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Abstract. Researchers have demonstrated the ineffectiveness of determin-
istic countermeasures and emphasized on the use of randomness for protect-
ing cryptosystems against fault attacks. One such countermeasure for AES
was proposed in LatinCrypt 2012, which masks the faulty output with se-
cret values. However this countermeasure does not affect the erroneous byte
in the faulty computation of the last AES round and is thus shown to be
flawed in FDTC 2013. In this paper, we examine the LatinCrypt 2012 coun-
termeasure in detail and identify its additional flaws in order to develop a
robust countermeasure. We bring out the major weakness in the infection
mechanism of the LatinCrypt 2012 countermeasure which not only makes
the attack of FDTC 2013 much more flexible, but also enables us to break
this seemingly complex countermeasure using Piret & Quisquater’s attack
that requires only 8 pairs of correct and faulty ciphertexts. Finally, we
combine all our observations and propose a countermeasure that employs
randomness much more effectively to prevent state-of-the-art differential
fault attacks against AES.
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1 Introduction

Ever since the demonstration of fault attacks by Dan Boneh et.al [1] on RSA
cryptosystem, fault analysis has been extensively studied and cryptosystems such
as DES and AES have been shown vulnerable to fault attacks. The purpose of
fault attacks is to retrieve the secret key used in the cryptosystems. This is done
by injecting a fault in a specific operation of the cipher and exploiting the erroneous
result. With respect to AES, there are multiple flavors of fault attacks. While some
of them exploit the relation between the faulty and fault free ciphertext [2–5], some
attacks can succeed with the knowledge of faulty ciphertexts only [6]. There are
attacks which require as many as 128 faults to recover the secret key [7] whereas
there are also attacks which require as few as one random fault to retrieve the
entire secret key of AES [8].

With so many variants of attacks introduced so far, it is now a well known
fact that fault attacks are a serious threat to the cryptographic implementations
and therefore, sound countermeasures are required to protect them. We focus
our discussion on AES, for which many countermeasures have been suggested.
These countermeasures can be broadly classified into two categories - detection and
infection. The detection countermeasure is usually implemented by duplicating the



computation and finally comparing the results of two computations. But in this
countermeasure, the comparison step itself is prone to fault attacks. The infection
countermeasure on the other hand, aims to destroy the fault invariant by diffusing
the effect of a fault in such a way that it renders the faulty ciphertext unexploitable.
Infection countermeasures are preferred to detection as they avoid the use of attack
vulnerable operations such as comparison.

In FDTC 2012, Lomné et.al [9] showed that infection countermeasures which
use deterministic diffusion to infect the intermediate output are not secure and
emphasized on the need of randomness in these countermeasures. In LatinCrypt
2012, Gierlichs et.al [10] proposed an infection countermeasure for AES which
infects the faulty computation with random values. Despite the use of randomness
in the infection mechanism, the countermeasure for AES128 [10] was attacked by
Battistello and Giraud in FDTC 2013 [11]. They observed that if a fault is injected
in any byte of the last three rows of the 10th round input, then the erroneous byte
remains unaffected by the infection method and can be exploited to retrieve the
corresponding key byte. This attack assumes a constant byte fault model to retrieve
12 bytes of AES128 key using 36 faults on average and recovers the remaining 4
key bytes corresponding to the top row using a brute-force search.

In this paper, we concern ourselves with the countermeasure proposed in [10],
study its flaws in light of two different attacks and subsequently propose a modi-
fied countermeasure that prevents the differential fault attacks.

Contribution. The main objective of this paper is to develop an infection coun-
termeasure for AES based upon the idea proposed by Gierlichs et. al [10]. For this
purpose, we show that the infection method employed in the countermeasure [10]
is not strong as we can remove the infection and obtain exploitable faulty cipher-
text. Using this observation, we can attack the top row of the 10th cipher round
input, which makes the attack presented in [11] more flexible. Furthermore, we
show that despite the presence of infection we can mount a more practical attack,
i.e the Piret & Quisquater’s attack [4] on this countermeasure, thus exposing its
weakness against classical fault attacks. We finally present a modified algorithm
that avoids all the pitfalls of the countermeasure [10] thereby thwarting state-of-
the-art differential fault attacks.

Organization. The rest of this paper is organized as follows. Section 2 sets the
background by briefly explaining the infection scheme proposed in [10], followed
by the attack description [11]. In Section 3, we examine additional flaws in the
scheme [10] which make the attack of [11] more flexible and finally demonstrate an
efficient attack on [10]. Based on the observations in section 2 and 3, we present
the modified countermeasure in section 4. Section 5 concludes the paper.

2 Preliminaries

In the rest of the discussion, we use the following notations:
RoundFunction - The round function of AES128 block cipher which operates on
a 16 byte state matrix and 16 byte round key. In a RoundFunction, the SubByte,
ShiftRow and MixColumn transformations are applied successively on the state
matrix, followed by the KeyXor operation. AES128 has 10 rounds in addition to
the initial Key Whitening step, which we refer to as the 0th round.



S - The SubByte operation in the RoundFunction.
SR - The ShiftRow operation in the RoundFunction.
MC - The MixColumn operation in the RoundFunction.
Ii - The 16 byte input to the ith round of AES128, where i ∈ {0, . . . , 10}.
K - The 16 byte secret key used in AES128.
kj - The 16 byte matrix that represents (j−1)th round key, j ∈ {1, . . . , 11}, derived
from the main secret key K.
β - The 16 byte secret input to the dummy round.
k0 - The 16 byte secret key used in the computation of dummy round.
The 16 bytes (m0. . .m15) of a matrix are arranged in 4 × 4 arrays and follow
a column major order. We denote multiplication symbol by · , a bitwise logical
AND operation by ∧, a bitwise logical OR operation by ∨, a bitwise logical NOT
operation by ¬ and a bitwise logical XOR operation by ⊕.

