
Side-Channel Attack Against RSA Key
Generation Algorithms

Aurélie Bauer, Eliane Jaulmes, Victor Lomné,
Emmanuel Prouff, and Thomas Roche

ANSSI
51, Bd de la Tour-Maubourg, 75700 Paris 07 SP, France

{firstname.lastname}@ssi.gouv.fr

Abstract. Many applications of embedded devices require the gener-
ation of cryptographic secret parameters during the life cycle of the
product. In such an unsafe context, several papers have shown that key
generation algorithms are vulnerable to side-channel attacks. This is in
particular the case of the generation of the secret prime factors in RSA.
Until now, the threat has been demonstrated against naive implemen-
tations whose operations’ flow depends on secret data, and a simple
countermeasure is to avoid such kind of dependency. In this paper, we
propose a new attack that renders this defence strategy ineffective. It is
in particular able to break secure implementations recommended by the
ANSI X9.31 and FIPS 186-4 standards. We analyse its efficiency for vari-
ous realistic attack contexts and we demonstrate its practicality through
experiments against a smart-card implementation. Possible countermea-
sures are eventually proposed, drawing the following main conclusion:
prime generation algorithms should avoid the use of a prime sieve com-
bined with a deterministic process to generate the prime candidates from
a random seed.

1 Introduction

When signing or decrypting with RSA it is nowadays well-known that the modular
exponentiation must be implemented with care to defeat Side-Channel Attacks
(SCA). The use of the secret exponent indeed induces some vulnerabilities and a
wide number of studies have been dedicated to this specific operation [4, 7, 12,
20, 23, 27]. However this is not the unique vulnerable step of RSA cryptosystem
implementations. The prime generation algorithm aiming at finding two large
prime factors p and q to build the RSA modulus can also be threatened by SCA.
Until recent years, this computation was solely performed during the device
personalisation (when the device is uniquely associated to a device holder) and,
for this reason, SCA was considered to be out-of-scope. This is no longer the
case: the arrival of new security services (mobile payment, e-ticketing, OTP
generations, and so on) has raised the need for devices able to perform key
generations during their life cycle. The RSA key generation has then left the
safe context of production firms for an hostile environment. This assessment has

been highlighted in several papers [8, 16, 28] which show that the key generation
security must be taken into account for today open platforms.

Prime Generation Algorithms. A straightforward method to generate a large
prime number is to start from a random value, to perform a provable primal-
ity test, and in case of an invalid answer, to repeat the process with another
random data until a prime is found. This procedure obviously leads to a valid
solution, but also provides very costly prime generations. In fact, provable prime
generations are considered to be less efficient, in time and memory usage, than
probable prime ones [6]. Indeed, using the latter consists in replacing the costly
primality proof of the selected candidate by a series of relatively efficient proba-
bilistic tests [21]. When correctly parametrised, this probabilistic approach pro-
vides a satisfying confidence level in the primality of the generated value. Still
this technique may remain costly, especially for embedded systems, since almost
all probabilistic primality tests are based on non trivial arithmetic operations
over large integer rings. For this reason, probable prime generation algorithms
are often implemented together with a prime sieve [6, 21]. That way, each new
prime candidate is first checked for small factors (up to a fixed bound) by suc-
cessive divisibility tests, and can thus be possibly eliminated without having to
go through the probabilistic primality tests.

Whereas the implementations discussed previously enable to check whether
candidates are prime or not at moderate cost, the overall efficiency of the algo-
rithm can still remain poor if no particular attention is paid to the “generation”
phase. In particular, randomly generating each new candidate until a probable
prime is found turns out to be hardly practical. This is especially true when the
access to the random number generator is expensive, which is usually the case
on embedded devices. A more efficient technique consists in calling the random
generator only once and in using the obtained value as a seed to generate a
succession of prime candidates in a deterministic way. Usually the seed is simply
chosen to be odd and incremented by an even constant iteratively [6, 5], but any
other kind of deterministic process can be devised. Early studies on the probable
prime generations implemented with a prime sieve and an incremental genera-
tion of candidates [6, 5] exhibit efficient optimisations and show that the entropy
of the generated primes is close to the maximum. Therefore, even though recent
work have proposed interesting alternatives [11] or discussed the relevance of
the entropy evaluation [18], the approach with a prime sieve and deterministic
candidates generation turns out to be nowadays the most common procedure
in constrained environments. It is actually recommended by international stan-
dards like ANSI X9.31 [1] and FIPS 186-4 [17].

Attacking the Sieving Process. In [16], Finke et al. observe that using a deter-
ministic process to generate the sequence of candidates from a random seed,
combined with a naive implementation of the prime sieve, is threatened by a
Simple Power Analysis (SPA for short). Roughly, if a side-channel attacker is
able to identify each divisibility test on a leakage trace and if the sieving process
abort as soon as a small factor is found, then a simple equation system can

be obtained, whose resolution brings information on the generated prime (see
[16] for more details). The type of weakness identified in [16] can potentially be
found in any algorithm processing a prime sieve whose flow of operations is data
dependent (which is for instance the case of naive implementations of the X9.31
standard [1]). To avoid it, a simple (and usually fairly efficient) countermeasure
hence amounts to balance the conditional branches in the implementation. One
way to do so is to apply the prime sieve entirely even if, at some point, the
algorithm highlights a divisibility (in other words, the prime sieve should not be
stopped once a divider is found). It must be observed that this implementation
choice does not only prevent the state-of-the-art attacks but, as discussed in [6],
also leads to a significant efficiency gain.

