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Abstract. True random number generators (TRNGs) are crucial to the
implementations of cryptographic algorithms and protocols. The quality
of randomness directly influences the security of cryptographic systems.
Oscillator-based sampling is popular in the design of TRNGs due to its
nice properties of elegant structure and high speed. However, the credi-
bility of randomness generated from high-speed oscillator-based TRNGs,
especially ring oscillator-based (RO-based) ones, is still in controversy.
This is mainly because pseudo-randomness is hardly distinguished from
true randomness and RO-based TRNGs are susceptible to external per-
turbations. In this paper, we present a stochastic model to evaluate the
entropy of oscillator-based TRNGs, and then deduce the requirement of
design parameters (including the sampling interval) for sufficient entropy
per random bit, i.e., to ensure true randomness. Furthermore, we design
a jitter measuring circuit to verify the theory, and the theoretical results
are confirmed by both the simulation and practical experiments. Finally,
we apply the stochastic model to analyze the effect of deterministic per-
turbations, and demonstrate that the randomness of RO-based TRNGs
(under deterministic perturbations) can be overestimated and predicting
the “random” bits could be possible.

Keywords: True random number generators, ring oscillators, sufficient
entropy, perturbation, stochastic model

1 Introduction

True random number generators are employed in many cryptographic appli-
cations such as key generation, digital signature and key exchange, and their
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security is crucial for cryptographic systems. The oscillator-based TRNG has
been widely employed due to its nice properties of elegant structure and high
speed. In oscillator-based TRNGs, a fast oscillator signal is sampled by a slow
one which is generated by another oscillator or an external crystal oscillator, and
the timing jitter in the signals is the entropy (randomness) source.

Randomness evaluation is important for both the design and the use of
TRNGs. In general, there are two methods for randomness evaluation: black-
box statistical tests and white-box stochastic models. The existing statistical
tests, such as FIPS 140-2 [11], NIST 800-22 [16] and Dichard [14] measure the
balance and independence of random bits through various test items. However,
passing these statistical tests can only be considered as a necessary condition
for true randomness (as deterministic sequences with good statistical properties
can also pass these tests). Therefore, it seems extremely difficult to test the true
randomness only from the outputting sequences of TRNGs. For this reason, it is
necessary to evaluate TRNGs from stochastic models, which are directly related
to the entropy of TRNGs.

In addition, from the white-box stochastic models, it is feasible to derive the
requirements for the design parameters of TRNGs. In oscillator-based TRNGs,
one of the most important parameters is the sampling interval, which determines
the generation speed of TRNGs. To model oscillator-based TRNGs, Killmann
and Schindler [12] used a common stochastic model, where the flipping times are
independent and identically distributed (i.i.d.), and provided a tight lower bound
for the entropy of the TRNG. Yet, the model is not able to provide a precise
entropy, or the probabilities of outputting certain bit patterns. Using a phase-
oriented approach, Baudet et al. [2] provided a more comprehensive model and
calculated the precise entropy for RO-based TRNGs. The model also allowed for
computing the maximal bias on a short vector and recovering the main stochastic
parameters of a TRNG. Amaki et al. [1] proposed a stochastic behavior model
using Markov state transition matrix to calculate the state probability vector.
Some other related works for TRNG modeling are presented in [15,5, 3].