In this section, we begin by explaining the countermeasure for AES128 pro-
posed in [10], followed by a brief description of the attack [11] mounted on it.

2.1 Infection Countermeasure

Algorithm 1 Infection Countermeasure [10]

Inputs : P , kj for j ∈ {1, . . . , n}, (β, k0), (n = 11) for AES128
Output : C = BlockCipher(P,K)

1. State R0 ← P , Redundant state R1 ← P , Dummy state R2 ← β
2. C0 ← 0, C1 ← 0, C2 ← β, i ← 1
3. while i ≤ 2n do
4. λ ← RandomBit() // λ = 0 implies a dummy round
5. κ ← (i ∧ λ) ⊕ 2(¬λ)
6. ζ ← λ · di/2e // ζ is actual round counter, 0 for dummy
7. Rκ ← RoundFunction(Rκ, k

ζ)
8. Cκ ← Rκ ⊕ C2 ⊕ β // infect Cκ to propagate a fault
9. ε← λ(¬(i ∧ 1)) · SNLF (C0 ⊕ C1) // check if i is even

10. R2 ← R2 ⊕ ε
11. R0 ← R0 ⊕ ε
12. i ← i + λ
13. end
14. R0 ← R0 ⊕RoundFunction(R2, k

0)⊕ β
15. return(R0)

Algorithm 1 depicts the infection countermeasure proposed in [10] for AES128. At
the beginning of this algorithm, plaintext P is copied to both R0 and R1 and a
secret value β is copied to R2. In this algorithm, every round of AES is executed
twice. The redundant round which operates on R1, occurs before the cipher round
which operates on R0. There are dummy rounds which occur randomly across
the execution of this algorithm, in addition to one compulsory dummy round in
step 14. The input to the dummy round is a secret value β and a secret key k0,
which is chosen such that RoundFunction(β, k0) = β. To prevent the information
leakage through side channels e.g. power analysis, dummy SubByte, ShiftRow and
MixColumn operations are added to the 0th round and a dummy MixColumn
operation is added to the 10th round of AES128. The intermediate computation
of cipher, redundant and dummy round is stored in C0, C1 and C2 respectively. A
random bit λ decides the course of the algorithm as follows:



1. λ = 0, dummy round is executed.
2. λ = 1 and parity of i is even, cipher round is executed.
3. λ = 1 and parity of i is odd, redundant round is executed.

After the computation of every cipher round, the difference between C0 and C1

is transformed by Some Non Linear Function(SNLF ) which operates on each
byte of the difference (C0 ⊕ C1). SNLF maps all but zero byte to non-zero bytes
and SNLF (0) = 0. Authors in [10] have suggested to use inversion in GF (28) as
SNLF . In case of fault injection in either cipher or redundant round, the difference
(C0⊕C1) is non-zero and the infection spreads in subsequent computations through
R0 and R2 according to steps 9-11. Also, if the output of dummy round, C2, is not
β, the infection spreads in the subsequent computations through the steps 8-11.
Finally in the step 14, the output of last cipher round is xored with the output of
dummy round and β, and the resulting value is returned.

2.2 Attack on the Infection Countermeasure

In the absence of any side channel and with the countermeasure [10] in place,
it seems difficult to identify whether a fault is injected in the target round by
analysing the faulty ciphertext. For example, in the implementation of AES128
without countermeasure, if a fault is injected in the input of 9th round, then the
expected number of faulty ciphertext bytes which differ from the correct ciphertext
is 4. In this countermeasure, the presence of compulsory dummy round ensures that
the expected number of different bytes is 16 when the 9th round computation is
faulty. Moreover, the occurence of random dummy rounds makes it difficult to
inject the same fault in both the branches of the computation.

Despite the strength of the countermeasure [10], authors in [11] showed how to
attack it using a constant byte fault model. They observed that only one dummy
round occurs after the 10th cipher round of AES128, which limits the infection to
only 4 bytes if the 10th round’s computation is faulty. The attack details are as
follows:

Suppose a fault f disturbs I101 , i.e. the first byte of second row in 10th cipher
round input I10. The difference between the faulty and redundant intermediate
state after the step 7 of Algorithm 1 is:

R0 ⊕R1 =


0 0 0 0
0 0 0 ε
0 0 0 0
0 0 0 0


where ε = S[I101 ⊕ f ]⊕ S[I101 ].
R2 and R0 are infected in steps 10 and 11. After the infection steps, we obtain:

R0 ⊕R1 =


0 0 0 0
0 0 0 ε⊕ SNLF [ε]
0 0 0 0
0 0 0 0


Finally, in the step 14, dummy round operates on infected R2 which further infects
R0. But, the ShiftRow operation of dummy round shifts the infection to column 3
and leaves the faulty byte of R0 in column 4 unmasked. The output of compulsory



dummy round differs from β in column 3 and therefore, the final difference between
the correct ciphertext C and faulty ciphertext C∗ is:

∴ C ⊕ C∗ =


0 0 β′8 ⊕ β8 0
0 0 β′9 ⊕ β9 ε⊕ SNLF [ε]
0 0 β′10 ⊕ β10 0
0 0 β′11 ⊕ β11 0

 (1)

where β′8, β′9, β′10, β′11 are the infected bytes of the compulsory dummy round
output. Since the byte C∗13 is unaffected by the infected output of dummy round,
it is exploited to retrieve the byte k1113 of the 10th round key using two more pairs of
faulty and correct ciphertexts. Similarly, the remaining 11 key bytes corresponding
to last three rows of k11 can be retrieved. For details on attack procedure, the
reader is referred to [11].