Results. This paper focuses on the security of the probable prime generation
algorithms discussed previously (with prime sieve and deterministic candidates
generation). For such algorithms, which, to the best of our knowledge, corre-
spond to the most efficient and up-to-date implementations met on embedded
devices, we exhibit an Advanced Side-Channel Analysis on the sieving process
even when the latter is implemented to defeat the state-of-the-art attacks [16].
Contrary to [28], our attack does not target the probable prime tests but the
prime sieve which was believed to be safe if implemented in a regular way. We
show how useful information can be extracted from the divisibility phase and
how this could finally lead, for practical implementations, to the recovery of more
than half bits of information on the prime number generated. Combined with a
well-known lattice reduction technique due to Coppersmith [14, 3], we show that
the attack leads to the recovery of a 1024-bit RSA modulus. Moreover it severely
undermines the security of larger moduli. Additionally to the theoretical analy-
sis, we provide experimental results from the analysis of the side-channel leakage
on a real device. The success of these experimentations highlights the practicality
of our attack and, as a side effect, shows that countermeasures against SPA at-
tacks are not sufficient to ensure security. Our work also shows that the use of
a deterministic process to build a sequence of candidates from a random seed
represents a serious weakness. In view of this, the non-deterministic candidates
generation proposed by Fouque and Tibouchi [18] seems to be a good alternative.
As argued by the authors, it would moreover increase the entropy of the gener-
ated probable primes. Another possibility could be to implement the provable
prime generation algorithm proposed recently in [11].

2 On a Standard Prime Generation Implementation

This section aims at describing the design of a standard RSA prime generation
algorithm, such as recommended by the norms ANSI X9.31 [1, Annexes B and
E] and FIPS 186-4 [17, Annex C]. This description is completed with imple-
mentation details that must be considered when embedding such algorithms on
constrained devices. Implementation choices are also made and strengthened by
efficiency rationales. Eventually, the section ends with an implementation of a

probable prime generation algorithm which is very close to what can be found
in todays’ industry of embedded devices.

2.1 A Prime Generation Algorithm for Constrained Environments

The purpose of probable prime generation algorithms is to return a number which
satisfies a series of probabilistic tests and is indistinguishable from a random
prime. The latter property is ensured by randomly generating the candidates
on which the probabilistic tests are passed. For efficiency reasons however, the
implementations discussed here (and recommended in ANSI X9.31 [1, Annexes
B and E] and FIPS 186-4 [17, Annex C]) do not generate all the candidates at
random but deduce them from a common random seed through a deterministic
process. In the following, we assume that the latter simply consists in adding a
multiple of a constant, but our analysis would hold for any other deterministic
process. Eventually, to spare the use of the costly probabilistic tests, a prime
sieve is applied to directly eliminate candidates with small prime factors. More
details about these two steps are given hereafter.

Probabilistic primality tests. Testing the primality of a candidate is usually done
using Miller-Rabin and Lucas probabilistic tests. The reader can refer to [22] for
their description. Actually, the only important fact to mention is that Miller-
Rabin test performs several dozens of exponentiations of the form at·2

s

mod v,
for a a random number and v the tested candidate1. As v is large, such ex-
ponentiations are very costly and are usually performed thanks to a modular
arithmetic co-processor.

Prime sieve. The purpose of the prime sieve is to reduce the number of Miller-
Rabin’s tests. It precedes them and eliminates the candidates having small fac-
tors. It consists in a divisibility test w.r.t. all primes lower than some bound r.
For efficiency reasons, a classical choice is to select only primes lower than 256
(there are 53 such primes). This choice indeed has both the advantage to limit the
size of the array containing the sieve elements and to get efficient divisions even
for an 8-bit architecture with limited instructions set. By Mertens’ Theorem2

[25], one can prove that choosing r as 256 enables to eliminate around 87.5% of
the tested integers without executing the probabilistic tests. On the other hand
increasing r to 9-bit long primes, “only” allows to exclude an additional 1.4%
of the integers. Together with the efficiency reasons, this poor discrimination
gain explains why the choice r = 256 is sound for prime sieves in constrained
environments.

Summing-up all these steps leads to a full implementation of a standard
prime generation algorithm on constrained environment, see Algorithm 1.

1 In these relations, the parameters s and t satisfy v − 1 = 2s · t and t is odd.
2 The probability that a random integer is not divisible by a number smaller than r

is well approximated by 1/ log(r).

Algorithm 1: Prime Generation Algorithm (for constrained environments)

Input : A bit-length `, an even constant τ , the set S = {s0, · · · , s52} of all odd primes
lower than 256 (stored in ROM), a number t of Miller-Rabin tests to perform

Output: A probable prime p

/* Generate a seed */
1 Randomly generate an odd `-bit integer v0

/* Prime Sieve */
2 v ← v0
3 s ← s0
4 i = 0
5 while (v mod s 6= 0) and (i < 53) do
6 i = i+ 1
7 s ← si

8 if (i 6= 53) then
9 v = v + τ

10 goto Step 3

/* Probabilistic primality tests */
11 else
12 i = 0

/* Process t Miller-Rabin’s tests (stop if one fails) */
13 while (Miller-Rabin(v) = ok) and (i < t) do
14 i = i+ 1

/* Process 1 Lucas’ testa */
15 if (i = t) and (Lucas(v) = ok) then
16 return v

17 else
18 v = v + τ
19 goto Step 3

a Miller-Rabin’s tests are followed by one Lucas’ test because there is no known com-
posite integer n for which they are both reporting that n is probably prime.