Another issue for modeling the stochastic behavior of RO-based TRNGs is
deterministic perturbations. In general, the perturbations can be generated from
an unstable switching power, or another oscillator inside the chip. They can even
be injected by attackers [13]. The effect of deterministic perturbations has been
discussed in the literature. The process of injecting deterministic perturbations
is simulated in [4], and the authors observe that the engagement of perturbations
makes it easier to pass statistical tests due to the joining of pseudo-randomness.
The improvement of statistical properties was also investigated by the theory
and the experiment in [1]. Baudet et al. [2] presented a differential measurement
method to acquire non-deterministic jitter, and concluded that the deterministic
perturbations do not undermine the randomness of a TRNG by itself, but can
lead to a dangerous overestimation of randomness jitter. In addition, the effect
of deterministic perturbations on the inherent randomness was discussed in [13,
7].
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In this paper, by improving the stochastic model in [12], we propose a
more precise and comprehensive stochastic model for evaluating the entropy of
oscillator-based (more precisely, RO-based) TRNGs, and theoretically give the
required parameters for sufficient entropy per bit. In order to verify the theory,
we design a novel jitter measuring circuit by employing an internal measuring
method. The theoretical results are verified with both simulation and practical
experiments. Meanwhile, the consistencies with the previous models are also in-
vestigated. Furthermore, we apply the model to analyze and explain the effect of
deterministic perturbations. We demonstrate that the randomness of RO-based
TRNGs under deterministic perturbations can be overestimated, and it could
be possible to predict the “random” bits.

In summary, we make the following contributions.

— We propose a new modeling method for stochastic behaviors to evaluate
the entropy of oscillator-based TRNGs, and deduce recommended design
parameters for sufficient entropy.

— We design a novel jitter measuring circuit by employing an internal measur-
ing method to verify the theory, which is crucial and helpful in acquiring the
design parameters of the TRNGs.

— We perform a comprehensive study on the effect of deterministic pertur-
bations, and point out that deterministic perturbations make it possible to
predict the generated random sequences, though the sequences under the
effect are easier to pass statistical tests.

The rest of the paper is organized as follows. In Section 2, we present the
stochastic model for oscillator-based TRNGs. In order to verify the theory, we
design a novel jitter measuring circuit for experimental verification, and discuss
the modeling assumption in Section 3. In Section 4, we verify the theoretical
results and give the requirement of parameters. We analyze the effect of deter-
ministic perturbations in Section 5. In Section 6, we conclude the paper.

2 Stochastic Model

A typical example of oscillator-based TRNG is shown in Figure 1. A stable slow
clock signal samples an unstable fast oscillator signal to generate random bits.
As the sampling interval increases, the jitter of the fast oscillator signal are
accumulating. The foundation of generating random bits is the unpredictability
of the number of fast signal periods (more precisely, half-periods) in the duration
of a single slow signal period.

Definitions. The important notations in oscillator-based TRNGs are shown
in Figure 2, where the half-periods X}, is the time interval between two flopping
times. In this paper, we assume that Xj are i.i.d., and the reason is discussed
in Section 3.4. The mean and variance of half-periods are denoted as p and
o2, respectively, i.e. p = F(Xy) and 02 = Var(Xy). The sampling time with
the equal interval s are represented as sg, s1, ..., S;, i.e. $; = ¢s. The waiting
time W, denotes the timing distance of s; to the following closest edge. The
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Fig. 1. Oscillator-based TRNG

number of edges within (s;_1, s;] is denoted by R;, then the ith sampling bit B;
is represented as B; = (B;_1 + R;) mod 2.

Note that the operation of adding R; with B;_; can be treated as a type of
post-processing, which is not considered in this paper; the operation causes no
impact on the information entropy, thus we take B; = R; mod 2 in the remainder
for convenience.
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Fig. 2. Definitions of oscillator-based TRNGs

2.1 Preliminary Analysis of the Stochastic Model

We briefly summarize some important results from [12] on probability calculation
of sampling bits, which is the base of our work.

Let R; = min{k | Ty > s}, where Ty, = X; + X3 + ... + X}, meaning R; is
the first increasing k ensuring that T}, is larger than s. The probability

Prob(R; = k + 1) = Prob(Ty < s) — Prob(Ti4+1 < s). (1)

The distribution of T}, is derived from the central-limit theorem (CLT), so it

is deduced that
Tk - k‘/,b <
ovk

where &(z) = [©_ e‘t2/2dt/\/ 27 denotes the cumulative distribution function
of the standard normal distribution N (0, 1). Then we have

Prob( x) = P(x), k — oo, (2)