If a fault is injected in any byte of the last three rows of I10, the resulting
erroneous byte is left unmasked and hence is exploited in the attack. However, if
a fault is injected in any byte of the top row, the erroneous byte is masked by
the infected output of compulsory dummy round. This attack does not target the
remaining 4 key bytes that correspond to the top row and they are computed using
a brute force search.

Observation 1: Ideally, the countermeasure should infect the entire result if a
fault is injected in any of the rounds. But Algorithm 1 fails to protect the last
round and it is exploited in the attack. Moreover, in this algorithm, the last cipher
round is always the penultimate round. Thus, using a side channel, one can always
observe a posteriori whether a fault was injected in the last but one round.

In the next section, we present additional flaws in the countermeasure [10]
which were considered while developing the countermeasure presented in section4.

3 Further Loop Holes in the Countermeasure: Attacking
the Infection Technique

It might seem that if the output of compulsory dummy round infects the erroneous
byte of 10th round’s output, then the attack [11] can be thwarted. However, in this
section, we demonstrate that the infection caused by compulsory dummy round is
ineffective and can be removed.

3.1 Infection Caused by Compulsory Dummy Round

In Algorithm 1, since the input as well as the output of dummy round is β, i.e.
RoundFunction(β, k0) = β, we can write:

MC(SR(S(β)))⊕ k0 = β

Using this relation, the xor of RoundFunction(R2, k
0) and β in step 14 of Algo-

rithm 1 can now be expressed as:

RoundFunction(R2, k
0)⊕ β = MC(SR(S(R2)))⊕ k0 ⊕MC(SR(S(β)))⊕ k0

= MC(SR(S(R2)))⊕MC(SR(S(β)))

Since SubByte operation is the only non-linear operation in the above equation,

∴ RoundFunction(R2, k
0)⊕ β = MC(SR(S(R2)⊕ S(β))) (2)



If R2 = β then the execution of compulsory dummy round in step 14 has no effect
on the final output R0, but if R2 6= β then the output of compulsory dummy
round infects the final output R0. However, this infection can be removed using
the above derived equation and the desired faulty ciphertext can be recovered.
On the basis of equation (2), the xor of correct ciphertext C and faulty ciphertext
C∗ in equation (1) can now be expressed as:

C ⊕ C∗ =


0 0 3 · x 0
0 0 2 · x ε⊕ SNLF [ε]
0 0 1 · x 0
0 0 1 · x 0


where x = S[β13⊕SNLF [ε]]⊕S[β13] (for details refer Appendix A). Ideally, every
byte of C∗ should be infected with an independent random value but here the
compulsory dummy round in Algorithm 1 infects only column 3 of C∗ and that
too, with interrelated values and leaves the rest of the bytes unmasked.

In the following discussion, we show the significance of this result, by attacking
the top row of I10, which was not shown in [11]. Subsequently, we show that the
infection can be removed even if the fault is injected in the input of the 9th cipher
round. We prove this by mounting the classical Piret & Quisquater’s attack [4] on
the countermeasure [10].

3.2 Attacking the Top Row

We now demonstrate the attack on the top row of I10 to retrieve the remaining 4
bytes of k10.

Suppose a fault f disturbs I100 i.e. the first byte of 10th cipher round input I10.
The difference between the faulty and redundant intermediate state after the step
7 of Algorithm 1 is:

R0 ⊕R1 =


ε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


where ε = S[I100 ⊕ f ]⊕ S[I100 ].
R2 and R0 are infected in steps 10 and 11. After the infection steps, we obtain:

R0 ⊕R1 =


ε⊕ SNLF [ε] 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


Finally, in the step 14, dummy round operates on infected R2 which further in-
fects R0. In this case, the ShiftRow operation of dummy round does not shift the
infection and the erroneous byte of R0 in column 1 is masked. The final difference
between the correct ciphertext C and faulty ciphertext C∗ is:

∴ C ⊕ C∗ =


ε⊕ SNLF [ε]⊕ β′0 ⊕ β0 0 0 0

β′1 ⊕ β1 0 0 0
β′2 ⊕ β2 0 0 0
β′3 ⊕ β3 0 0 0

 (3)



where β′0, β′1, β′2, β′3 are the infected bytes of the compulsory dummy round output.
and ε = S[I100 ⊕ f ] ⊕ S[I100 ]. Here, we cannot use the attack technique described
in [11] directly, because the erroneous byte of 10th cipher round has also been
infected with the output of compulsory dummy round in step 14. This is different
from the case when fault is injected in any of the last three rows of 10th cipher
round input. In order to carry out the attack [11], we need to remove the infection
caused by the dummy round.
Now, we can use equation (2) to write the above matrix as:

C ⊕ C∗ =


ε⊕ SNLF [ε]⊕ 2 · y 0 0 0

1 · y 0 0 0
1 · y 0 0 0
3 · y 0 0 0

 (4)

where y = S[β0⊕SNLF [ε]]⊕S[β0] ( for details refer Appendix B). We can use the
value of 1 · y from C ⊕C∗ to remove the infection from C∗ and therefore unmask
the erroneous byte. As a consequence, we can perform the attack suggested in
[11] to get the key byte k110 . By attacking the top row, now the attacker has the
flexibility to mount the attack on any of the 12 bytes of 10th cipher round instead
of always targeting the last three rows.