2.2 Algorithm’s Improvement: An Up-to-Date Version

In practice, implementations of Algorithm 1 are often improved further by ex-
ploiting the fact that the sieve elements sj are very small compared to the prime
candidate v. The idea, mentioned in ANSI X9.31 [1] and by Brandt et al. in [6],
is to replace costly modular reductions over `-bit integers by fast reductions over
8-bit integers3. Indeed, by construction, the reduction v mod s at Step 5 for the
(i+ 1)th prime candidate may indeed be rewritten as v0 + i · τ mod sj , for sj a
prime in the sieve. Written differently, this relation can also be expressed as (v0

mod sj) + i · τ mod sj . As a consequence, one can start by computing all the
remainders r0j = (v0 mod sj) and by storing them in a RAM table R (containing
53 bytes). Then, the prime sieve for the next candidate v1 is simply done by
updating R such that R[j] = R[j] + τ mod sj for any j < 53. After this step,
which only processes 8-bit values as long as τ is small enough4 , R contains all

3 The choice of 8-bit integers here comes from an efficiency argument and is not related
to the architecture of the device (see Section 2.1).

4 If τ = 2, since the greatest sieve element in our implementation is strictly lower than
256− 2, the value R[j] + τ can always be stored in a byte.

the remainders r1j = v1 mod sj . More generally, this idea can be applied recur-
sively to efficiently deduce the remainders related to the candidate vi from those
related to the previous one vi−1. Eventually, after each update of R, the result
of the prime sieve for a candidate is obtained by checking whether R contains a
null remainder or not.

The efficiency improvement described above leads to replace Steps 2-10 in
Algorithm 1 (before the probabilistic tests) by the ones provided by Algorithm 2.

Algorithm 2: Improved Prime Sieve

/* Prime Sieve for v0 */
1 for j = 0 to 52 do
2 R[j]← v0 mod sj /* costly modular reduction over `-bit integers */
3

/* Prime Sieve for vi with i > 0 */
4 v ← v0
5 while (R contains a null remainder) do
6 v = v + τ
7 for j = 0 to 52 do
8 R[j]← R[j] + τ mod sj /* efficient modular reduction over 8-bit integers */
9

Remark 1. Usually, reductions at Step 2 of Algorithm 2 are performed by call-
ing the arithmetic coprocessor whereas those at Step 8 are done with standard
CPU instructions4 . For instance, in a 8051 architecture the instruction DIV may
be used to compute the remainder.

In addition to its efficiency, Algorithm 2 has a side advantage: the prime
sieve is regular5 which renders Finke et al. ’s attack [16] ineffective. The gain
in efficiency and in security explains why an up-to-date implementation of Al-
gorithm 1 must involve the improved prime sieve described in Algorithm 2. For
this reason, our attack in the next section is described against such an imple-
mentation. It must however be mentioned that it can also be applied against
a straightforward implementation of Algorithm 1, in addition to Finke et al. ’s
attack.

3 A New Attack

3.1 Core Idea

The attack developed in this section aims at recovering information on a prob-
able prime p generated by Algorithm 1, implemented with the improvements
described in Algorithm 2. For this purpose, let us focus on this algorithm when
the prime sieve is applied to test whether the (i + 1)th candidate vi has small
factors. During this process, the following remainders are computed for every s
in the sieve set S:

ri = vi mod s . (1)

5 Assuming that testing whether the elements of R are non-zero is done with caution.

Knowing that vi has been generated deterministically from a seed v0 by an
iterative increment of τ , Equation (1) can be rewritten as: ri = v0 + i · τ mod s.
Moreover, if n denotes the number of tested candidates, the probabilistic prime
p returned by Algorithm 1 satisfies the following equation: p = v0 + (n − 1)τ .
Eventually combining the two previous relations shows that the secret prime p
and the remainders ri are linked through the following equation:

ri ≡ p− (n− i− 1) · τ (mod s) . (2)

When the value n is made public, the remainder ri is a function of both the
secret p and a known value (n− i− 1)τ (recalling that τ is public as part of the
algorithm specification). From that point, if we denote by `i the measured device
activity (e.g. power consumption or electromagnetic emanations) coming from
the manipulation of ri, then an SCA can straightforwardly be defined assuming
that an attacker is able to isolate the trace `i for all i < n. Indeed, the sample
{`i; i < n} can be compared with the predictions deduced from both the values
{(n − i − 1) · τ ; i < n} and an hypothesis on p mod s. This type of SCA, where
a single algorithm execution is observed, is called horizontal in [2, 9]. When n is
large enough, this attack leads to the recovery of p modulo s (i.e. brings log2(s)
bits of information on p).

Eventually, the attack is applied for every prime s in the set sieve S and
all results p mod s are combined through the Chinese Remainder Theorem to
reconstruct p modulo

∏
s∈S s. This leads to the recovery of log2(

∏
s∈S s) bits

of information on p. Of course, this situation corresponds to a perfect attack
scenario where each SCA against p mod s succeeds. In practice, some of them
will likely fail, which reduces the amount of recovered information.

The practical soundness of the assumption that n is known by the adversary
and that he/she is able to isolate the leakage traces `i (which are prerequisites
for our attack to be applicable) is studied in Section 4.1.

3.2 Full Description

In this section, we denote by rij the remainder corresponding to the division of
the (i+ 1)th candidate vi by the (j+ 1)th sieve element sj . Moreover, we use the
notation `ij to refer to the measured device activity6 during the processing of
rij . Once all the measurements have been obtained, the adversary splits them
into different samples (`ij)i, one for each sieve element sj . Each sample can thus
be viewed as a set of noisy observations of the remainders (rij)i satisfying (2) for
s = sj . Assuming that the prime generation algorithm outputs the nth tested
candidate7, then the size of each sample (`ij)i is n. To sum up, we have the

6 Each `ij can be viewed as a vector of real values whose size depends on the sampling
rate of the oscilloscope used for the measurements and the manipulation time of rij
by the device.