Prob(R; = k+ 1) = Prob(T}, < s) — Prob(Tj4+1 < s) (3)
[ “

z@((v—k)-m)—é((v—k—1)~07m
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where v = s/p represents the frequency ratio. Then the probability distribu-
tion of sampling bit B; is

Prob(B; = b;) = Prob(R; mod 2 = b;) (4)

= Prob(R; = 2j — b;) for b; € {0,1}.
j=1

2.2 Improved Model for RO-based TRNGs

In oscillator-based TRNGs, especially in RO-based TRNGs, the amount of jitter
is very small [6], i.e., 0/pu < 1. The possible values of k are restricted in a small
interval zone near the mean v. In addition, as the fast oscillator signal is dozens of
times faster than the slow clock, v is not a small value. Therefore, it is reasonable
to assume that vk ~ vk + 1 ~ \/v.

Setting ¢ = o+/v/u as the quality factor which is used to evaluate the quality
of TRNGs, we have

Prob(Ri:k+1)z@((vfky%\/%)—@((vfk—l)'m/%)
v—k v—k—1

For the probability of B; = 1, we have

Prob(B; = 1) = Y Prob(R; = 2j — 1) = Y (#(*—2) - a(*—L ),

=1 =1 7 7
which can be described as the sum of the interleaved column areas below the
normal distribution curve in Figure 3.

| |
3 2 1 o a7, 2 3

Fig. 3. The probability distribution ofthe sampling bit (W; = 0)

In Figure 3, W; is set to 0 for convenience. The area between the normal
distribution curve and z axis (equaling to 1) is divided at 1/¢ interval, and the
area of each column corresponds to the probability of R; equaling to each k.
The larger g is, the finer the column is divided, which means that the areas of
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‘0’ and ‘1’ are closer. Another observation is that, besides ¢, the value of r also
affects the bias of the sampling bit. Variable r is the fractional part of v, i.e.,
r = v mod 1. The dividing position is determined by r/g, as shown in Figure
3. Obviously, when W; = 0 and r = 0, the areas of probabilities ‘0’ and ‘1’ are
equal regardless of g. The most unbiased case is r = 0.5 when W; = 0, where the
distance between probabilities ‘0’ and ‘1’ becomes largest compared to the other
cases with the same q. Therefore, a robust TRNG design should have sufficient
entropy even in the worst (most unbiased) case.

The probability distribution of the waiting time. In consecutive sam-
pling, two adjacent sampling processes are dependent as the waiting time W;
generated by the ith sampling affects the (i + 1)th one. Referring to renewal
theory, the probability of W; is

Py (y) = Prob(W; <y) = i/oy(l — Px(u))du, (6)

where Px(-) denotes the cumulative distribution function of half-periods X;.
Furthermore, because o < p, Py (y) is approximated to

1 Y
7/ ldu="Y, 0<y<p
PW(?/)% H®Jo 14

L, y>p

which can be treated as the uniform distribution on the interval [0, u].

Sampling process approximation. Inspired by Equations (5) and (7), we
approximate the consecutive sampling described in Figure 1 to the following
process - a slow signal with jitter sampling a fast stable signal.

— The fast oscillator signal is stable.
— The slow oscillator signal which sampling the fast signal is unstable with
jitter. The periods follow (vu,vo?) normal distribution.

Easy to verify that the probability distributions for R; and W; under the
model are corresponding with Equations (5) and (7), respectively. Therefore, the
approximated model is equivalent to the original one under the assumption of
small jitter. In fact, the approximated process is also a common type in oscillator-
based TRNGs. The stochastic behavior of the approximated process is easier to
model, so we use it as an improved model to calculate and evaluate the entropy
of TRNGs.

2.3 Entropy Calculation

The improved model for consecutive sampling is described in Figure 4. For nor-
malization, we define W/ as the ratio of the W; to the mean u. We calculate the
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Fig. 4. The new model for entropy calculation

probability of B;+1 = b;41 under the condition of W/ = wj,

—+oo

Prob(bi1|w]) = > (&

i=—00

214+ 1—¢; 21 —¢;
) — &

q q

) (®)

= Jip1(wy)
(¢ = (v—w} — (1 —0b;+1)) mod 2).