Observation 2: It is quite evident from this attack that the infection mechanism
used in the countermeasure [10] is not effective. The purpose of this infection
countermeasure is defeated as we can easily remove the infection and recover the
desired faulty ciphertext. This is a major flaw in this countermeasure as it makes
even the 9th round susceptible to the fault attack which we will illustrate in the
following discussion.

3.3 Piret & Quisquater’s Attack on the Countermeasure

The presence of compulsory dummy round in the countermeasure [10] ensures that
a fault in the 9th cipher round input of AES128 infects all 16 bytes in the output.
Even though the countermeasure infects all the bytes of the resulting ciphertext,
we show that we can again remove the infection caused by compulsory dummy
round using equation (2) and obtain the desired faulty ciphertext. To mount this
attack, we consider the following two facts:

1. The authors of [10] have mentioned that an attacker can affect the RandomBit
function in the Algorithm 1, so that the random dummy round never occurs.
To counteract this effect, they added a compulsory dummy round at the end
of the algorithm which ensures that the faulty ciphertext is infected in such a
way that no information is available to the attacker.

2. Also, because of performance issues, Algorithm 1 should terminate within a
reasonable amount of time and hence, the number of random dummy rounds
should be limited to a certain value.

First, we show that if random dummy rounds never occur in the while loop, then
despite the presence of compulsory dummy round in step 14, we can mount the
Piret & Quisquater’s attack [4] on this countermeasure and recover the entire key
using only 8 faulty ciphertexts. Subsequently, we show that even if the random
dummy rounds occur, we can still mount this attack [4].



Attack in the Absence of Random Dummy Rounds. Consider the sce-
nario where the attacker influences the RandomBit function so that no dummy
round occurs except the compulsory dummy round in step 14. We observe that
if a fault is injected in the 9th cipher round, then the rest of the computation is
infected thrice. Once, after the 9th cipher round in step 11, then after the 10th ci-
pher round in step 11 and finally after the execution of compulsory dummy round
in step 14. To be able to mount Piret & Quisquater’s attack [4], we first analyze
the faulty ciphertext and identify whether a fault was injected in the input of 9th

cipher round. After identifying such faulty ciphertexts, we remove the infection
caused by the output of compulsory dummy round and 10th cipher round. Once
the infection is removed, we can proceed with the attack described in [4].
The attack procedure can be summarized as follows:

1. Suppose a random fault f is injected in the first byte of the 9th cipher round
input. Before the execution of step 14, the output of faulty computation differs
from the output of correct computation in 4 positions viz. 0, 13, 10 and 7 which
comprises a diagonal. But the execution of compulsory dummy round in step
14 infects all the 16 bytes of the faulty computation. Therefore, the resulting
faulty ciphertext T ∗ differs from the correct ciphertext T in 16 bytes. We use
equation (2) to represent this difference as:

T ⊕T ∗ =


m0 ⊕ 2F1 ⊕ 1F2 1F3 3F4 ⊕ 1F5 ⊕ 1F6 3F7

1F1 ⊕ 3F2 1F3 2F4 ⊕ 3F5 ⊕ 1F6 m1 ⊕ 2F7

1F1 ⊕ 2F2 3F3 m2 ⊕ 1F4 ⊕ 2F5 ⊕ 3F6 1F7

3F1 ⊕ 1F2 m3 ⊕ 2F3 1F4 ⊕ 1F5 ⊕ 2F6 1F7


(5)

where Fi, i ∈ {1, . . . , 7}, represents the infection caused by the compulsory
dummy round in step 14 and mj , j ∈ {0, 1, 2, 3}, represents the difference
between the correct and faulty computation before the execution of step 14
in Algorithm 1 (for more details refer Appendix C). Now, we can deduce the
values of F1 and F2 from column 1, F3 from column 2, F4, F5 and F6 from
column 3 and F7 from column 4 and thus remove the infection caused by the
compulsory dummy round from T ∗.

2. After removing the infection caused by compulsory dummy round, we get:

T ⊕ T ∗ =


m0 0 0 0
0 0 0 m1

0 0 m2 0
0 m3 0 0


We can now remove the infection caused by the 10th cipher round. Each mj

can be written as zj ⊕ SNLF [zj ], j ∈ {0, 1, 2, 3}, where SNLF [zj ] represents
the infection caused in step 11 of Algorithm 1, after the execution of 10th

cipher round and zj represents the difference between the outputs of correct
and faulty computations before step 11 (for more details refer Appendix C). If
SNLF is implemented as inversion in GF (28), we get two solutions of zj for
every mj . Since the 4 equations represented by mj are independent, we obtain
24 solutions for T ⊕ T ∗. Here, T is known, therefore we have 24 solutions for
T ∗ as well.



3. After removing the infection caused by 10th cipher round, the attacker makes
hypotheses on 4 bytes of the 10th round key k11 and uses the faulty and correct
output of 9th cipher round to verify the following relations:

2 · f ′ ⊕ SNLF [2 · f ′] = S−1[T0 ⊕ k110 ]⊕ S−1[T ∗0 ⊕ k110 ]

1 · f ′ ⊕ SNLF [1 · f ′] = S−1[T13 ⊕ k1113]⊕ S−1[T ∗13 ⊕ k1113]

1 · f ′ ⊕ SNLF [1 · f ′] = S−1[T10 ⊕ k1110]⊕ S−1[T ∗10 ⊕ k1110]

3 · f ′ ⊕ SNLF [3 · f ′] = S−1[T7 ⊕ k117 ]⊕ S−1[T ∗7 ⊕ k117 ]

where SNLF [b · f ′], b ∈ {1, 2, 3} is the infection caused in step 11, after the exe-
cution of 9th cipher round. The above set of equations is solved for all 24 possible
values of T ∗ (for the complexity analysis of the attack, refer Appendix D).