7 which means that the candidate vn−1 is the first that has successfully passed all the
primality tests

following relation:

`ij ←↩ rij = p− (n− i− 1) · τ mod sj , (3)

where ←↩ denotes a noisy observation. With these different samples (`ij)i in
hand, the adversary is now able to target each sieve element independently.
Namely, for each j, the adversary will try to recover p mod sj by exhaustively
testing all possible values that can be reached by this expression8. The test of
each hypothesis, say h, on p mod sj is simply done by following the classical
outlines of an SCA attack:

– use a leakage model m to deduce a set of predictions {m(h − (n − i −
1)τ mod sj); i < n}. A possible choice for m is the Hamming weight function
HW (as done in Section 3.3) but, if needed, more accurate models can be
built by performing analyses based on Linear Regression [15, 24];

– apply an SCA distinguisher ∆ (e.g. a correlation coefficient) to compare the
predictions with the measurements and to validate or invalidate the hypoth-
esis.

In other words, a classical horizontal SCA as in [2, 9, 10] is performed against each
secret (p mod sj), using the fact that this value is manipulated several times,
combined with a known value of the form (n− i− 1)τ mod sj with i < n. Each
such attack, that will be called partial in the sequel, outputs a most likely can-
didate for (p mod sj). In case of success, it brings log2(sj) bits of information
on p. We sum-up in Algorithm 3 the different steps of the full attack. The size
of the sieve set S is denoted by λ (we remind that it equals 53 in the standard
implementation detailed in Section 2).

Algorithm 3: Attack Against Prime Generation Algorithm
/* Measurements Phase */

1 for i = 0 to n− 1 do
2 for j = 0 to λ− 1 do
3 measure `ij

/* Attack Phase: */
/* for each sieve, perform a partial SCA */

4 for j = 0 to λ− 1 do
/* ... test each possible candidate ... */

5 for h = 1 to sj − 1 do
/* ... by processing predictions ... */

6 for i = 0 to n− 1 do
7 mij = m(h − (n− i− 1)τ mod sj)

/* ... and applying a statistical distinguisher ... */
8 score[h] = ∆((mij)i, (`ij)i)

/* ... then select the most likely candidate ... */
9 candidate[j] = argmaxh (score[h])

/* Apply the Chinese Remainder Theorem (CRT) */
10 p̂ = CRT (candidate[0] mod s0, · · · , candidate[λ− 1] mod sλ−1)

11 return p̂

Note that the attack described in Algorithm 3 could also be adapted to
target straightforward implementations of Algorithm 1. The only difference is

8 which excludes 0 since p is prime

that the adversary will not have the same number of observations for each sieve
element. Indeed, as the prime sieve is stopped each time a divisor is found, the
probability that rij is processed (and thus observed) decreases with respect to
j. As we think that such a straightforward implementation of Algorithm 1 is
unlikely to be implemented in secure devices (because it is not efficient and
vulnerable to Finke et al. ’s attack – see Section 2–), we decided not to detail it
in this paper.

3.3 Attack Analysis

In this section we first study, for typical bit-lengths ` ∈ {256, 512, 1024}, the
number n of prime sieve processings that can be observed by an attacker during
the generation of a probable prime of size `. Then, we focus on the success rate
of the attack (i.e. its ability to completely recover p) under different hypotheses
on n. For simplicity and because this is a common choice in practice, we choose
to focus on the case τ = 2.

About the number of prime sieve processings. The effectiveness of our attack
strongly depends on the number n of leakage values that can be retrieved for each
sieve element. This value, which is also the number of prime sieve processings,
depends on the seed v0; thus, contrary to what happens in classical SCA, it cannot
be a priori chosen by the adversary9.

On Figure 1, several estimations of the complementary cumulative distri-
bution function (ccdf) Fn(x) of n, viewed as a random variable, are plotted.
Namely, each curve corresponds to an estimation10 of the probability Fn(x) (in
ordinate) that n is greater than or equal to some value x (in abscissa). The three
plotted curves correspond to prime generations for a bit-length ` equal to 256,
512 and 1024 respectively. In the sequel, we focus on the 512-bit case (even if
the outlines of our approach could also be followed to study the two other cases)
since generating primes of that size is for instance required when constructing a
1024-bit RSA modulus (e.g. for some banking applications) or when generating
strong primes according to the ANSI X9.31 standard [1]. For a 512-bit prime,
the median of the distribution of n as well as the first and third complementary
quartiles11, are respectively equal to 53, 126 and 246. The quartiles Q1, Q2 and
Q3 related to 75%, 50% and 25% are represented by horizontal lines in Figure 1.

Attack Effectiveness. Let us now focus on the ability of our attack to recover
x bits of information on p by combining the results of the partial CPA attacks
against the remainders p mod sj . We here assume that the attacker is able to

9 In classical SCA, the number of observations is chosen and increased until the attack
achieves some success rate.

10 Estimations have been done over 2000 observations of n, namely for 2000 prime
generations.

11 We recall that the median of a random variable X is the value Q2 such that Pr(X ≤
Q2) = 0.5. Similarly, the first (resp. the third) complementary quartile of X is the
value Q1 (resp. Q3) s.t. Pr(X > Q1) = 0.75 (resp. Pr(X > Q3) = 0.25).

Fig. 1. Cumulative distribution function of n for different prime bit-lengths `

detect when a partial CPA returns a correct result. It may first be noticed that
a correct guess on all these remainders provides 333 bits of information on p
(assuming that S contains the 53 smallest primes). As argued in the next para-
graph, this upper bound12 limits the size of the prime numbers which can be
successfully recovered with our attack. In Figure 2, we plot the probability (in
ordinate) that our attack recovers at least x bits of information on p. As done
for the previous figure, the probabilities have been computed from simulations
in three different contexts depending on whether the number n of leakage values
per CPA equals the first complementary quartile Q1 = 53, the median Q2 = 126
or the third complementary quartile Q3 = 246. Several results are moreover pre-
sented, corresponding to different amounts of noise in the observations. For each
quartile, the success rates have been estimated with 2000 attacks.

