as the CDT. The reason is that the tables are already very
small and thus a reduction would not significantly reduce the area usage.

Previous implementations of Gaussian sampling for lattice-based public key
encryption can be found in [34, 37]. However, both works target a smaller stan-
dard deviation of σ = 3.3. The work of Roy et al. [37] uses the Knuth-Yao
algorithm (see [13] for more details), is very area-efficient (47 slices on a Virtex-
5), and consumes few randomness but requires 17 clock cycles for one sample.
In [34] Bernoulli sampling is used to optimize simple rejection sampling by using
Bernoulli evaluation instead of computation of exp(). However, without usage
of the binary Gaussian distribution (see [12]) the rejection rate is high and one
sample requires 96 random bits and 144 cycles. This is acceptable for a relatively
slow encryption scheme and possible due to the high output rate (one bit per
cycle) of the used stream cipher but not a suitable architecture for Bliss. The
discrete Ziggurat [8] performs well in software and might also profit from the
techniques introduced in this work but does not seem to be a good target for
a hardware implementation due to its infrequent rejection sampling operations
and its costly requirement on high precision floating point arithmetic.

BLISS Operations. Results for the Bliss signing and verification engine and
sub-modules can be found in Table 2 including averaged cycle counts for suc-
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cessfully producing a signature. Note that the final slice, LUT, and FF counts of
the signing engine cannot directly be computed as the sum of the sub modules
due to cross module optimizations, timing optimization, and additional control
logic between modules. One signing attempt takes roughly 10k cycles and on
average 1.6 trials are necessary using the Bliss-I parameter set. To evaluate the
impact of the sampler used in the design, we instantiated two signing engines of
which one employs a CDT sampler and the other one two Bernoulli samplers to
match the speed of the multiplier. For a similar performance of roughly 8,000
signing operations per second, the signing instance based on the Bernoulli sam-
pler has a significantly higher resource consumption (about 470 extra slices).
Due to the two pipeline stages involved, the runtime of both instances is de-
termined by max(Cycles(PolyMul), Cycles(Hash)) + Cycles(SparseMul) where
the rejection sampling in Compression is performed in parallel. Further design
space exploration (e.g., evaluating the impact of a different number of parallel
sparse multiplication operations or a faster configuration of KECCAK) always
identified the PolyMul component as performance bottleneck or did not provide
significant savings in resources for reduced versions. In order to further increase
the clock rate it would of course also be possible to instantiate the Gaussian
sampler in a separate clock domain. The verification runtime is determined by
Cycles(PolyMul)+Cycles(Hash) as no pipelining is used and PolyMul is slightly
faster than for signing as no Gaussian sampling is needed.

Table 2: Performance and resource consumption of the full Bliss-I signing engine
using the CDT sampler or two parallel Bernoulli samplers (Ber) on the Spartan-6
LX25 for a small 1024 bit message.

Configuration and Slices/LUT/FF MHz Cycles Operations per
Operation /BRAM/DSP second (output)

Sign-I (CDT, C=8) 2,431/7,491/7,033/7.5/6 129 ≈16,210 ≈7958 (signature)
Sign-I (Ber, C=8) 2,960/9,029/8,562/6.5/8 131 ≈16,210 ≈8,081 (signature)
Ver-I 1,727/5,275/4,488/4.5/3 142 9,835 14,438 (valid/invalid)

CDT sampler 299/928/1,121/1/0 129 ≈7.4 ≈17,432,432 (sample)
Bernoulli sampler 416/1,178/1,183/0/1 138 ≈18.5 ≈7,459,459 (sample)

PolyMul (CDT) 1,138/3,259/3,242/6/1 130 9,429 13,787 (a · y1)
Hash (Nb = 16) 752/2,461/2,134/0/0 149 1,931 77,162 (c)
SparseMul (C = 1) 64/162/125/0/0 274 15,876 17,258 (c · s1,2)
SparseMul (C = 8) 308/918/459/0/0 267 2,436 109,605 (c · s1,2)
SparseMul (C = 16) 628/1847/810/0/0 254 1,476 172,086 (c · s1,2)
Compression 1,230/3,851/3,049/3/0 151 - parallel to SparseMul