Identifying Desired Faulty Ciphertexts. As done in [4], we call a ciphertext
resulting from a fault injected in the input of 9th round as desired faulty cipher-
text, otherwise we call it undesired. It is not difficult to identify whether the given
faulty ciphertext is desired or not. With the countermeasure [10] in place, if a fault
affects a byte of column i in the 9th round input, where i ∈ {0,1,2,3}, we observed
that the following relations hold in the xor of faulty and correct ciphertext:

(T ⊕ T ∗)(4·(i+1))%16 = (T ⊕ T ∗)(4·(i+1))%16+1

(T ⊕ T ∗)(4·(i+1))%16+2 = 3 · (T ⊕ T ∗)(4·(i+1))%16

(T ⊕ T ∗)(4·(i+3))%16+2 = (T ⊕ T ∗)(4·(i+3))%16+3

(T ⊕ T ∗)(4·(i+3))%16 = 3 · (T ⊕ T ∗)(4·(i+3))%16+2

(6)

where (T ⊕T ∗)j represents the jth byte in matrix T ⊕T ∗. One can see from equa-
tion (5), that the above relation arises because the compulsory dummy round uses
the same value to mask more than one byte of the faulty computation.

Attack Considering Random Dummy Rounds. In the attack explained above,
we assumed that the attacker influences the RandomBit function in the counter-
measure [10] so that the dummy rounds do not occur in the while loop. Now, we
consider the case where the number of random dummy rounds occuring in ev-
ery execution of Algorithm 1 is exactly d1. Since λ = 0 corresponds to a dummy
round and λ = 1 corresponds to an AES round, we can view the computation of
Algorithm 1 as if decided by a binary string of length (22 + d), where (22 + d)th

RoundFunction is always the 10th cipher round. We choose to inject the fault in
(22 + d − 2)th round as it can be a 9th cipher or a 10th redundant or a dummy
round. This increases the probability of injecting the fault in 9th cipher round.

Assuming that every string of length (22 + d), consisting of exactly 22 1’s and
d 0’s, is equally likely, then the probability that (22 + d− 2)th RoundFunction is
a 9th cipher round is the same as that of a binary string of length (22 + d) that
ends in ‘111’. Since the while loop in Algorithm 1 always terminates with the exe-
cution of 10th cipher round, the binary string always ends with a 1. Therefore this

probability is: (19+d)!/((19)!·(d)!)
(21+d)!/((21)!·(d)!) (refer Appendix E). If d = 20 then the probability

that 40th RoundFunction is a 9th cipher round is nearly 0.26.

1 If the value of d varies across different executions, one can still compute a mean value
of d by observing the number of RoundFunctions through a side channel.



Simulation Results. We carried out Piret & Quisquater’s attack [4] on Algo-
rithm 1 using a random byte fault model with no control over fault localization.
We implemented the Algorithm 1 in C and used the GNU Scientific Library(GSL)
for RandomBit function. The simulation details are as follows:

1. The value of d is kept constant and 1000 tests are performed.
2. Each test executes Algorithm 1 until 8 desired faulty ciphertexts are obtained.

However, as the target (22 +d−2)th RoundFunction can also be a dummy or
10th redundant round, the undesired faulty ciphertexts obtained in such cases
are discarded. The equation set (6) can be used to distinguish between desired
and undesired faulty ciphertexts.

3. An average of the faulty encryptions over 1000 tests is taken, where number of
faulty encryptions in a test = (8 desired faulty ciphertext + undesired faulty
ciphertexts).

4. Subsequently, the value of d is incremented by 5 and the above procedure is
repeated.

The probability that the targeted RoundFunction is a 9th cipher round decreases
with higher values of d but it still remains non-negligible. In other words, higher
the value of d, more is the number of faulty encryptions required in a test as
evident from Fig.1.
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Fig. 1: Piret & Quisquater’s Attack on Algorithm 1

Observation 3: The feasibility of Piret and Quisquater’s attack shows that
the infection method employed in the countermeasure [10] fails to protect against
classical fault attacks.

4 Improved Countermeasure

In this section, we propose an improved countermeasure based upon the principles
used in the Algorithm 1. The observations enumerated in this paper were used



as a guideline for developing this countermeasure. As evident from the attacks
explained earlier, the infection countermeasure for protecting AES against the
differential fault attacks should have the following properties:

1. If a fault is injected in any of the cipher, redundant or dummy round, all bytes
in the resulting ciphertext should be infected.

2. As shown in Section 3 of this paper, merely infecting all bytes in the output is
not sufficient. Therefore, the infection technique should result in such a faulty
ciphertext that any attempts to make hypothesis on the secret key used in
AES are completely nullified.

3. The countermeasure itself should not leak any information related to the
RoundFunction computations which can be exploited through a side chan-
nel.

Given below is an algorithm, which is designed to possess all the aforementioned
properties. It uses cipher, redundant and dummy rounds along the lines of Algo-
rithm 1 but exhibits a rather robust behaviour against fault attacks.