From Figure 4, we have

+oo . .
214+ 1—¢; 20—c; +1—x
Prob(Wi,, <@, bipa|w)) = > (95(?) -9 . )
L= i+1(z7w£)v

which is the area of the shaded part in Figure 4.
By defining G;(x) := Prob(W/ < z|b;, ..., b1), we have the conditional prob-
ability of sampling bits

1
Prob(bi+1|bi, PN ,bl) = /0 JZ+1((E)G1(d£L') = K(bZJrl) (9)

Due to the uncertainty of the initial sampling position, we assume the dis-
tribution of W is also uniformed in (0,1). Therefore,

! Fy (z,w))

dw),.
o Swp)

1
1 (2) = Prob(W! < alby) = / Prob(IW! < alby, w))duw) —
0

Then, using the property of the Markov process
Prob(b; 1 |w}, b, w}_4,...) = Prob(b;,1|w}),

we calculate the following G;(z):
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Then we get the n-bit probability distribution for certain bit patterns

p(b) = Prob(by, ..., b1) = [[ K (), (10)
i=1
and the n-bit entropy
H,= Y —p(b)logp(b). (11)
be{o,1}n

3 Experiment Design for Model Verification

In this section, using an internal measuring method we design an improved jitter
measurement circuit to verify the stochastic model. The advantage of the circuit
is that it is able to acquire the approximated quality factor while the sampling
bits are generated, which is useful to verify the stochastic model.

3.1 Dual-Counter Measurement Circuit

The ring oscillator is formed by a set of inverters that are chained into a ring,
while the number of the inverters must be an odd number. A typical RO struc-
ture in FPGAs is shown in Figure 5, where these inverters are implemented by
Look-Up Tables (LUTs) in FPGAs. The ideal period of the oscillator signal is
represented as 2X, where X is the delay of all the RO components, i.e., the

half-period.
Reset: N { >_| >°_—>
And Gate  Inverter

Fig. 5. Ring oscillator

In order to measure the jitter more accurately, we improve the internal mea-
surement circuit [18]. In contrast to the only one positive or negative edge
counter used in [18], two voltage-crossing counters are utilized in our measure-
ment method, as shown in Figure 6. Besides improving the sensitivity to jitter
accumulation, this method helps us directly obtain the sampling bits from the
counting results. The counting process is the (delayed) renewal process, so the
variance with the interval of s is represented as s(o2/u?) 4+ o(s) = ¢* + o(s),
where o(s) — 0 when s — co. Therefore, by calculating the standard variance of
the counting results, we can acquire the approximated quality factor ¢. It should
be noticed that, when the interval is not large enough, ¢ is overestimated, since
o(s) cannot be ignored under the interval.
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Fig. 6. Dual-counter measurement circuit

In the improved measuring method, two counters are employed to measure
the number of positive edges and negative edges in the duration of a single
slow clock period, respectively. Then, the two counter results are added to form
the outputting values. After each count finishes, the counters should be cleared
to start the next count. The clear signal is generated through the clear circuit
which is driven by both the ring oscillator signal and the slow clock. The counting
process of the positive-edge counter with the sampling interval of s is depicted in
Figure 7. Between the two adjacent counts, the clear signal lasts accurately one
period of the oscillator signal by using the clear circuit. If the oscillator frequency
is too high to clear the counters within one cycle, the number becomes two or
three.

:<—clear : counting ]

UL e L

Fig. 7. The counting process (positive edge)

Consecutive sampling is adopted in the measurement, and the sampling type
is useful to simplify the counting process, because we just need to do the counting
collection only once for the longer sampling intervals of ms, rather than do m
times. After getting numbers of count results in the duration of s, we can sum the
m non-overlapping results to obtain the number of edges in the duration of ms,
then we can figure out the quality factor under the interval of ms by calculating
the standard variance of these sums. Although the clear mechanism makes all
sums smaller than the real values by m — 1, it has no impact on calculating the
variances of these values.