Before analysing the simulation results in Figure 2, it remains to define when
our attack is considered to succeed. For this purpose, we recall that the generated
prime p is assumed to be afterwards used to define an RSA modulus. In such a
context, a well-known technique introduced by Coppersmith [13, 14] may be
applied to reconstruct p from approximately half of its bits13. This technique
works by translating the problem of recovering the unknown part of p into that
of finding a small root on a bivariate polynomial equation. Such an issue can
then be solved by performing a lattice reduction on a well-chosen basis. In our
context, the number of bits that have to be retrieved to lead to the full recovery
of a prime p with bit-length 512 is 256 = 512/2. We are aware that this bound

12 Since the upper bound increases with the number of primes involved in the sieving,
the same holds for the size of the probable primes concerned by our attack.

13 To be more accurate, Coppersmith’s original technique aims at recovering p knowing
the half most (or least) significant bits. In our context, one gets a relation of the
form p ≡ p0 mod

∏
sj∈S sj with a known value p0. This case can be handled using

a slight generalisation of the original method, under the condition that
∏

sj∈S sj is

approximately half the bit length of p (see Corollary 2.2 in [3]).

1

1 1

1 1

1

1 1

10.990

0 0.08 1

0 0 0.7

0.46

Q2 Q3Q1

0

2

3

4

5

1

σ

(a) SR for ` = 256 (b) 53 iterations (Q1)

(c) 126 iterations (Q2) (d) 246 iterations (Q3)

Fig. 2. Number of bits retrieved from different noise levels

is theoretical since it can only be achieved when reducing a lattice of infinite
dimension. In practice, several additional bits are required for Coppersmith’s
method to work14. Nevertheless, the problem can be circumvented (even if the
exact bound of “256 bits” can never be achieved in practice) at the price of an
exhaustive search on the missing values, thus making the overall complexity of
the attack increase. In our case, since we use Coppersmith’s method as a black-
box, we choose to define a successful attack as recovering 256 bits on p (this
bound thus corresponds to an “ideal” scenario) .

The results are summed up in Figure 2(a). Not surprisingly, the attack works
better and recovers more bits on p when the number of tested candidates n
increases (we indeed have more observations to recover each sensitive remainder).
In the case where there is a lot of noise or few iterations, the expected number
of bits correctly guessed on p drops. These results can be exploited to obtain a
lower bound on the overall success rate (SR for short) of our attack:

– [For σ = 1]: the attack recovers 256 bits of information on p with prob-
ability 1 for n = Q1, Q2 and Q3. In other terms, our attack succeeds for
all the prime generations where n reaches the first quartile, that is for 75%

14 See [16] for heuristic results with respect to various numbers of retrieved bits.

of the generations. We can thus estimate the lower bound for our success
probability in this case by pσ=1 ≥ 0.75.

– [For σ = 2]: the attack recovers 256 bits of information on p with probability
1 for n = Q2 and Q3 and with probability 0.46 for n = Q1. We can thus
estimate the lower bound for our success probability in this case by pσ=2 ≥
(0.46 + 1 + 1)/4 = 0.615.

– [For σ ≥ 3]: we can estimate similarly the lower bound for our success
probability in the remaining cases by pσ=3 ≥ 0.4975, pσ=4 ≥ 0.27 and pσ=5 ≥
0.175 respectively.

4 Attack Flow in Practice

4.1 Discussion on the Measurements Phase

In this section, we come back to the attack hypotheses made in Section 3 and
we argue about their relevance. Namely, we study the practical soundness of the
assumption that the number of tested candidates n is known by the adversary
and that he/she is able to isolate the leakage traces `ij defined as in Equation
(3). For this purpose, we consider here an implementation of a 512-bit prime
number generation, computed on a smart-card micro-controller equipped with
an 8-bit CPU and a modular arithmetic co-processor, both running at several
dozens of MHz. This implementation corresponds to an off-the-shelf smart-card.
To simplify the analysis, we directly focus on the case where the attack described
in Section 3 is effective with high probability. For this reason, we developed our
argumentation under the hypothesis that the number of tested candidates n is
at least 250 (which happens with probability 25% – see Figure 1 –).

Let us now evaluate the time required by the platform to process a prime
number generation as specified in the previous paragraph. Thanks to the sieving
pre-processing, a probabilistic primality test (here a sequence of Miller-Rabin
tests) is performed for 1 candidate over 10 in average (see Mertens’ theorem
[25]). Let t be the maximum number of Miller-Rabin tests that must be passed
by a candidate. Observing that each test takes 10ms on the considered platform,
then the full processing time of the algorithm is upper bounded by 250tms. For
instance, when t = 10, which is a reasonable value to ensure the primality of
a number with satisfying probability, the full processing time is 2.5s. Note that
this approximation does not take into account the time spent in the 250 efficient
prime sieves, since this is negligible in comparison to the rest of the algorithm
(see Section 2.2). For this (practical) attack scenario, several issues arise during
the measurements phase (where we denote by i the number of tested candidates):

1. how to record the long side-channel trace corresponding to the full prime
number generation computation, or at least to the i efficient prime sieve
tests15;

2. how to recognize and extract the patterns corresponding to the i prime sieve
tests and how to convert them into i smaller side-channel traces;

15 meaning i iterations of the while loop in Algorithm 2

3. in each small side-channel trace previously created, how to precisely align
the sub-patterns corresponding to the trial divisions (Step 8 in Algorithm 2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Fig. 3. Electro-magnetic radiations measured during a prime number generation com-
putation on a commercial smartcard. Pattern 1 corresponds to the initial costly prime
sieve, whereas patterns 2 to 28 correspond to Miller-Rabin tests.

1 2 3

Fig. 4. Zoom on the two first patterns of Figure 3. Pattern 1 corresponds to the initial
costly prime sieve, whereas pattern 3 corresponds to the first Miller-Rabin test. First
efficient prime sieves (with small integer divisions) are located inside pattern 2.