Algorithm 2 Improved Countermeasure

Inputs : P , kj for j ∈ {1, . . . , n}, (β, k0), (n = 11) for AES128
Output : C = BlockCipher(P,K)

1. State R0 ← P , Redundant state R1 ← P , Dummy state R2 ← β
2. i ← 1, q ← 1
3. rstr ← {0, 1}t // #1(rstr) = 2n,#0(rstr) = t− 2n
4. while q ≤ t do
5. λ ← rstr[q] // λ = 0 implies a dummy round
6. κ ← (i ∧ λ) ⊕ 2(¬λ)
7. ζ ← λ · di/2e // ζ is actual round counter, 0 for dummy
8. Rκ ← RoundFunction(Rκ, k

ζ)
9. γ ← λ(¬(i ∧ 1)) ·BLFN(R0 ⊕R1) // check if i is even

10. δ ← (¬λ) ·BLFN(R2 ⊕ β)
11. R0 ← (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2)
12. i ← i + λ
13. q ← q + 1
14. end
15. return(R0)

Following additional notations are used in this algorithm:

1. rstr: A ‘t’ bit random binary string, consisting of (2n) 1’s corresponding to
AES rounds and (t− 2n) 0’s corresponding to dummy rounds.

2. BLFN: A boolean function that maps a 128 bit value to a 1 bit value. Specif-
ically, BLFN(0) = 0 and for nonzero input BLFN evaluates to 1.

3. γ: A one bit comparison variable to detect fault injection in AES round.
4. δ: A one bit comparison variable to identify a fault injection in dummy round.

Apart from these elements, Algorithm 2 exhibits the following features which
makes it stronger than Algorithm 1:

1. In Algorithm 2, matrix R2 represents the state of the dummy round and is
initialized to a random value β. This state matrix R2 bears no relation with
any of the intermediate states or the round keys of AES. When a fault is



induced in any of the rounds, Algorithm 2 outputs a matrix R2. For fault
analysis to succeed, the faulty output should contain some information about
the key used in the cipher. However, the new countermeasure outputs matrix
R2 which is completely random and does not have any information about the
key used in the AES, which makes the differential fault analysis impossible.
Since in the case of fault injection, Algorithm 2 outputs dummy state R2, the
pair (β, k0) should be refreshed in every execution2.

2. In Algorithm 2, more than one dummy round can occur after the execution
of last cipher round and consequently the 10th cipher round is not always the
penultimate round.

3. Since the number of dummy rounds in Algorithm 2 is kept constant, the leakage
of timing information through a side channel is also prevented.

For a clear illustration, Table 1 shows the functioning of Algorithm 2. If any of

Table 1: Computation of Algorithm 2

Step Redundant Round Cipher Round Dummy Round

5. λ = 1, i is odd λ = 1, i is even λ = 0
6. κ ← 1 κ ← 0 κ ← 2
7. ζ ← di/2e ζ ← di/2e ζ ← 0

8. R1 ← RoundFunction(R1, k
ζ) R0 ← RoundFunction(R0, k

ζ) R2 ← RoundFunction(R2, k
0)

9. γ ← 0 γ ← BLFN(R0 ⊕ R1) γ ← 0
10. δ ← 0 δ ← 0 δ ← BLFN(R2 ⊕ β)
11. R0 ← R0 R0 ← (¬(γ) · R0) ⊕ ((γ) · R2) R0 ← (¬(δ) · R0) ⊕ ((δ) · R2)
12. i ← i + 1 i ← i + 1 i ← i + 0
13. q ← q + 1 q ← q + 1 q ← q + 1

the cipher or redundant round is disturbed, then during the computation of cipher
round, (R0⊕R1) is non-zero and BLFN(R0⊕R1) updates the value of γ to 1. As
a result, R0 is replaced by R2 in step 11. Similarly, if the computation of dummy
round is faulty, (R2 ⊕ β) is non-zero and δ evaluates to 1. In this case too, R0 is
replaced by R2. Also, if the state of comparison variables γ and δ is 1 at the same
time, then in step 11, R0 is substituted by R2 as this condition indicates fault in
comparison variables themselves. In case of undisturbed execution, Algorithm 2
generates a correct ciphertext. Refer Appendix F for more details.

5 Conclusion

Recent works [6], [9] suggest the use of randomness to build sound countermeasures
for protecting AES against the fault attacks. The infection countermeasure in [10]
introduces the element of randomness through the use of dummy round but is
still ineffective against fault attacks which target the last and penultimate round.
This is because the infection uses the same unknown value to mask the erroneous
byte as well as the non-erroneous bytes. One can easily deduce the value of this
unknown mask from the xor of correct and faulty output. Also in the case of
erroneous computation of 10th cipher round, the infection doesn’t affect every
byte in the faulty output. However, the modified countermeasure presented in
this paper affects every erroneous as well as non-erroneous byte with independent
random values irrespective of the round in which the fault is injected. Since these
random values bear no relation with the intermediate output or the secret key,
analysis of the resulting faulty ciphertext is a futile exercise for the attacker.