3.2 Jitter Measurement

We implement the circuit with 3-inverter RO on Xilinx Virtex-5 FPGA. The RO
frequency is about 484 MHz, and the slow clock is a 5 MHz crystal oscillator
signal, and the circuit output is the number of RO edges within the duration of
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s = 200 ns. Having numbers of outputting values in the interval s, we can figure
out the number of edges within the sampling interval ms by m-time accumulat-
ing. For the sampling interval ms, we can calculate the standard deviation o,
of the accumulation results. From the renewal theory under i.i.d. assumption,
Om = /ms(o/u?/?) = \/mo,, s — oo, where o, denotes the standard variance
under the interval of ms.

10" 10 10" 10°

m m

(a) Simulation results with white noises (b) Practical measuring results in FPGA

Fig. 8. The measuring results with ideal vs. practical noises

The simulation and practical results for the measurement method at log-
arithmic coordinates are shown in Figure 8, whose z-axis is m and y-axis is
standard deviation o,,. In Figure 8(a), with m increasing, the slope of the stan-
dard deviation curve is approaching to 0.5, which is consistent with the theory.
As mentioned, if ms is not large enough, meaning the accumulated jitter is small,
the measuring result is larger than the real value. Fortunately, we observe that
the overhead will be no more than 10% when the measuring standard deviation
is larger than 0.8, so these results are available.

Surprisingly, the practical measuring result is quite different, as shown in
Figure 8(b). We find the existence of deterministic (sinusoidal) perturbations
which make the o, curve form a wavy pattern of rising. In addition, when the
sampling interval ms is large (about m > 50), we also observe the existence
of correlated noise, under which the standard variance increases faster and the
slope becomes larger than 0.5.

3.3 Filtering Deterministic Jitter

Deterministic perturbations make an overhead for the estimation of random
jitter. In order to filter deterministic jitter, a measurement method using dual
oscillators was presented in [8]. The method is based on the fact that the effect of
deterministic perturbations is global. We use a 15-inverter RO signal as the slow
clock to filter the perturbations and measure the random jitter of fast oscillator
signal. In contrast to the clock measuring result, the RO measuring result does
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Fig. 9. RO measuring result

not display an obvious wavy pattern of rising, as shown in Figure 9. Therefore,
we obtain the data R; without the perturbations, which are the experimental
data base for verifying the theory.

3.4 Discussion for Modeling Assumption

In our stochastic model, we assume that the jitter or the noises are i.i.d., but
the correlation is observed in the experiment when the sampling interval is long.
According to [10], correlated noise (such as 1/f noise) is embodied at low fre-
quency in oscillators, while the noise at high frequency is white (or independent).
The correlated noise was also observed in [19] which suggested that the sampling
frequency should be fast enough to avoid the influence of correlated noise. In our
proposed TRNG model, the focused sampling interval is m < 12 (see Section
4.2) where the accumulated jitter is insufficient or almost sufficient, so the effect
of correlated noise is weak in this region. Therefore, for simplicity, we do not
involve the modeling for correlated noises or jitter in the stochastic model of the
TRNG.

Correlated noise makes the jitter and the counting results have long-term
dependence, which also affects sampling bits, so it shall be noted that the ef-
fect of correlated noise (especially mixed with white noise) on sampling bits in
RO-based TRNG is actually an open problem due to the complexity and variety
of correlated noise. As a preliminary analysis, we do not observe the correla-
tion inherited in the sampling bits under correlated noise when accumulated
independent jitter is sufficient (see Figure 10).