Solving the first issue depends on the specifications of the oscilloscope used
to record the long side-channel trace. More precisely, it depends on its channel

memory depth, i.e. the number of samples the oscilloscope can record per channel
during one single acquisition. To record 250 iterations with a sampling rate of
100MSamples per second (which is a minimum on such platforms to perform a
CPA), then the channel memory depth must be at least of 250MSamples, which
is available on high-end oscilloscopes. The oscilloscope trigger can moreover be
set-up to skip the recording of the first prime sieve computation (Step 1-3 of
Algorithm 2), as it is not used in our attack. This amounts to skip the step
corresponding to the pattern 1 in Figures 3 and 4.

Once the long side-channel trace has been acquired, the second issue consists
in recognizing patterns corresponding to the efficient prime sieve computations.
Such patterns are located between those corresponding to probabilistic primal-
ity tests, which have a particular side-channel signature due to the use of the
modular arithmetic co-processor. The Miller-Rabin tests correspond to patterns
2 to 28 on Figure 3, and to pattern 3 on Figure 4. Thanks to this patterns iden-
tification phase, one can then deduce that several prime sieve computations are
located inside Pattern 2 of Figure 4. Once such patterns have been found, clas-
sical automated pattern matching techniques can eventually be used to extract
the other ones in the rest of the long side-channel trace.

Finally, the third issue should be solved thanks to peak extraction techniques
classically used in SCA. This would enable to align the patterns corresponding
to the trial divisions in each small side-channel trace. On the traces we acquired
(Figures 3 and 4), the signal is too noisy for such alignment. In the following
we continue our practical analysis on a toy implementation of the prime sieve
running on a different architecture than that used in this sub-section.

4.2 Experiments on a Toy Implementation.

To confirm the analyses conducted in Section 3.3 and to validate our assumptions
in practice, the new attack has been tested against a toy implementation em-
bedded on an 8-bit ATMega128 micro-controller running at 8MHz. For simplicity
reasons, we did not implement the full probabilistic prime generation described
in Algorithm 1 but only 300 iterations of the loop corresponding to steps 5-9
in Algorithm 2 parametrised with a random seed v0. As our attack only targets
the prime sieve and not the probabilistic tests, this choice does not impact the
soundness of the conclusions we are going to draw from the experimentations
reported below.

The electro-magnetic activity of the device during the processing of the 300
prime sieve tests has been measured with a sampling rate of 1GSamples per
second. 300× 53 patterns have then been extracted. These patterns correspond
to the trial divisions of the 300 prime candidates vi = v0 + 2i by the 53 prime
sieve elements sj (Steps 5-9 in Algorithm 2). Afterwards, the attack described
in Algorithm 3 has been performed with the Pearson correlation coefficient as
statistical distinguisher ∆. The overall experiment (including the acquisition
phase) has been repeated 200 times. Following the same approach as in Section
3.3, the effectiveness of our attack has then been studied under the assumption
that the targeted prime value p was known for each experiment. This assumption

makes it possible to decide whether each partial attack on p mod sj succeeded
or not, and hence allowed us to apply the Chinese Remainder Theorem only
with the correct guesses. The results are reported in Figures 5(a) and 5(b).
They correspond to attack scenarios where the number of exploited prime sieve
observations (among the 300 ones) was respectively limited to 10, 50, 250 and
300. Figure 5(b) must be viewed as the experimental equivalent of the simulations
described in Figure 2.

0 10 20 30 40 50 60
0

20

40

60

80

100

Index of the prime residue within the 53 tests

S
u

c
c
e

s
s
 r

a
te

 i
n

 %

10 prime sieves
50 prime sieves
250 prime sieves
300 prime sieves

(a) Success rates for each prime sieve elements (over 200 attack
experiments)

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

Number of bits recovered

S
u

c
c
e

s
s
 r

a
te

 i
n

 %

10 prime sieves
50 prime sieves
250 prime sieves
300 prime sieves

(b) Success rates for recovering x bits of information on the gen-
erated prime

Fig. 5. Success rates in practice

Even if the experimental success rates are slightly below those obtained for
our attack simulations16 (see Section 3.3 for a theoretical analysis), the general

16 This can easily be explained by the higher noise encountered during the practical ex-
periments and the fact that the Hamming weight leakage model used in the CPA does
not perfectly fit the real leakage function.

trends are the same. In particular, our attack succeeds in recovering more than
256 bits of information with success probability 0.9 as long as the number n of
observed prime sieve tests is at least equal to 250 (which happens with proba-
bility 0.25 when the prime length ` equals 512, see Section 3.3). This not only
confirms the soundness of the analysis in Section 3.3 but also demonstrates the
practicality of our attack.

Let us now focus on a real attack context where the assumption “the target
prime p is known” has been relaxed. In this scenario, the adversary loses his
ability to decide for each partial SCA (against the remainder of p modulo a prime
sieve element) whether it has succeeded or not. Consequently, he cannot select
which remainders to keep for the recombining phase and must hence apply the
Chinese Remainder Theorem (CRT) on all the partial SCA results (as described
in Step 10 of Algorithm 3). This attack will thus only work if all the retrieved re-
mainders are correct, which occurs with a probability that can be approximated
by the product of the 53 success rates plotted in Figure 5(a). Even for n = 300, it
can be checked that this probability is very small. Fortunately, several strategies
can be applied to significantly improve this success rate.

4.3 Avenues of Improvement.

Larger primes generation. Our attack would not work for primes beyond 666 bits,
since the 53 prime sieve elements sj only permit to retrieve a maximum of 333
bits on p. However the analysis can easily be adapted to 1024-bit primes, when
the prime generation algorithm uses a larger sieve set S (requiring a product of
its elements larger than 1024 bits).