Comparison In comparison with the GLP implementation from [16], the design
of this work achieves higher throughput with a lower number of block RAMs and
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DSPs. The structural advantage of Bliss is a smaller polynomial modulus (GLP:
q = 8383489/Bliss-I: q = 12289), less iterations necessary for a valid signature
(GLP: 7/Bliss-I: 1.6), and a higher security level (GLP: 80 bit/Bliss-I: 128 bit).
Furthermore and contrary to [16], we remark that our implementation takes the
area costs and timings of a hash function (KECCAK) into account. In summary,
our implementation of Bliss is superior to [16] in almost all aspects.

Table 3: Signing or verification speed of comparable signature scheme imple-
mentations. The GLP implementation was measured on a Spartan-6 device, the
B-163 ECDSA one on a Cyclone II and the other implementations were done on
Virtex-5.

Operation Security Algorithm Resources Ops/s

GLP [sign] [16] 80 GLP 7465 LUT/ 8993 FF/ 931
28 DSP/ 29.5 BRAM18

GLP [ver] [16] 80 GLP 6225 LUT/ 6663 FF/ 998
8 DSP/ 15 BRAM18

ECDSA 80 Full ECDSA; B-163 15,879 LE / 8,472 FF/ 1063/621
[sign/ver] [21] 36 M4K
RSA [sign] [40] 103 RSA-2048; private key 3237 LS/ 17 DSPs 89
ECDSA [sign] [15] 128 Full ECDSA; secp256r1 32299 LUT/FF pairs 139
ECDSA [ver] [15] 128 Full ECDSA; secp256r1 32299 LUT/FF pairs 110

In addition to that Glas et al. [15] report a vehicle-to-X communication ac-
celerator based on an ECDSA signature over 256-bit prime fields. With respect
to this, our Bliss implementation shows higher performance at less resource cost.
An ECDSA implementation on a binary curve for an 80-bit security level on an
Altera FPGA is given in [21] and achieves similar speeds and area consumption
compared to our work. Other ECC implementations over 256-bit prime or binary
fields (e.g., such as [18] on a Xilinx Virtex-4) only implement the point multi-
plication operation and not the full ECDSA protocol. Finally, a fast RSA-2048
core was presented for Virtex-5 devices in [40] which requires more logic/DSPs
and provides significantly lower performance (11.2 ms per operation) than our
lattice-based signature instance.
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8. J. Buchmann, D. Cabarcas, F. Göpfert, A. Hülsing, and P. Weiden. Discrete
ziggurat: A time-memory trade-off for sampling from a Gaussian distribution over
the integers. In T. Lange, K. Lauter, and P. Lisonek, editors, Selected Areas in
Cryptography, volume 8282 of LNCS, pages 402–417, Burnaby, BC, Canada, August
14-16, 2013, 2013. Springer, Berlin, Germany.

9. H.-C. Chen and Y. Asau. On generating random variates from an empirical dis-
tribution. AIIE Transactions, 6(2):163–166, 1974.

10. T. M. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.
11. L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

http://luc.devroye.org/rnbookindex.html.
12. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and

bimodal gaussians. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 40–56, Santa Barbara, CA, USA, Aug. 18–22, 2013.
Springer, Berlin, Germany.

13. N. C. Dwarakanath and S. D. Galbraith. Sampling from discrete Gaussians for
lattice-based cryptography on a constrained device. Applicable Algebra in Engi-
neering, Communication and Computing, pages 1–22, 2014.

14. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In R. E. Ladner and C. Dwork, editors, 40th ACM
STOC, pages 197–206, Victoria, British Columbia, Canada, May 17–20, 2008. ACM
Press.

16

http://eprint.iacr.org/2013/200
http://arxiv.org/abs/1306.4244
http://eprint.iacr.org/2009/064
http://eprint.iacr.org/2014/078
http://luc.devroye.org/rnbookindex.html


15. B. Glas, O. Sander, V. Stuckert, K. D. Müller-Glaser, and J. Becker. Prime field
ECDSA signature processing for reconfigurable embedded systems. Int. J. Recon-
fig. Comp., 2011, 2011.
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