2 One should note that even a new pair of (β, k0) cannot protect Algorithm 1 against
the attacks described in this paper.
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A Execution of Infected Compulsory Dummy Round: First
attack

After the execution of 10th cipher round, a fault f in I101 infects the byte β13 of
R2 in the step 10 of Algorithm 1:

R2 = R2 ⊕ ε =


β0 β4 β8 β12
β1 β5 β9 β13 ⊕ SNLF [ε]
β2 β6 β10 β14
β3 β7 β11 β15


where ε = S[I101 ]⊕ S[I101 ⊕ f ]. Thus, the input R2 of compulsory dummy round is
infected. Execution of compulsory dummy round in step 14 on the infected R2 is
shown below.
After the ShiftRow and SubByte operation:

R2 =


S[β0] S[β4] S[β8] S[β12]
S[β5] S[β9] S[β13 ⊕ SNLF [ε] S[β1]
S[β10] S[β14] S[β2] S[β6]
S[β15] S[β3] S[β7] S[β11]


For clarity purpose, the output of MixColumn and KeyXor operations of only 3rd

column is shown:

β′8 = 2 · S[β8]⊕ 3 · S[β13 ⊕ SNLF [ε]]⊕ 1 · S[β2]⊕ 1 · S[β7]⊕ k08
β′9 = 1 · S[β8]⊕ 2 · S[β13 ⊕ SNLF [ε]]⊕ 3 · S[β2]⊕ 1 · S[β7]⊕ k09
β′10 = 1 · S[β8]⊕ 1 · S[β13 ⊕ SNLF [ε]]⊕ 2 · S[β2]⊕ 3 · S[β7]⊕ k010
β′11 = 3 · S[β8]⊕ 1 · S[β13 ⊕ SNLF [ε]]⊕ 1 · S[β2]⊕ 2 · S[β7]⊕ k011

Since RoundFunction(β, k0) = β, we can write the 3rd column of β as:

β8 = 2 · S[β8]⊕ 3 · S[β13]⊕ 1 · S[β2]⊕ 1 · S[β7]⊕ k08
β9 = 1 · S[β8]⊕ 2 · S[β13]⊕ 3 · S[β2]⊕ 1 · S[β7]⊕ k09
β10 = 1 · S[β8]⊕ 1 · S[β13]⊕ 2 · S[β2]⊕ 3 · S[β7]⊕ k010
β11 = 3 · S[β8]⊕ 1 · S[β13]⊕ 1 · S[β2]⊕ 2 · S[β7]⊕ k011

The remaining columns in β and in the output of dummy round are same. In step
14, the result of compulsory dummy round is xored with β.

∴ RoundFunction(R2, k
0)⊕β =


0 0 3 · S[β13 ⊕ SNLF [ε]]⊕ 3 · S[β13] 0
0 0 2 · S[β13 ⊕ SNLF [ε]]⊕ 2 · S[β13] 0
0 0 1 · S[β13 ⊕ SNLF [ε]]⊕ 1 · S[β13] 0
0 0 1 · S[β13 ⊕ SNLF [ε]]⊕ 1 · S[β13] 0





B Execution of Infected Compulsory Dummy Round: Top
Row Attack

After the execution of 10th cipher round, a fault f in I100 infects the byte β0 of R2

in the step 10 of Algorithm 1:

R2 = R2 ⊕ ε =


β0 ⊕ SNLF [ε] β4 β8 β12

β1 β5 β9 β13
β2 β6 β10 β14
β3 β7 β11 β15


where ε = S[I100 ]⊕ S[I100 ⊕ f ]. Thus, the input R2 of compulsory dummy round is
infected. Execution of compulsory dummy round in step 14 on the infected R2 is
shown below.
After the ShiftRow and SubByte operation:

R2 =


S[β0]⊕ SNLF [ε] S[β4] S[β8] S[β12]

S[β5] S[β9] S[β13 S[β1]
S[β10] S[β14] S[β2] S[β6]
S[β15] S[β3] S[β7] S[β11]


For clarity purpose, the output of MixColumn and KeyXor operations of only 3rd

column is shown:

β′0 = 2 · S[β0 ⊕ SNLF [ε]]⊕ 3 · S[β5]⊕ 1 · S[β10]⊕ 1 · S[β15]⊕ k00
β′1 = 1 · S[β0 ⊕ SNLF [ε]]⊕ 2 · S[β5]⊕ 3 · S[β10]⊕ 1 · S[β15]⊕ k01
β′2 = 1 · S[β0 ⊕ SNLF [ε]]⊕ 1 · S[β5]⊕ 2 · S[β10]⊕ 3 · S[β15]⊕ k02
β′3 = 3 · S[β0 ⊕ SNLF [ε]]⊕ 1 · S[β5]⊕ 1 · S[β10]⊕ 2 · S[β15]⊕ k03

Since RoundFunction(β, k0) = β, we can write the 1st column of β as:

β′0 = 2 · S[β0]⊕ 3 · S[β5]⊕ 1 · S[β10]⊕ 1 · S[β15]⊕ k00
β′1 = 1 · S[β0]⊕ 2 · S[β5]⊕ 3 · S[β10]⊕ 1 · S[β15]⊕ k01
β′2 = 1 · S[β0]⊕ 1 · S[β5]⊕ 2 · S[β10]⊕ 3 · S[β15]⊕ k02
β′3 = 3 ∗ S[β0]⊕ 1 · S[β5]⊕ 1 · S[β10]⊕ 2 · S[β15]⊕ k03

The remaining columns in β and in the output of dummy round are same. In step
14, the result of compulsory dummy round is xored with β.

∴ RoundFunction(R2, k
0)⊕ β =


2 · S[β0 ⊕ SNLF [ε]]⊕ 2 · S[β0] 0 0 0
1 · S[β0 ⊕ SNLF [ε]]⊕ 1 · S[β0] 0 0 0
1 · S[β0 ⊕ SNLF [ε]]⊕ 1 · S[β0] 0 0 0
3 · S[β0 ⊕ SNLF [ε]]⊕ 3 · S[β0] 0 0 0





C Diffusion of fault and infection in Piret & Quisquater’s
attack

In this appendix, we explain how the fault diffuses and infects the computation
of Algorithm 1, when a fault is injected in the input of 9th cipher round. Let I9

denote the input to the 9th cipher round. Suppose a fault f is injected in the first
byte of 9th cipher round input I9.