4 Entropy Evaluation

In this section, using the formula of entropy calculation, we deduce the require-
ment of RO-based TRNGs parameters for sufficient entropy per bit. The results
are verified by experiments, and the comparison with other work is also present-
ed.
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4.1 Parameters for Sufficient Entropy

In consecutive sampling, H, can be derived from Equation (11). The bit-rate
entropy is denoted as H = H,,/n. According to the experimental result in [12],
the threshold value of bit-rate entropy is chosen as 0.9999, i.e., H should be larger
than 0.9999 to achieve sufficient security. We calculate the bit-rate entropy in
term of ¢ for various r from 0 to 0.5 using Matlab numerical calculation (shown
in Figure 11). The required ¢ values for different r to achieve sufficient entropy
(0.9999) are listed in the second row of Table 1.

In contrast to the example of W; = 0 in Figure 3, the consecutive sampling
has the worst balance at » = 0, because the waiting time W, has a uniform
distribution in consecutive sampling. In the case of r = 0, when ¢ is larger than
0.9264, the bit-rate entropy is sufficient. On the contrary, the generator with
r = 0.5 is easiest to acquire sufficient entropy, and the required ¢ is only 0.6511.
Given the parameters o and p of the fast oscillator signal , we can figure out the
required sampling interval for sufficient entropy.

Table 1. The required g to achieve sufficient entropy for different r

™ =0 r=0.1|r=0.2 r:0.3) r=0.4
Req. ¢ 1 (0.9) | (0.8) | (0.7) 7] (0.6)
Theory 0.9264|0.9209|0.9029|0.8673|0.7895(0.6511 H > 0.9999

Sim. Measured |0.9778(0.9392|0.9198|0.8759(0.7928|0.7002|passing FIPS 140-2

r=0.5 Remark

4.2 Experimental Verification

In order to verify the parameter requirement, we use the statistical tests FIPS
140-2 [11] to test the sampling bits, including monobit test, poker test, runs
test and longest run test. We record the required ¢ values for the sampling bits
passing all items of FIPS 140-2, and compare them with the theoretical ones.

Matlab Simulation. We first use Matlab simulation to verify the theoretical
results, as the environment can be ideal as expected. In the simulation, the
half-periods of the fast oscillator signal are set to (1.125,0.017?) i.i.d. normal
distribution. Using the measuring method under a preset sampling interval, we
can get the counting results, whose standard variance and LSBs can be treated
as ¢ and sampling bits, respectively. With the sampling interval increasing, the
passing point for each r can be observed, as shown in the third row of Table 1. As
we mentioned in Figure 8, the measured ¢ values are a little larger than the real
values when m is small. Therefore, the simulation results approximately match
with the theory in Table 1, especially in the aspect of variation tendency. The
difference between these two results is because that the criteria of the theoretical
entropy and FIPS 140-2 are not completely consistent.
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Fig. 10. Results of measured ¢ and FIPS 140-2 tests in FPGA

Practical experiment. We also implement the measurement circuit in the
FPGA platform. The measuring and test results are shown in Figure 10, where
the passing rate means the ratio of the number of passed test items to the
number of all items. We observe that the passing point lies in the interval
q € [0.8936,0.9389], which nearly corresponds with the simulation and theo-
ry. However, it seems infeasible to measure the right r at this point to do a
further verification, since a tiny measuring error will make the measured r total-
ly different in such a high frequency of the fast oscillator signal. In addition, it
should also be noticed that correlated noise makes an overestimation for thermal
jitter, especially when m is large. One can employ the method presented in [9]
to measure the thermal noise contribution to the jitter.

4.3 Comparison with Previous Work

For the entropy evaluation of oscillator-based TRNGs, a tight lower bound was
provided in [12], and the bit-rate entropy was calculated in [2] by using a phase-
oriented method. The main results of [12] and [2] are presented as Equations
(12) and (13), respectively.

H(BZ-|BZ-,1,...7Bl)zH(Bi|WZ-,1)m/ H(R®™  mod 2) Py (du) (12)
0

32(n — 1) 2 2

H,~n-— ) cos? (mr)e™™ 4 (13)

In Equation (12), R®*~*) represents the number of crossing edges in the
duration of (s — u), and the variables in Equation (13) have been converted for
the correspondence of definitions.! Our estimated bit-rate entropy is larger than
the lower bound of [12] as expected, and is almost identical to the result of [2]
at the worse cases (r =0, 0.1, 0.2), as shown in Figure 11.