Case of RSA modulus. For RSA key generation, the adversary may attack the
two prime factors p and q independently. Then, the public relation N = pq can
be used to compare the remainder hypotheses returned by the partial SCA of
each attack. Such a procedure is thoroughly described in [16]. The attacker can
also gain some information about the secret exponent d through the analysis of
the equation e ·d = k(N−(p+q)+1)+1. When e is small, implying k small too,
one can deduce information about d mod sj , knowing p mod sj and q mod sj .

Key Enumeration Approach. Instead of selecting only the remainder that maxi-
mizes the distinguisher value (as presented in Step 9 of Algorithm 3), one could
choose to record the scores associated to any remainder hypothesis h for any
prime sieve element sj . Then, instead of applying the CRT recombining to only
one 53-tuple (as in Step 10 of Algorithm 3), we can do it for all the 53-tuples of
hypotheses from the most to the least likely, until the correct p is recovered (af-
ter applying Coppersmith technique, it should factor the RSA public modulus).
A straightforward application of this strategy is clearly inefficient if the correct
guess is not reconstructed after few steps. To optimise this phase, it is recom-
mended to use a so-called key-enumeration algorithm (KEA) (see Appendix A
for an efficient algorithm proposed by Veyrat-Charvillon et al. [26]).

Initial Prime Sieve. Additional information may be retrieved during the initial
expensive prime sieve. Such information however is likely to be very different
(in nature) than the information retrieved by the following sieves (since the
operations are probably handled by different part of the hardware) and then
should not be used directly during the CPA attack.

5 Conclusion and Countermeasures Proposal

In this paper, we have described an attack against prime number generation.
Compared to the existing attack of [28], this attack defeats a protected imple-
mentation of the probable prime tests with a regular prime sieve. Our attack
exploits two features of a prime generation algorithm: the use of a prime sieve
and a deterministic candidates generation. Such algorithms are for example de-
scribed in the well-known norms ANSI X9.31 and FIPS 186-4 [1, 17]. We gave an
analysis of the efficiency of our attack and demonstrated its practicality against
a smart-card toy implementation (which confirms our analyses).

Several approaches can be followed to thwart our attack. A first one is to ran-
domly add dummy trial divisions in each prime sieve computation. Another one is
to perform each prime sieve computation in a pseudo-random order. Both coun-
termeasures have the effect to misalign trial divisions, and then to increase the
noise in the measurements. A different approach would be to choose a prime gen-
eration algorithm without the two features required in our attack. For example,
Fouque and Tibouchi [18] propose a prime generation with a non-deterministic
generation of prime candidates. Another recent proposal is the efficient provable
prime generation algorithm of Clavier et al. [11].

Acknowledgement. Aurélie Bauer’s research was supported in part by the French
ANR-12-JS02-0004 ROMAnTIC Project.

References

1. ANSI X9.31. Digital Signature Using Reversible Public Key Cryptography for the
Financial Services Industry. American National Standards Institute, 1998.

2. Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizon-
tal and Vertical Side-Channel Attacks against Secure RSA Implementations. In
Ed Dawson, editor, Topics in Cryptology — CT-RSA, volume 7779 of Lecture Notes
in Computer Science, pages 1–17. Springer, 2013.

3. Dan Boneh, Glenn Durfee, and Yair Frankel. An Attack on RSA Given a Small
Fraction of the Private Key Bits. In Kazuo Ohta and Dingyi Pei, editors, Advances
in Cryptology – ASIACRYPT ’98, volume 1514 of Lecture Notes in Computer
Science, pages 25–34. Springer, 1998.

4. Arnaud Boscher, Robert Naciri, and Emmanuel Prouff. CRT RSA Algorithm Pro-
tected against Fault Attacks. In Damien Sauveron, Konstantinos Markantonakis,
Angelos Bilas, and Jean-Jacques Quisquater, editors, Information Security Theory
and Practices – WISTP, volume 4462 of Lecture Notes in Computer Science, pages
229–243. Springer, 2007.

5. Jørgen Brandt and Ivan Damg̊ard. On Generation of Probable Primes By Incre-
mental Search. In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO
’92, volume 740 of Lecture Notes in Computer Science, pages 358–370. Springer,
1992.

6. Jørgen Brandt, Ivan Damg̊ard, and Peter Landrock. Speeding Up Prime Number
Generation. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors,
Advances in Cryptology – ASIACRYPT, volume 739 of Lecture Notes in Computer
Science, pages 440–449. Springer, 1991.

7. Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye. Low-cost Solutions for
Preventing Simple Side-Channel Analysis: Side-Channel Atomicity. IEEE Trans-
actions on Computers, 53(6):760–768, 2004.

8. Christophe Clavier and Jean-Sébastien Coron. On the Implementation of a Fast
Prime Generation Algorithm. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems – CHES 2007, volume 4727 of
Lecture Notes in Computer Science, pages 443–449. Springer, 2007.

9. Christophe Clavier, Benôıt Feix, Georges Gagnerot, Christophe Giraud, Mylène
Roussellet, and Vincent Verneuil. ROSETTA for Single Trace Analysis – Recovery
of Secret Exponent by Triangular Trace Analysis. In Steven D. Galbraith and
Mridul Nandi, editors, Progress in Cryptology – INDOCRYPT 2012, volume 7668
of Lecture Notes in Computer Science, pages 140–155. Springer, 2012.

10. Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vin-
cent Verneuil. Horizontal Correlation Analysis on Exponentiation. In Miguel So-
riano, Sihan Qing, and Javier López, editors, Information and Communications
Security – ICICS 2010, volume 6476 of Lecture Notes in Computer Science, pages
46–61. Springer, 2010.