I9 =


I90 ⊕ f I94 I98 I912
I91 I95 I99 I913
I92 I96 I910 I914
I93 I97 I911 I915


After the execution of 9th cipher round in the step 7 of Algorithm 1, the difference
between the faulty and redundant intermediate state is:

R0 ⊕R1 =


A 0 0 0
B 0 0 0
C 0 0 0
D 0 0 0


where A = 2 ∗ f ′, B = 1 ∗ f ′, C = 1 ∗ f ′ and D = 3 ∗ f ′.
After infection in step 11, this difference is:

R0 ⊕R1 =


A⊕ SNLF [A] 0 0 0
B ⊕ SNLF [B] 0 0 0
C ⊕ SNLF [C] 0 0 0
D ⊕ SNLF [D] 0 0 0


In step 10, R2 is also infected.

R2 =


β0 ⊕ SNLF [A] β4 β8 β12
β1 ⊕ SNLF [B] β5 β9 β13
β2 ⊕ SNLF [C] β6 β10 β14
β3 ⊕ SNLF [D] β7 β11 β15



Since 10th redundant round executes without any error, after the execution of
10th cipher round in the step 7 of Algorithm 1, the difference between the faulty
and redundant computation is:

R0 ⊕R1 =


z0 0 0 0
0 0 0 z1
0 0 z2 0
0 z3 0 0


where z0 = S[I100 ⊕A⊕SNLF [A]]⊕S[I100 ], z1 = S[I101 ⊕B⊕SNLF [B]]⊕S[I101 ],
z2 = S[I102 ⊕ C ⊕ SNLF [C]]⊕ S[I102 ], z3 = S[I103 ⊕D ⊕ SNLF [D]]⊕ S[I103 ].
In step 11, R0 is further infected, therefore the difference between faulty and
redundant computation at the end of the while loop is:

R0 ⊕R1 =


m0 0 0 0
0 0 0 m1

0 0 m2 0
0 m3 0 0





where mj = zj ⊕ SNLF [zj ], j ∈ {0, 1, 2, 3}.
R2 is also infected in the step 10. After infection, R2 is
β0 ⊕ SNLF [A]⊕ SNLF [z0] β4 β8 β12

β1 ⊕ SNLF [B] β5 β9 β13 ⊕ SNLF [z1]
β2 ⊕ SNLF [C] β6 β10 ⊕ SNLF [z2] β14
β3 ⊕ SNLF [D] β7 ⊕ SNLF [z3] β11 β15


Thus, at the end of the while loop, 4 bytes of R0 and 7 bytes of R2 are infected.

In step 14, when compulsory dummy round operates on R2, the infection in the
input of R2 spreads to all the 16 bytes. Using equation (2), we can write the final
difference T ⊕ T ∗ as:

T ⊕ T ∗ =


m0 ⊕ 2F1 ⊕ 1F2 1F3 3F4 ⊕ 1F5 ⊕ 1F6 3F7

1F1 ⊕ 3F2 1F3 2F4 ⊕ 3F5 ⊕ 1F6 m1 ⊕ 2F7

1F1 ⊕ 2F2 3F3 m2 ⊕ 1F4 ⊕ 2F5 ⊕ 3F6 1F7

3F1 ⊕ 1F2 m3 ⊕ 2F3 1F4 ⊕ 1F5 ⊕ 2F6 1F7


where F1 = S[β0⊕SNLF [A]⊕SNLF [z0]]⊕S[β0], F2 = S[β10⊕SNLF [z2]]⊕S[β10],
F3 = S[β3 ⊕ SNLF [D]] ⊕ S[β3], F4 = S[β13 ⊕ SNLF [z1]] ⊕ S[β13], F5 = S[β2 ⊕
SNLF [C]]⊕S[β2], F6 = S[β7⊕SNLF [z3]]⊕S[β7], and F7 = S[β1⊕SNLF [B]]⊕
S[β1].

D Complexity Analysis

A random byte fault in the input of 9th cipher round results in 24 solutions for
T ∗. Every solution of T ∗ gives 1036 candidate values for 4 bytes of the 10th round
key k11 as described in [4]. Thus the expected number of candidate values for 4
bytes of k11 is 24 ∗ 1036 = 16576. If we repeat this attack process on another pair
of faulty and correct ciphertext we expect to get no more than 2 values for 4 bytes
of k11 [4]. Our experiments also reveal that we are left with at most 2 candidate
values for every 4 bytes of k11.

E Probability Computation

Consider a set L = {s ∈ {0, 1}n+d: #|1| = n ∧ #|0| = d}.
The number of unique binary strings, consisting of exactly n 1’s and d 0’s, i.e. | L |
is (n+ d)!/(n! · d!).
Thus, the number of unique binary string (Stotal) consisting of n = 21 1’s and d
0’s = (21 + d)!/(21! · d!).
And the number of unique binary string (Sfavourable) consisting of n = 21 1’s, d
0’s and ending with ‘11’ = (19 + d)!/(19! · d!).
Therefore, the probability of uniformly selecting a binary string from the set L
with n = 21 and terminating with ‘11’ =

Sfavourable
Stotal

.



F Values of Bit Variables during the Execution of
Algorithm 2

Table 2: Status of Variables during Execution of Algorithm 2

i%2 λ γ δ comments

1 1 0 0 correct computation of redundant round

0 1 0 0 correct computation of cipher round

X 0 0 0 correct computation of dummy round

0 1 1 0 detection of fault in AES round

X 0 0 1 detection of a fault in dummy round

X X 1 1 detection of fault in comparison bit variable