! The quality factor @ defined in [2] equals to ¢°/4.
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However, there are some inconsistencies in the comparison of our result with
[2] when r > 0.3, especially at » = 0.5. According to Equation (13), H,, ap-
proximately equals to n when r = 0.5, meaning that the bit-rate entropy H
achieves the maximum value 1. That is to say, so long as the sampling interval
s satisfies that (s mod p)/p = r = 0.5 in consecutive sampling, the bit-rate
entropy is close to 1 regardless of q. Nonetheless, the conclusion is not confirmed
in both our theory and simulation experiment. In our opinion, » = 0.5 can only
guarantee the balance of sampling bits?, rather than the independence. There-
fore, when r = 0.5 the generated sequences can pass the statistical tests once
the independence of sampling bits is satisfied. That is why the generators with
r = 0.5 are easier to acquire sufficient entropy. Obviously, when ¢ is small, the
correlation of sampling bits cannot be eliminated, thus the n-bit entropy cannot
approximately equal to n. The sampling correlation is further illustrated via the
following independence condition.

4.4 Independence Condition

The sampling correlation is derived from the transfer of the waiting time W;
which affects the (i 4+ 1)th sampling result. Therefore, the independence of sam-
pling bits should satisfy

Wb; € {0,1}, Prob(W; < z|b;) = Prob(W; < z) = %
For various ¢ values at r = 0, the conditional probability distributions Prob(W; <
x|b;) are shown in Figure 12, where the curves from outside to inside correspond
to the ¢ values from 0.1 to 1 at 0.1 interval. Note that r does not make the con-
ditional distribution become uniform easier, but only affects the cross position
of these probability curves. Therefore, we only present the result of » = 0. When

2 The balance holds only when W; is uniformly distributed, which just requires a very
small ¢ (about 0.1).
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q is less than 0.5, the probability distribution is non-uniform, meaning that the
correlation still exists. Until ¢ is approximately larger than 0.6, the distribution
becomes uniform and the correlation is almost eliminated, which is consistent
with the calculation results in Table 1. In addition, the experimental result in
the next section also confirms the independence condition.

5 The Effect of Deterministic Perturbations

In this section, we show that the deterministic perturbations make the sam-
pling bits appear to be more “random” and easier to pass statistical tests. More
importantly, we point out that the seemingly random sequence actually has a
vulnerability which makes it possible to predict the sequence.

5.1 The Effect on the Statistical Test

In order to analyze the effect on the statistical test, we carry out the measurement
and FIPS 140-2 statistical tests with deterministic jitter. Under deterministic
perturbations, the TRNG is easier to pass the test, as shown in Figure 13, where
the passing position is m = 9 and the other is m = 11.

It is interesting that the passing rate of RO sampling has an abrupt rise
at m = 7, which is precisely the position of the crest of the perturbations,
meaning that the sampling sequence suddenly becomes more “random”. The
reason is that the deterministic jitter is not completely filtered out by the dual-
oscillator method, since the perturbation effects on the two oscillators cannot be
exactly identical, though they have been placed as close as possible. Moreover,
the observation validates the fact that injecting deterministic jitter does improve
the randomness of outputting sequences. However, note that the deterministic
perturbation in our experiment is slight and balanced. Once the perturbation
becomes strong, it will reduce the amount of inherent independent jitter; once
it becomes biased, it will degrade the quality of sampling bits.