11. Christophe Clavier, Benoit Feix, Löıc Thierry, and Pascal Paillier. Generating
Provable Primes Efficiently on Embedded Devices. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, Public Key Cryptography – PKC 2012,
volume 7293 of Lecture Notes in Computer Science, pages 372–389. Springer, 2012.

12. Christophe Clavier and Marc Joye. Universal Exponentiation Algorithm – A First
Step towards Provable SPA-Resistance. In Çetin K. Koç, David Naccache, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2001, volume 2162 of Lecture Notes in Computer Science, pages 300–308. Springer,
2001.

13. Don Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known. In Ueli Maurer, editor, Advances in Cryptology – EURO-
CRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages 178–189.
Springer, 1996.

14. Don Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. Journal of Cryptology, 10(4):233–260, 1997.

15. Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Standaert.
Univariate Side Channel Attacks and Leakage Modeling. Journal of Cryptographic
Engineering, 1(2):123–144, 2011.

16. Thomas Finke, Max Gebhardt, and Werner Schindler. A New Side-Channel Attack
on RSA Prime Generation. In Christophe Clavier and Kris Gaj, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2009, volume 5747 of Lecture
Notes in Computer Science, pages 141–155. Springer, 2009.

17. FIPS PUB 186-4. Digital Signature Standard (DSS). Federal Information Process-
ing Standards Publication, july 2013.

18. Pierre-Alain Fouque and Mehdi Tibouchi. Close to Uniform Prime Number Gen-
eration With Fewer Random Bits. IACR Cryptology ePrint Archive, 2011:481,
2011.

19. Benôıt Gérard and François-Xavier Standaert. Unified and Optimized Linear Colli-
sion Attacks and Their Application in a Non-profiled Setting. In Emmanuel Prouff
and Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems
– CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages 175–192.
Springer, 2012.

20. Christophe Giraud. An RSA Implementation Resistant to Fault Attacks and
to Simple Power Analysis. IEEE Transactions on Computers, 55(9):1116–1120,
September 2006.

21. John Gordon. Strong Primes are Easy to Find. In Thomas Beth, Norbert Cot,
and Ingemar Ingemarsson, editors, Advances in Cryptology – EUROCRYPT ’84,
volume 209 of Lecture Notes in Computer Science, pages 216–223. Springer, 1984.

22. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

23. Carlos Moreno and M. Anwar Hasan. SPA-Resistant Binary Exponentiation with
Optimal Execution Time. Journal of Cryptographic Engineering, 1(2):87–99, 2011.

24. Werner Schindler. Advanced Stochastic Methods in Side Channel Analysis on
Block Ciphers in the Presence of Masking. Journal of Mathematical Cryptology,
2:291–310, 2008.

25. Forschungszentrum Graz. Mathematisch-Statistische Sektion. Berichte Der
Mathematisch-Statistischen Sektion Im Forschungszentrum Graz. Forschungszen-
trum Graz, Mathematisch-Statistische Sektion, 1973.

26. Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, and François-Xavier
Standaert. An Optimal Key Enumeration Algorithm and Its Application to Side-
Channel Attacks. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas
in Cryptography – SAC 2012, volume 7707 of Lecture Notes in Computer Science,
pages 390–406. Springer, 2013.

27. David Vigilant. RSA with CRT: A New Cost-Effective Solution to Thwart Fault At-
tacks. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware
and Embedded Systems - CHES 2008, volume 5154 of Lecture Notes in Computer
Science, pages 130–145. Springer, 2008.

28. Camille Vuillaume, Takashi Endo, and Paul Wooderson. RSA Key Generation:
New Attacks. In Werner Schindler and Sorin A. Huss, editors, Constructive Side-
Channel Analysis and Secure Design – COSADE 2012, volume 7275 of Lecture
Notes in Computer Science, pages 105–119. Springer, 2012.

A Key Enumeration Algorithm

The idea developed by the authors of [26] is to produce, one after another, the
16-byte hypotheses on the AES master key. The 8-bit sub-keys of each hypothesis
are returned independently from 16 different SCA attacks and then concatenated
together in order to be tested as the cipher secret key. This set-up is in fact very
similar to ours: instead of 16 bytes, we consider 53 independent secret of different
lengths. From these secret hypotheses, a part of the secret prime is recovered
through CRT recombining and then used to recover the whole secret prime. Sim-
ilarly to the work of Gérard and Standaert in [19], a Bayesian extension can be

computed over the correlation coefficient values for each of the 53 independent
attacks. Hence, to each small prime sj , and each remainder hypothesis h in the
set (Z/sjZ)? is associated the following probability Pr[h = p mod sj | {`ij}i],
where the set of consumption traces {`ij}i,j is defined as in Equation (3).

Once the latter probability has been computed for any value h and any sj , the
recursive algorithm proposed in [26] can be straightforwardly applied to provide
the list of 53-tuples of remainder hypotheses ordered from the most to the less
likely hypothesis. We do not recall the algorithm here (a detailed description can
be found in [26]).

Further Improvements. For the complete attack to be successful (e.g. factoring
an RSA modulus), it is not necessary to recover all the 53 remainders of p but
only a sufficient number of them s.t. their product gives 256 bits of information
(instead of the 333 bits given by the product of all the 53 first small primes). In
view of this, the attacker goal is no longer to recover all the remainders p mod sj
such that sj in S but a subset of them which brings 256 bits of information. Let
us denote by {S1, ...,Sm} a family of m subsets satisfying the latter property.
The KEA algorithm recalled previously can now be applied to each subset inde-
pendently (taking into account the corresponding CPA attacks). The brute-force
processing then takes simultaneously the m sets of attack results and, at each
step, the most likely hypothesis is chosen among the most likely hypothesis of
each set. The respective KEA instance is afterwards advanced to the next best
solution. Such multi-set approach would definitely improve the attack efficiency.