[
o

50-0-0-0-00-0660-0+
—#— std. without deter.
— A —test without deter.
++ All Pass

| —2— std. with d=0
—a8— std. with d=0.1u
— & — testwith d=0.11
— & — testwith d=0

o_/passing rate
N
ml

m
©_/passing rate

ost /

per o —o6— std. with deter. 051 —&— std. with d=0.3u
! A — © —test with deter. — © —testwith d=03y
L test R ‘ L
[¢] 5 10 15 20 0 5 10 15 20 25
m m
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5.2 The Bound for the Randomness Improvement

Increasing the amplitude makes it easier to pass the statistical tests. However,
when we keep increasing the amplitude more than 0.3y, the passing position
does not move up any more, as shown in Figure 14. The final position stops at
m = 6, and the current standard deviation caused by random jitter is 0.682,
which is consistent with the independence condition. Therefore, we can infer
that the engagement of deterministic perturbations causes little impact on the
correlation of sampling bits but improves the balance of sampling sequences.
With the deterministic jitter increasing, the sequences can pass the statistical
test when the dependence condition holds.

However, though the balance is achieved for sampling sequences, for each
sampling bit the balance is insufficient, because the jitter accumulation for each
sampling has not been enough. This causes some security problems, such as
predicting the sampling bits.

5.3 Predicting the “Random” Bits

The deterministic perturbation is assumed as sinusoidal signal D(t) = A sin(%—i—

¢0). The half-period after perturbing becomes X/ = f;}“ (1+ D(t))dt. we have
the following reasonable physical assumptions for deterministic perturbations
[2]: Tp >> p (slow variations of D(t)) and X/ ~ X, (small deterministic jitter).
Therefore, it is easy to deduce that the uniform distribution in [0, p] still approxi-
mately holds for the new waiting time. Furthermore, compared with the sampling
interval s in the model without perturbations, the mean of the new ith interval is
equivalent to s — d; to apply the model in Section 2, where d; = f:ﬁl D(t)dt. As
we mentioned, it is useful to improve the balance of the whole sequence, however,
the impact is very limited on a given sampling bit, which allows us to predict
the seemingly random bits. The probability of the ¢th bit equaling to b; can be
derived from the total probability formula Prob(b;) = fol Prob(b;|w;) Pw (du),
where Prob(b;|w;) can be calculated from Equation (8) using the modified sam-
pling interval s — d;.

Fig. 15. The comparison of predicting and practical probabilities
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Therefore, if precisely knowing the mean pu, standard variance o, and the
behaviors of deterministic jitter, one can precisely compute the probabilities
of sample bits in advance. We perform a prediction simulation, and compare
the predicting probabilities with the practical ones in Figure 15. The practical
probabilities come from the statistics of 1000 simulation samples that can pass
FIPS 140-2. It is shown that the two sets of probabilities are consistent with
each other in most sampling bits. Using the predicting results, one can optimize
brute-force attacks to significantly reduce the breaking complexity. In practical
terms, the more precise parameters of TRNGs one knows, the more effective
attacks one can perform.

Though the TRNG output can pass the statistical tests under the pertur-
bations, with environmental factors (such as supply voltage) changing, the fre-
quency and amplitude of the perturbation might change to the values that no
longer help to improve the “randomness” (e.g. the frequency changes to the mul-
tiples of the sampling frequency). Therefore, one way to guarantee the security
of under-perturbation TRNGs is to keep the entropy sufficiency in each sampling
bit, i.e. the ¢ should be large enough. As d; << s, the requirement for ¢ value is
approximately identical to that without deterministic perturbations at the worst
case r = 0.

6 Conclusion and Future Work

In this paper, we propose an improved modeling method for oscillator-based
TRNGs, and deduce the requirement for the parameters of security TRNGs. In
order to verify the theory, we design an improved measuring circuit for acquiring
the TRNG parameters. The measuring circuit can also be integrated into hard-
ware for online tests and inner tests of the TRNGs. Furthermore, we apply the
stochastic model to analyze the TRNGs with deterministic perturbations. We
investigate the positive effect of perturbations on the statistical tests, and also
provide the bound for the randomness improvement. By performing a simulated
attack, we demonstrate that predicting the random bits could be possible. In
future work, we will further analyze the accuracy of the measuring method and
extend our stochastic model to the multiple-RO structures [17], especially for
those injection-locked oscillators.
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